
Chapter V:
Indexing & Searching

Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Wintersemester 2013/14

IR&DM ’13/’14

Chapter V: Indexing & Searching

V.1 Indexing 
 Dictionary, Inverted Index, Forward Index,  
 Partitioning, Caching

V.2 Compression  
 Huffman Coding, Ziv-Lempel, Variable-Byte Encoding,  
 Gap Encoding, Gamma Encoding, S9/S16, P-For-Delta

V.3 Query Processing  
 Term-at-a-Time, Document-at-a-Time,  
 Quit & Continue, WAND, Fagin’s TA

V.4 MapReduce 
 Architecture, Programming Model, Hadoop

V.5 Near-Duplicate Detection  
 High-Dimensional Similarity Search, Shingling,  
 Min-Wise Independent Permutations, Locality Sensitive Hashing

!2

IR&DM ’13/’14

Moore’s Law

• Has often been generalized to clock rates of CPUs,  
disk & memory sizes, etc.

• Still holds today for integrated circuits!

!3

“The density of integrated
circuits (transistors) will

double every 18 months!”
[Gordon Moore 1965]

Source: http://en.wikipedia.org/wiki/Moore's_law

http://en.wikipedia.org/wiki/Moore's_law

IR&DM ’13/’14

Traditional View on Hardware

!4

Tape

CD

Te
rti

ar
y

St
or

ag
e

CPU

M C

HDD

SSD

Se
co

nd
ar

y
St

or
ag

e

25 GB/s  
(64bit@3Ghz)

6 – 12 GB/s  
(DDR3-SDRAM)

600 MB/s  
(SATA-III)

~180 MB/s

~500 MB/s

IR&DM ’13/’14

More Modern View on Hardware

• CPU caches becomes  
primary storage

• Main-memory becomes  
secondary storage

!5

M C

HDD

SSD

CPU CPU

L1/L2 L1/L2

Se
co

nd
ar

y
St

or
ag

e
• CPU-to-L1: 

~3-5 cycles

• CPU-to-L2: 
~15-20 cycles

• CPU-to-M: 
~200 cycles

IR&DM ’13/’14

Random Access vs. Sequential Access

• Locality matters across all levels of the memory hierarchy

• Typical latencies of performing a random access:

• Main memory: 10-8 s (~ 95MB/s assuming one byte is read)

• Solid state drive: 10-5 s (~ 0.9 MB/s assuming one byte is read)

• Hard disk drive: 10-2 s (~ 0.09 KB/s assuming one byte is read)

• High transfer rates only achievable through sequential accesses,
i.e., by reading data that is stored contiguously, e.g., on disk

!6

©brutalSoCal@flickr

©0Andreas@flickr
©0Uncle0Sai7ul@flickr

IR&DM ’13/’14

Data Centers

!7

Source: Stanford Infolab Source: [Dean ‘09] Source: http://www.google.com/about

1996 2004 2013

• Geographically distributed (i.e., bring data close to users)

• Indexes distributed and kept in main memory of many machines

• Energy consumption is an important cost factor

http://infolab.stanford.edu
http://www.google.com/about/datacenters/

IR&DM ’13/’14

Overview of Modern IR System

!8

Query Processor

Dictionary Inverted Index Forward Index

Query Result

User

Document Collection Cache

IR&DM ’13/’14

V.1 Indexing

 1. Dictionary

 2. Inverted Index

 3. Forward Index

 4. Partitioning

 5. Caching 
 
 
 
 
 
 
 
 
 Based on MRS Chapters 2, 3, 4 and RBY Chapter 9

!9

IR&DM ’13/’14

1. Dictionary

• Dictionary maintains information about terms, e.g.:

• unique term identifier (e.g., house → 3,141)

• location of corresponding posting list on disk or in memory

• statistics such as document frequency and collection frequency

!

