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Chapter V: Indexing & Searching
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  Dictionary, Inverted Index, Forward Index,  
  Partitioning, Caching 
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  Huffman Coding, Ziv-Lempel, Variable-Byte Encoding,  
  Gap Encoding, Gamma Encoding, S9/S16, P-For-Delta 

V.3 Query Processing  
  Term-at-a-Time, Document-at-a-Time,  
  Quit & Continue, WAND, Fagin’s TA 

V.4 MapReduce 
  Architecture, Programming Model, Hadoop 

V.5 Near-Duplicate Detection  
  High-Dimensional Similarity Search, Shingling,  
  Min-Wise Independent Permutations, Locality Sensitive Hashing

!2



IR&DM ’13/’14

Moore’s Law

• Has often been generalized to clock rates of CPUs,  
disk & memory sizes, etc. 

• Still holds today for integrated circuits!

!3

“The density of integrated  
circuits (transistors) will  

double every 18 months!”
[Gordon Moore 1965]

Source: http://en.wikipedia.org/wiki/Moore's_law

http://en.wikipedia.org/wiki/Moore's_law
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Traditional View on Hardware
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More Modern View on Hardware

• CPU caches becomes  
primary storage 

• Main-memory becomes  
secondary storage
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Random Access vs. Sequential Access

• Locality matters across all levels of the memory hierarchy 

• Typical latencies of performing a random access: 

• Main memory: 10-8 s (~ 95MB/s assuming one byte is read) 

• Solid state drive: 10-5 s (~ 0.9 MB/s assuming one byte is read)  

• Hard disk drive: 10-2 s (~ 0.09 KB/s assuming one byte is read) 

• High transfer rates only achievable through sequential accesses, 
i.e., by reading data that is stored contiguously, e.g., on disk
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Data Centers
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Source: Stanford Infolab Source: [Dean ‘09] Source: http://www.google.com/about

1996 2004 2013

• Geographically distributed (i.e., bring data close to users) 

• Indexes distributed and kept in main memory of many machines 

• Energy consumption is an important cost factor

http://infolab.stanford.edu
http://www.google.com/about/datacenters/
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Overview of Modern IR System
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V.1 Indexing

 1. Dictionary 

 2. Inverted Index 

 3. Forward Index 

 4. Partitioning 

 5. Caching 
 
 
 
 
 
 
 
 
 Based on MRS Chapters 2, 3, 4 and RBY Chapter 9
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1. Dictionary

• Dictionary maintains information about terms, e.g.: 

• unique term identifier (e.g., house → 3,141) 

• location of corresponding posting list on disk or in memory 

• statistics such as document frequency and collection frequency 

!

• Operations supported by the dictionary 

• lookups by term 

• range searches (e.g., for prefix and suffix queries like hous* and *ing) 

• substring matching (e.g., for wildcard queries like ho*e*lly) 

• lookups by term identifier
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Hash-Based Dictionary

• Supports lookups in O(1) but no other operations 

• Vocabulary dynamics (i.e., new or removed terms) problematic 

• Works best in main memory
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B+-Tree-Based Dictionary

• B-Tree: Balanced tree with internal nodes having fan-out m 

• B+-Tree: Leaf nodes additionally linked for efficient range search 

• Supports lookups in O(log n) and range searches in O(log n + k) 

• Vocabulary dynamics (i.e., new or removed terms) no problem 

• Works on secondary storage

[aardvark, tid:3, df:3, …]

[a-i][j-z]

[j-k][l-q][r-z][a-d][e-f][g-i]

[a-b][c][d] [e][f] [g][h][i] … … …

m = 3

[aalborg, tid:7, df:2, …]
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Permuterm Index

• Indexes all permutations of each term with delimiter symbol $ 

!

!

!

!

!

• Supports arbitrary wildcard queries (e.g., ho*e*lly is mapped to 
prefix query lly$ho* with post-filtering of matching terms) 

• Works on-top of dictionary supporting range searches 

• Space blowup proportional to average term length
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k-Gram Index

• Indexes all k-grams for each term with delimiter symbol $ 

!

!

!

!

!