• Operations supported by the dictionary

• lookups by term

• range searches (e.g., for prefix and suffix queries like hous* and *ing)

• substring matching (e.g., for wildcard queries like ho*e*lly)

• lookups by term identifier

!10

IR&DM ’13/’14

Hash-Based Dictionary

• Supports lookups in O(1) but no other operations

• Vocabulary dynamics (i.e., new or removed terms) problematic

• Works best in main memory

!11

absolute

miracle

zone

giants

question
h(t)

[absolute, tid:7, df:44, …]

[zone, tid:12, df:23, …]

[giants, tid:13, df:55, …]

[question, tid:5, df:80, …] [miracle, tid:8, df:6, …]

0

1

2

3

IR&DM ’13/’14

B+-Tree-Based Dictionary

• B-Tree: Balanced tree with internal nodes having fan-out m

• B+-Tree: Leaf nodes additionally linked for efficient range search

• Supports lookups in O(log n) and range searches in O(log n + k)

• Vocabulary dynamics (i.e., new or removed terms) no problem

• Works on secondary storage

[aardvark, tid:3, df:3, …]

[a-i][j-z]

[j-k][l-q][r-z][a-d][e-f][g-i]

[a-b][c][d] [e][f] [g][h][i] … … …

m = 3

[aalborg, tid:7, df:2, …]

IR&DM ’13/’14

Permuterm Index

• Indexes all permutations of each term with delimiter symbol $

!

!

!

!

!

• Supports arbitrary wildcard queries (e.g., ho*e*lly is mapped to
prefix query lly$ho* with post-filtering of matching terms)

• Works on-top of dictionary supporting range searches

• Space blowup proportional to average term length

!13

absolute

absolute$
bsolute$a
solute$ab
olute$abs
lute$abso
ute$absol
te$absolu
e$absolut

absolute$
bsolute$a
e$absolut
lute$abso
olute$abs
solute$ab
te&absolu
ute&absol

IR&DM ’13/’14

k-Gram Index

• Indexes all k-grams for each term with delimiter symbol $

!

!

!

!

!

• Supports arbitrary wildcard queries (e.g., ho*e*lly is mapped to
lookups ho, lly, ly with intersection and post-filtering of terms)

• Works on-top of dictionary supporting lookups

• Space blowup proportional to parameter k

!14

absolute

$ab
abs
bso
sol
olu
lut
ute
te$

k = 3

IR&DM ’13/’14

2. Inverted Index

• Inverted index keeps a posting list for each term, which usually
reside on secondary storage, with each posting capturing
information about term’s occurrences in a specific document

• document identifier (e.g., d123, d234, …)

• term frequency (e.g., tf(house, d123) = 2, tf(house, d234) = 4)

• score impacts (e.g., tf(house, d123) * idf(house) = 3.75)

• offsets (i.e., absolute positions at which the term occurs in the document)  
 
 
 
 
 

• Posting lists are usually compressed for time and space efficiency

!15

giants d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

Posting list

Posting

IR&DM ’13/’14

Posting Payloads

• Posting payloads depend on the kind of queries and  
the retrieval models to be supported

• document identifier (always required, sufficient for Boolean retrieval)  
 

• term frequency (for ranked retrieval, possibly different retrieval models)  
 

• score impacts (if the retrieval model has been fixed)  
 

• offsets (for proximity constraints or phrase queries)

!16

d123

d123, 2

d123, 3.75

d123, 2, [4, 14]

IR&DM ’13/’14

Posting-List Order

• Posting-list order depends on the kinds of queries to be supported  

• Document-ordered posting lists for more efficient intersections  
(e.g., required for Boolean queries and phrase queries)  
 

• Impact-ordered posting lists for more efficient top-k queries  
(i.e., terminate query processing as soon as top-k results known)

!17

d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

d231, 1.0 d12, 0.9 d662, 0.8 d3, 0.5

IR&DM ’13/’14

Skip Pointers

• Posting lists can be equipped with additional structure 

• Skip pointers allow “fast forwarding” in a posting list

• common heuristic: evenly spaced at df(term)1/2

• can be embedded into postings or kept together in posting-list header

!18

d1, 2 d16, 2 d55, 2 d101, 2

IR&DM ’13/’14

3. Forward Index

• Forward index maintains information about documents

• compact representation of content (e.g., as sequence of term identifiers)

• document length

!

!

!

• Forward index can be used for tasks, e.g.:

• result-snippet generation (i.e., show context of query terms)

• computation of proximity features for advanced ranking  
(e.g., width of smallest window that contains all query terms)

!19

d123 the giants played a fantastic season. it is not clear …

d123 dl:428 content:< 1, 222, 127, 3, 897, 233, 0, 12, 6, 7, 123, … >

IR&DM ’13/’14

4. Partitioning

• Document-partitioned inverted index

• each compute node indexes a subset of the document collection

• each query is processed by every compute node

• perfect load balance, embarrassingly scalable, easy maintenance

!20

IR&DM ’13/’14

Partitioning (cont’d)

• Term-partitioned inverted index

• each compute node holds posting lists for a subset of terms

• queries are routed to compute nodes with relevant terms

• lower resource consumption, susceptible to imbalance (because of skew
in the data or query workload), index maintenance non-trivial

!21

IR&DM ’13/’14

Back-of-the-Envelope Cost Comparison

• 20 billion web pages, 100 terms each ⟶ 2 x 1012 postings

• 10 million distinct terms ⟶ 2 x 105 entries per posting list

• 5 bytes per posting ⟶ 1 MB per posting list, 10 TB total  

• Query throughput: typical 1,000 q/s; peak 10,000 q/s

• Response time: all queries in ≤ 100 ms

• Reliability and redundancy: 10-fold redundancy  

• Execution cost per query:

• 1 ms initial latency + 1 ms per 1,000 postings

• 2 terms per query  

• Cost per compute node (4 GB RAM): $ 1,000

• Cost per disk (1 TB): $ 500 with 5 ms per RA, 20 MB/s for SAs
!22

IR&DM ’13/’14

Back-of-the-Envelope Cost Comparison (cont’d)

• Document-partitioned inverted index in RAM

• 3,000 compute nodes to hold one copy of the index in RAM

• 3,000 x 4 GB RAM = 12 TB (10 TB total index size + workspace RAM)

• Query processing:

• each query executed on 3,000 computers in parallel:  
1 ms + (2 x 200 ms / 3,000) ≈ 1 ms

• each cluster can sustain ~ 1,000 q/s

• 10 clusters = 30,000 compute nodes to sustain peak load and
guarantee reliability & availability  

• $ 30 million = 30,000 x $ 1,000 (no “big” disks)

!23

IR&DM ’13/’14

Back-of-the-Envelope Cost Comparison (cont’d)

• Term-partitioned inverted index on disk

• 10 compute nodes each with 1 TB disk to hold entire index

• Query processing:

• max(1 MB / 20 MB/s, 1 ms + 200 ms)

• limited throughput: 5 q/s per compute node for 1-term queries

• 1 cluster = 400 nodes to sustain 1,000 q/s for 2-term queries

• 10 clusters = 4,000 nodes to sustain peak load and guarantee
reliability & availability  

• $ 6 million = 4,000 x ($ 1,000 + $ 500)

!24

IR&DM ’13/’14

5. Caching

• What is cached?

• Query results

• Posting lists

• Posting-list intersections

• Documents

• Snippets  

• Where is it cached?

• in RAM of responsible compute node

• in dedicated front-end accelerators or proxy nodes

• in RAM of all (many) compute nodes

!25

IR&DM ’13/’14

Architecture of Modern IR System

!8

Query Processor

Dictionary Inverted Index Forward Index

Query Result

User

Document Collection Cache

IR&DM ’13/’14

Caching Strategies

• Least recently used (LRU)

• when space is needed, evict the item that was least recently used  

• Least frequently used (LFU)

• when space is needed, evict the item that was least frequently used  

• Cost-aware (Landlord algorithm)

• estimate for each item: temperature = access-rate / cost

• when space is needed, evict item with lowest temperature

• prefetch item if its predicted temperature is higher than  
the temperature of the corresponding replacement victims

• Full details: [Cao and Irani ’97][Young ’02]

!26

IR&DM ’13/’14

Caching Effectiveness

• Query frequencies follow Zipf distribution (s ≈ 1)  

• [Baeza-Yates et al. ’07] analyzed one-year query log of Yahoo!