• Supports arbitrary wildcard queries (e.g., ho*e*lly is mapped to 
lookups $ho, lly, ly$ with intersection and post-filtering of terms) 

• Works on-top of dictionary supporting lookups 

• Space blowup proportional to parameter k
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2. Inverted Index

• Inverted index keeps a posting list for each term, which usually 
reside on secondary storage, with each posting capturing 
information about term’s occurrences in a specific document 

• document identifier (e.g., d123, d234, …) 

• term frequency (e.g., tf(house, d123) = 2, tf(house, d234) = 4) 

• score impacts (e.g., tf(house, d123) * idf(house) = 3.75) 

• offsets (i.e., absolute positions at which the term occurs in the document)  
 
 
 
 
 

• Posting lists are usually compressed for time and space efficiency
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giants d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

Posting list

Posting
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Posting Payloads

• Posting payloads depend on the kind of queries and  
the retrieval models to be supported 

• document identifier (always required, sufficient for Boolean retrieval)  
 

• term frequency (for ranked retrieval, possibly different retrieval models)  
 

• score impacts (if the retrieval model has been fixed)  
 

• offsets (for proximity constraints or phrase queries)
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d123

d123, 2

d123, 3.75

d123, 2, [4, 14]



IR&DM ’13/’14

Posting-List Order

• Posting-list order depends on the kinds of queries to be supported  

• Document-ordered posting lists for more efficient intersections  
(e.g., required for Boolean queries and phrase queries)  
 

• Impact-ordered posting lists for more efficient top-k queries  
(i.e., terminate query processing as soon as top-k results known)

!17

d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

d231, 1.0 d12, 0.9 d662, 0.8 d3, 0.5
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Skip Pointers

• Posting lists can be equipped with additional structure 

• Skip pointers allow “fast forwarding” in a posting list 

• common heuristic: evenly spaced at df(term)1/2 

• can be embedded into postings or kept together in posting-list header

!18

d1, 2 d16, 2 d55, 2 d101, 2
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3. Forward Index

• Forward index maintains information about documents 

• compact representation of content (e.g., as sequence of term identifiers) 

• document length 

!

!

!

• Forward index can be used for tasks, e.g.: 

• result-snippet generation (i.e., show context of query terms) 

• computation of proximity features for advanced ranking  
(e.g., width of smallest window that contains all query terms)
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d123 the giants played a fantastic season. it is not clear …

d123 dl:428 content:< 1, 222, 127, 3, 897, 233, 0, 12, 6, 7, 123, … > 
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4. Partitioning

• Document-partitioned inverted index 

• each compute node indexes a subset of the document collection 

• each query is processed by every compute node 

• perfect load balance, embarrassingly scalable, easy maintenance

!20
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Partitioning (cont’d)

• Term-partitioned inverted index  

• each compute node holds posting lists for a subset of terms 

• queries are routed to compute nodes with relevant terms 

• lower resource consumption, susceptible to imbalance (because of skew 
in the data or query workload), index maintenance non-trivial

!21
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Back-of-the-Envelope Cost Comparison

• 20 billion web pages, 100 terms each ⟶ 2 x 1012 postings 

• 10 million distinct terms ⟶ 2 x 105 entries per posting list 

• 5 bytes per posting ⟶ 1 MB per posting list, 10 TB total  
  

• Query throughput: typical 1,000 q/s; peak 10,000 q/s 

• Response time: all queries in ≤ 100 ms 

• Reliability and redundancy: 10-fold redundancy  
  

• Execution cost per query: 

• 1 ms initial latency + 1 ms per 1,000 postings 

• 2 terms per query  
  

• Cost per compute node (4 GB RAM): $ 1,000 

• Cost per disk (1 TB): $ 500 with 5 ms per RA, 20 MB/s for SAs
!22
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Back-of-the-Envelope Cost Comparison (cont’d)

• Document-partitioned inverted index in RAM 

• 3,000 compute nodes to hold one copy of the index in RAM 

• 3,000 x 4 GB RAM = 12 TB (10 TB total index size + workspace RAM) 

• Query processing: 

• each query executed on 3,000 computers in parallel:  
1 ms + (2 x 200 ms / 3,000) ≈ 1 ms 

• each cluster can sustain ~ 1,000 q/s 

• 10 clusters = 30,000 compute nodes to sustain peak load and 
guarantee reliability & availability  

• $ 30 million = 30,000 x $ 1,000 (no “big” disks)

!23
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Back-of-the-Envelope Cost Comparison (cont’d)

• Term-partitioned inverted index on disk 

• 10 compute nodes each with 1 TB disk to hold entire index 

• Query processing: 

• max(1 MB / 20 MB/s, 1 ms + 200 ms) 

• limited throughput: 5 q/s per compute node for 1-term queries 

• 1 cluster = 400 nodes to sustain 1,000 q/s for 2-term queries 

• 10 clusters = 4,000 nodes to sustain peak load and guarantee 
reliability & availability  

• $ 6 million = 4,000 x ($ 1,000 + $ 500)

!24
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5. Caching

• What is cached? 

• Query results 

• Posting lists 

• Posting-list intersections 

• Documents 

• Snippets  

• Where is it cached? 

• in RAM of responsible compute node 

• in dedicated front-end accelerators or proxy nodes   

• in RAM of all (many) compute nodes

!25
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Architecture of Modern IR System

!8
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Document Collection Cache



IR&DM ’13/’14

Caching Strategies

• Least recently used (LRU) 

• when space is needed, evict the item that was least recently used  

• Least frequently used (LFU) 

• when space is needed, evict the item that was least frequently used  

• Cost-aware (Landlord algorithm) 

• estimate for each item: temperature = access-rate / cost 

• when space is needed, evict item with lowest temperature 

• prefetch item if its predicted temperature is higher than  
the temperature of the corresponding replacement victims 

• Full details: [Cao and Irani ’97][Young ’02]
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Caching Effectiveness

• Query frequencies follow Zipf distribution (s ≈ 1)  

• [Baeza-Yates et al. ’07] analyzed one-year query log of Yahoo! 

• 88% of queries are issued only once 

• account for 44% of overall query volume 

• query-result caching achieves cache-hit ratios < 50% in practice

!27
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Summary of V.1

• Dictionary  
holds information about terms 

• Inverted Index 
holds information about word occurrences in documents 

• Forward Index 
holds compact representations of documents 

• Partitioning  
distribute inverted index by-document or by-term 

• Caching 
query results, posting lists, posting-list intersection, etc.

!28
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Additional Literature for V.1

• R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and  
F. Silvestri: The Impact of Caching on Search Engines, SIGIR 2007  

• S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine, 
Computer Networks 30:107-117, 1998 

• P. Cao and S. Irani: Cost-Aware WWW Proxy Caching Algorithms, USENIX 1997 

• R. Ozcan, I. S. Altingovde, B. B. Cambazoglu, F. P. Junqueira, O. Ulusoy: A five-
level static cache architecture for web search engines, IP&M 48(5):828-840, 2012  

• N. E. Young: On-Line File Caching, Algorithmica 33(3):371-383, 2002 

• J. Zobel and A. Moffat: Inverted Files for Text Search Engines,  
ACM Computing Surveys 38(2):6, 2006
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V.2 Compression

 1. Huffman Coding 

 2. Ziv-Lempel Compression 

 3. Variable-Byte Encoding 

 4. Gamma Encoding 

 5. Gap Encoding 

 6. Run-Length Encoding 

 7. S9/S16 Encoding 

 8.  P-FoR-Delta Encoding  
 
 
 
 

!30
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Why Compression?

• Zipf’s law and Heaps’ law suggest opportunities for compression  
due to frequent terms or terms occurring repeatedly in documents  

• Compression of posting lists is attractive for several reasons 

• reduced space consumption on disk or in main memory 

• faster query processing, since reading and decompressing data is  
nowadays often faster than reading uncompressed data 

• improved cache effectiveness, since more posting lists fit into cache

!31
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1. Huffman Coding

• Variable-length unary code based on frequency analysis of the 
underlying distribution of symbols (e.g., terms) in a text 

• Key idea: Choose shortest unary code for most frequent symbol

!32

Symbol x Frequency f(x) Huffman Encoding

a 0.8 0

peter 0.1 10

picked 0.07 110

peck 0.03 1110

Huffman tree

0
10

1
11

110 111

1110

a peter picked peck
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Entropy

• Let f(x) be the probability (or relative frequency) of the symbol x 
in some text d. The entropy of the text (or the underlying 
probability distribution) is defined as 

!

!