• 88% of queries are issued only once

• account for 44% of overall query volume

• query-result caching achieves cache-hit ratios < 50% in practice

!27

IR&DM ’13/’14IR&DM ’13/’14

Summary of V.1

• Dictionary  
holds information about terms

• Inverted Index 
holds information about word occurrences in documents

• Forward Index 
holds compact representations of documents

• Partitioning  
distribute inverted index by-document or by-term

• Caching 
query results, posting lists, posting-list intersection, etc.

!28

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for V.1

• R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and  
F. Silvestri: The Impact of Caching on Search Engines, SIGIR 2007

• S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine, 
Computer Networks 30:107-117, 1998

• P. Cao and S. Irani: Cost-Aware WWW Proxy Caching Algorithms, USENIX 1997

• R. Ozcan, I. S. Altingovde, B. B. Cambazoglu, F. P. Junqueira, O. Ulusoy: A five-
level static cache architecture for web search engines, IP&M 48(5):828-840, 2012

• N. E. Young: On-Line File Caching, Algorithmica 33(3):371-383, 2002

• J. Zobel and A. Moffat: Inverted Files for Text Search Engines,  
ACM Computing Surveys 38(2):6, 2006

!29

IR&DM ’13/’14

V.2 Compression

 1. Huffman Coding

 2. Ziv-Lempel Compression

 3. Variable-Byte Encoding

 4. Gamma Encoding

 5. Gap Encoding

 6. Run-Length Encoding

 7. S9/S16 Encoding

 8. P-FoR-Delta Encoding  
 
 
 
 

!30

IR&DM ’13/’14

Why Compression?

• Zipf’s law and Heaps’ law suggest opportunities for compression  
due to frequent terms or terms occurring repeatedly in documents  

• Compression of posting lists is attractive for several reasons

• reduced space consumption on disk or in main memory

• faster query processing, since reading and decompressing data is  
nowadays often faster than reading uncompressed data

• improved cache effectiveness, since more posting lists fit into cache

!31

IR&DM ’13/’14

1. Huffman Coding

• Variable-length unary code based on frequency analysis of the
underlying distribution of symbols (e.g., terms) in a text

• Key idea: Choose shortest unary code for most frequent symbol

!32

Symbol x Frequency f(x) Huffman Encoding

a 0.8 0

peter 0.1 10

picked 0.07 110

peck 0.03 1110

Huffman tree

0
10

1
11

110 111

1110

a peter picked peck

IR&DM ’13/’14

Entropy

• Let f(x) be the probability (or relative frequency) of the symbol x 
in some text d. The entropy of the text (or the underlying
probability distribution) is defined as

!

!

• The entropy H(d) is a lower bound on the average (i.e., expected)  
number of bits per symbol needed with optimal compression.  

• Huffman codes come close to the optimum H(d)

!33

H(d) =
X

x

f(x) log2
1

f(x)

IR&DM ’13/’14

2. Ziv-Lempel Compression

• LZ77 (Adaptive Dictionary) and further variants:

• Scan text and identify in a lookahead window the longest string that
occurs repeatedly and is contained in backwards window

• Replace this string by a pointer to its previous occurrence

• Encode text into list of triples < back, count, new > where

• back is the backward distance to a prior occurrence of the string that  
starts at the current position

• count is the length of this repeated string

• new is the next symbol that follows the repeated string

• Triples themselves can be further encoded (with variable length)

• Variants use explicit dictionary with statistical analysis of text  
but need to scan text twice (for statistics and compression)

!34

IR&DM ’13/’14

Ziv-Lempel Compression (Example)