• The entropy H(d) is a lower bound on the average (i.e., expected)  
number of bits per symbol needed with optimal compression.  

• Huffman codes come close to the optimum H(d)

!33

H(d) =
X

x

f(x) log2
1

f(x)
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2. Ziv-Lempel Compression

• LZ77 (Adaptive Dictionary) and further variants: 

• Scan text and identify in a lookahead window the longest string that 
occurs repeatedly and is contained in backwards window 

• Replace this string by a pointer to its previous occurrence 

• Encode text into list of triples < back, count, new > where 

• back is the backward distance to a prior occurrence of the string that  
starts at the current position 

• count is the length of this repeated string 

• new is the next symbol that follows the repeated string 

• Triples themselves can be further encoded (with variable length) 

• Variants use explicit dictionary with statistical analysis of text  
but need to scan text twice (for statistics and compression)

!34
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Ziv-Lempel Compression (Example)

• Example: peter_ piper_ picked_ a_ peck_ of_ pickled_ peppers  
 
< 0, 0, p >  for character 1:     p 
< 0, 0, e >   for character 2:      e 
< 0, 0, t >   for character 3:      t 
< -2, 1, r >  for characters 4-5:     er  
< 0, 0, _ >  for character 6:      _ 
< -6, 1, i >   for characters 7-8:     pi 
< -8, 2, r >  for characters 9-11:     per  
< -6, 3, c >  for characters 12-13:        _pic 
< 0, 0, k >  for character 16     k 
< -7,1, d >  for characters 17-18    ed 
… 

• Great for text but not appropriate for compressing posting lists

!35
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3. Variable-Byte Encoding

• 32-bit binary code represents 12,038 using 4 bytes as  
 

• Variable-byte encoding (aka. 7-bit encoding) uses one bit per 
byte as a continuation bit indicating whether the current number 
expands into the next bytes 

• Variable-byte encoding represents 12,038 using only 2 bytes as 

!

!

!

• Byte-aligned, i.e., each number corresponds to sequence of bytes

!36

00000000 00000000 00101111 00000110

01011110 10000110

7 data bits
1 continuation bit
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4. Gamma Encoding

• Gamma (γ) encoding represents an integer x as 

• length = floor(log2 x) in unary 

• offset = x - 2length in binary 

 results in (1 + log2 x + log2 x) bits for integer x 

• Not byte-aligned, i.e., needs to be packed into bytes or words  

• Useful when distribution of numbers is not known ahead of time  
or when small numbers (e.g., gaps, tf) are frequent

!37
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Gamma Encoding (Examples)

 x     Gamma Encoding 

 1 = 20    u:0 

 4 = 22    u:110    b:00 

 24 = 24 + 23  u:11110   b:1000 

 131 = 27 + 3  u:11111110  b:0000011
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5. Golomb/Rice Encoding

• For tunable parameter M, split the number x into 

• quotient q = floor(x / M) stored in unary code (using q + 1 bits) 

• remainder r = (x mod M) stored in binary code  

• If M chosen as 2n then r needs log2(M) bits (Rice encoding) 

• Otherwise for b = ceil(log2(M)) 

• If r < 2b - M then r is stored in binary code using b - 1 bits 

• Otherwise r + 2b - M is stored in binary code using b bits  

• Not byte-aligned, i.e., needs to be packed into bytes or words 

• Useful when distribution of numbers is known ahead of time 
(e.g., optimal for geometrically distributed numbers)

!39
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Golomb/Rice Encoding (Examples)

      Golomb Encoding (M = 10, b = 4) 

 x     q  bits(q)    r  bits(r) 

 0     0  u:0     0  b:000 

 33     3  u:1110    3  b:011 

 57     5  u:111110   7  b:1101 

 99     9  u:1111111110  9  b:1111
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5. Gap Encoding

• Variable-byte encoding, Gamma encoding, and Golomb/Rice 
encoding represent smaller numbers using fewer bytes  

• Note: Posting lists contain sequences of increasing integers 

• document identifiers of postings in document-ordered posting list 

• offsets in posting payload if phrase queries need to be supported  

• Gap encoding (aka. d-gaps) represents sequences of increasing 
integers as their first element followed by gaps

!41

<7, 12, 20, 25, 33, 78, … > <7, 5, 8, 5, 8, 45, … > 
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6. Run-Length Encoding

• Run-length encoding (e.g., used in early image formats like PCX) 
targets sequences of integers having long runs of the same 
number (i.e., many repetitions of that number in a row) 

• Run-length encoding represents integer sequences as  
(number, frequency) pairs

!42

<7, 7, 7, 8, 8, 1, 1, 1, 1, … > < (7, 3), (8, 2), (1, 4), …>
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7. S9/S16 Encoding

• Byte-aligned encoding (32-bit integer words of fixed length) 

• 4 status bits encode 9/16 cases for partitioning 28 data bits  
 

• Example: If 1001 above denotes 4 x 7 bits for the data part, then  
the data part encodes the decimal numbers: 69, 112, 47, 47 

• Decompression by case table or by hardcoding all cases 

• High cache locality of decompression code/table 

• Fast CPU support for bit shifting integers on modern platforms  

• Full details: [Zhang et al. ‘08]

!43

10011000 10111100 00101111 01011110
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8. P-FoR-Delta Encoding

• Patched Frame-of-Reference w/ Delta-encoded Gaps 

• Key idea: Encode individual numbers  
such that “most” numbers fit into b bits 

• Focuses on encoding an entire block at  
a time by choosing a value of b bits  
such that [highcoded, lowcoded] is small 

• Outliers (“exceptions”) stored in extra  
exception section at the end of the block  
in reverse order 

!

!

• Full details: [Zukowski et al. ’06] 
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Encoding of 31415926535897932  
using b=3 bitwise coding blocks  

for the code section.
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Posting-List Layout & Compression (Example)

!

!

!

!

!

!

!

!

• Layout allows incremental decoding 

• Full details: [Dean ’09]
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Skip Table Block 1 Block 2 Block N

Block 1 (contain n postings)
delta to last document identifier in block
# documents in block (most often n)
n - 1 deltas: RiceM encoded
tf values: Gamma encoded
term attributes: Huffman encoded
term positions: Huffman encoded
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Open Source Search Engines

• Apache Lucene / Apache Solr 

• implemented in Java, widely used in practice 

• http://lucene.apache.org/core/  http://lucene.apache.org/solr/  

• Indri 

• implemented in C++, academic IR system developed at CMU & U Mass 

• http://www.lemurproject.org 

• Terrier 

• implemented in Java, academic IR system developed at U Glasgow 

• http://terrier.org/ 

• MG4J 

• implemented in Java, academic IR system developed at U Milano 

• http://mg4j.dsi.unimi.it

!46

http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://www.lemurproject.org
http://terrier.org/
http://mg4j.dsi.unimi.it
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Summary of V.2

• Compression  
is essential for performance in modern IR systems 

• Ziv-Lempel compression  
as a dictionary-based encoding scheme that is great for text 

• Variable-byte encoding  
as a byte-aligned non-parameterized encoding 

• Gamma encoding and Golomb/Rice encoding  
as bit-aligned non-parameterized/parameterized encodings 

• Gap encoding and Run-length encoding 
for transforming integer sequences 

• S9/S16 and P-FoR-Delta  
as methods that encode entire blocks of integers  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Additional Literature for V.2

• S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine, 
Computer Networks 30:107-117, 1998 

• J. Dean: Challenges in Building Large-Scale Information Retrieval Systems,  
WSDM 2009, http://videolectures.net/wsdm09_dean_cblirs/ 

• A. Moffat and L. Stuiver: Binary Interpolative Coding for Effective Index 
Compression, Inf. Retr. 3(1): 25-47 (2000) 

• H. Yan, S. Ding, T. Suel: Compressing Term Positions in Web Indexes, 
SIGIR 2009 

• H. Yan, S. Ding, T. Suel: Inverted index compression and query processing with 
optimized document ordering, WWW 2009 

• I. Witten, A. Moffat, and T. Bell: Managing Gigabytes (2nd Edition),  
Morgan Kaufmann, 1999 

• J. Zhang, X. Long, T. Suel: Performance of compressed inverted list caching in search 
engines, WWW 2008 

• M. Zukowski, S. Héman, N. Nes, P. A. Boncz: Super-Scalar RAM-CPU Cache 
Compression, ICDE 2006
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