• Example: peter_ piper_ picked_ a_ peck_ of_ pickled_ peppers  
 
< 0, 0, p > for character 1: p 
< 0, 0, e > for character 2: e 
< 0, 0, t > for character 3: t 
< -2, 1, r > for characters 4-5: er  
< 0, 0, _ > for character 6: _ 
< -6, 1, i > for characters 7-8: pi 
< -8, 2, r > for characters 9-11: per  
< -6, 3, c > for characters 12-13: _pic 
< 0, 0, k > for character 16 k 
< -7,1, d > for characters 17-18 ed 
…

• Great for text but not appropriate for compressing posting lists

!35

IR&DM ’13/’14

3. Variable-Byte Encoding

• 32-bit binary code represents 12,038 using 4 bytes as  
 

• Variable-byte encoding (aka. 7-bit encoding) uses one bit per
byte as a continuation bit indicating whether the current number
expands into the next bytes

• Variable-byte encoding represents 12,038 using only 2 bytes as

!

!

!

• Byte-aligned, i.e., each number corresponds to sequence of bytes

!36

00000000 00000000 00101111 00000110

01011110 10000110

7 data bits
1 continuation bit

IR&DM ’13/’14

4. Gamma Encoding

• Gamma (γ) encoding represents an integer x as

• length = floor(log2 x) in unary

• offset = x - 2length in binary

 results in (1 + log2 x + log2 x) bits for integer x 

• Not byte-aligned, i.e., needs to be packed into bytes or words  

• Useful when distribution of numbers is not known ahead of time  
or when small numbers (e.g., gaps, tf) are frequent

!37

IR&DM ’13/’14

Gamma Encoding (Examples)

 x Gamma Encoding

 1 = 20 u:0

 4 = 22 u:110 b:00

 24 = 24 + 23 u:11110 b:1000

 131 = 27 + 3 u:11111110 b:0000011

!38

IR&DM ’13/’14

5. Golomb/Rice Encoding

• For tunable parameter M, split the number x into

• quotient q = floor(x / M) stored in unary code (using q + 1 bits)

• remainder r = (x mod M) stored in binary code

• If M chosen as 2n then r needs log2(M) bits (Rice encoding)

• Otherwise for b = ceil(log2(M))

• If r < 2b - M then r is stored in binary code using b - 1 bits

• Otherwise r + 2b - M is stored in binary code using b bits  

• Not byte-aligned, i.e., needs to be packed into bytes or words

• Useful when distribution of numbers is known ahead of time 
(e.g., optimal for geometrically distributed numbers)

!39

IR&DM ’13/’14

Golomb/Rice Encoding (Examples)

 Golomb Encoding (M = 10, b = 4)

 x q bits(q) r bits(r)

 0 0 u:0 0 b:000

 33 3 u:1110 3 b:011

 57 5 u:111110 7 b:1101

 99 9 u:1111111110 9 b:1111

!40

IR&DM ’13/’14

5. Gap Encoding

• Variable-byte encoding, Gamma encoding, and Golomb/Rice
encoding represent smaller numbers using fewer bytes  

• Note: Posting lists contain sequences of increasing integers

• document identifiers of postings in document-ordered posting list

• offsets in posting payload if phrase queries need to be supported  

• Gap encoding (aka. d-gaps) represents sequences of increasing
integers as their first element followed by gaps

!41

<7, 12, 20, 25, 33, 78, … > <7, 5, 8, 5, 8, 45, … >

IR&DM ’13/’14

6. Run-Length Encoding

• Run-length encoding (e.g., used in early image formats like PCX)
targets sequences of integers having long runs of the same
number (i.e., many repetitions of that number in a row)

• Run-length encoding represents integer sequences as  
(number, frequency) pairs

!42

<7, 7, 7, 8, 8, 1, 1, 1, 1, … > < (7, 3), (8, 2), (1, 4), …>

IR&DM ’13/’14

7. S9/S16 Encoding

• Byte-aligned encoding (32-bit integer words of fixed length)

• 4 status bits encode 9/16 cases for partitioning 28 data bits  
 

• Example: If 1001 above denotes 4 x 7 bits for the data part, then  
the data part encodes the decimal numbers: 69, 112, 47, 47

• Decompression by case table or by hardcoding all cases

• High cache locality of decompression code/table

• Fast CPU support for bit shifting integers on modern platforms  

• Full details: [Zhang et al. ‘08]

!43

10011000 10111100 00101111 01011110

IR&DM ’13/’14

8. P-FoR-Delta Encoding

• Patched Frame-of-Reference w/ Delta-encoded Gaps

• Key idea: Encode individual numbers  
such that “most” numbers fit into b bits

• Focuses on encoding an entire block at  
a time by choosing a value of b bits  
such that [highcoded, lowcoded] is small

• Outliers (“exceptions”) stored in extra  
exception section at the end of the block  
in reverse order

!

!

• Full details: [Zukowski et al. ’06]

!44

Encoding of 31415926535897932
using b=3 bitwise coding blocks

for the code section.

IR&DM ’13/’14

Posting-List Layout & Compression (Example)

!

!

!

!

!

!

!

!

• Layout allows incremental decoding

• Full details: [Dean ’09]

!45

Skip Table Block 1 Block 2 Block N

Block 1 (contain n postings)
delta to last document identifier in block
documents in block (most often n)
n - 1 deltas: RiceM encoded
tf values: Gamma encoded
term attributes: Huffman encoded
term positions: Huffman encoded

IR&DM ’13/’14

Open Source Search Engines

• Apache Lucene / Apache Solr

• implemented in Java, widely used in practice

• http://lucene.apache.org/core/ http://lucene.apache.org/solr/

• Indri

• implemented in C++, academic IR system developed at CMU & U Mass

• http://www.lemurproject.org

• Terrier

• implemented in Java, academic IR system developed at U Glasgow

• http://terrier.org/

• MG4J

• implemented in Java, academic IR system developed at U Milano

• http://mg4j.dsi.unimi.it

!46

http://lucene.apache.org/core/
http://lucene.apache.org/solr/
http://www.lemurproject.org
http://terrier.org/
http://mg4j.dsi.unimi.it

IR&DM ’13/’14IR&DM ’13/’14

Summary of V.2

• Compression  
is essential for performance in modern IR systems

• Ziv-Lempel compression  
as a dictionary-based encoding scheme that is great for text

• Variable-byte encoding  
as a byte-aligned non-parameterized encoding

• Gamma encoding and Golomb/Rice encoding  
as bit-aligned non-parameterized/parameterized encodings

• Gap encoding and Run-length encoding 
for transforming integer sequences

• S9/S16 and P-FoR-Delta  
as methods that encode entire blocks of integers  

!47

IR&DM ’13/’14IR&DM ’13/’14

Additional Literature for V.2

• S. Brin and L. Page: The anatomy of a large-scale hypertextual Web search engine, 
Computer Networks 30:107-117, 1998

• J. Dean: Challenges in Building Large-Scale Information Retrieval Systems,  
WSDM 2009, http://videolectures.net/wsdm09_dean_cblirs/

• A. Moffat and L. Stuiver: Binary Interpolative Coding for Effective Index
Compression, Inf. Retr. 3(1): 25-47 (2000)

• H. Yan, S. Ding, T. Suel: Compressing Term Positions in Web Indexes, 
SIGIR 2009

• H. Yan, S. Ding, T. Suel: Inverted index compression and query processing with
optimized document ordering, WWW 2009

• I. Witten, A. Moffat, and T. Bell: Managing Gigabytes (2nd Edition),  
Morgan Kaufmann, 1999

• J. Zhang, X. Long, T. Suel: Performance of compressed inverted list caching in search
engines, WWW 2008

• M. Zukowski, S. Héman, N. Nes, P. A. Boncz: Super-Scalar RAM-CPU Cache
Compression, ICDE 2006

!48

http://videolectures.net/wsdm09_dean_cblirs/

