V.4 MapReduce

1. System Architecture
2. Programming Model
3. Hadoop

Based on MRS Chapter 4 and RU Chapter 2

[R&DM °13/°14

74

Why MapReduce?

» Large clusters of commodity computers
(as opposed to few supercomputers)

 Challenges:

* load balancing
 fault tolerance

e ease of programming

Jeff Dean

* MapReduce

* system for distributed data processing

e programming model

anj ay hewat
» Full details: [Ghemawat et al. ‘03][Dean and Ghemawat ’04]

[R&DM °13/°14 75

Why MapReduce?

» Large clusters of commodity computers
(as opposed to few supercomputers)

Jeff Dean Facts:

* (When Jeff Dean designs software, he first codes the binary and then
writes the source as documentation.

Compilers don 't warn Jeff Dean. Jeff Dean warns compilers.
Jeff Dean's keyboard has two keys: I and 0.
When Graham Bell invented the telephone, he saw a missed call from Jeff Dean.

o |\ Source: http://www.quora.com/Jeff-Dean/What-are-all-the-Jeff-Dean-facts

* system for distributed data processing

e programming model

anj ay hewat
» Full details: [Ghemawat et al. ‘03][Dean and Ghemawat ’04]

[R&DM °13/°14 75

1. System Architecture

» Google File System (GFS) GFsmaite;
o distributed file system for large clusters />\ Z};ﬁ ;:Z
. . chunk 3efl
e tunable replication factor 'l =
* single master GFS client
 manages namespace (/home/user/data) t
|
. v v

e coordinates replication of data chunks
GFS chunkserver

e first point of contact for clients g | prewe

chunk 5ef0 | | chunk 3ef2
° many Chunkservers chunk 3efl | | chunk 5Safl B

 keep data chunks (typically 64 MB)

* send/receive data chunks to/from clients

 Full details: [Ghemawat et al. 03]

[R&DM °13/°14 76

System Architecture (cont’d)

e MapReduce (MR)

 system for distributed data processing
* moves computation to the data for locality
 copes with failure of workers
* single master

 coordinates execution of job

* (re-)assigns map/reduce tasks to workers
* many workers

 execute assigned map/reduce tasks

 Full details: [Dean and Ghemawat ’04]

[R&DM °13/°14

MR master

>

T

MR client

ssa430.4d j10do.4
SYSD] U31SSD

<

MR worker

GFS chunkserver |

77

2. Programming Model

* Inspired by functional programming (1.e., no side effects)
* Input/output are key-value pairs (£, v) (e.g., string and int)
» Users implement two functions

e map: (kl1, vl)=> list(k2, v2)

* reduce: (k2, list(v2)) => list(k3, v3) with input sorted by key k2
* Anatomy of a MapReduce job

* Workers execute map() on their portion of the input data in GFS

 Intermediate data from map() 1s partitioned and sorted

» Workers execute reduce() on their partition and write output data to GFS

» Users may implement combine() for local aggregation of
intermediate data and compare() to control how data 1s sorted

[R&DM °13/°14

78

WordCount

* Problem: Count how often every word w occurs 1n the
document collection (i.e., determine cf(w))

map(long did, string content) {
for(string word : content.split()) {
emit(word, 1)

j

reduce(string word, list<int> counts) {
int total = 0
for(int count : counts) {
total += count

j

emit(word, total)

j

[R&DM °13/°14

79

Execution of WordCount

map(long did, string content) {
for(string word : content.split()) {
emit(word, 1)
h

reduce(string word, list<int> counts) {

int total = 0

for(int count : counts) {
total += count

h

emit(word, total)

[R&DM °13/°14

80

Execution of WordCount

Q.
=
N
W

Q X

C QO
< ©

Q.
N
N
N

X O
QK
G Q

map(long did, string content) {
for(string word : content.split()) {
emit(word, 1)
h

reduce(string word, list<int> counts) {
int total = 0
for(int count : counts) {
total += count
h

emit(word, total)

[R&DM °13/°14

80

Execution of WordCount

Map
4)

d123 (a,d123),
axb M (x,d242),
b a y
dd2 (b,d123)
bya M (§:d24z):
X d S)

map()

map(long did, string content) {
for(string word : content.split()) {
emit(word, 1)
h

reduce(string word, list<int> counts) {

int total = 0

for(int count : counts) {
total += count

h

emit(word, total)

[R&DM °13/°14

80

Execution of WordCount

Map
4)

d123 (a,d123),
axb M (x,d242),
b a y
dd2 (b,d123)
bya M (§:d24z):
X d S)

map()

map(long did, string content) {

for(string word : content.split()) {

emit(word, 1)

b

reduce(string word, list<int> counts) {
int total = 0
for(int count : counts) {
total += count
h

emit(word, total)

[R&DM °13/°14

80

Execution of WordCount

Q.
=
N
W

Q X

C QO
< ©

Q.
N
N
N

X O
QK
G Q

Map
N
(a,d123),
M (x,d242),
(b,d123),
Mn | @, 42,
-
map()

Reduce
-
1 (a,d123),
(a,d242), R:
1 oee
o (x,d123)
X, ’
(x,d242), Rm
m .oe
.
reduce()

map(long did, string content) {

for(string word : content.split()) {
emit(word, 1)

b

reduce(string word, list<int> counts) {

int total = 0

for(int count : counts) {

b

total += count

emit(word, total)

[R&DM °13/°14

80

Execution of WordCount

Map
-

dlz3 (a,d123),
axb M; (x,d242),
b a y
dede (b,d123)
bya My (§:d24z):
X a S

map()

Reduce
- ~
1 (a,d123), (a,4)
(a,d242), R, (b, 4)
1 .o X}
m (x,2)
(x,d123),
(x,d242), Rm (y,2)
m s oo
_ Y,
reduce()

map(long did, string content) {
for(string word : content.split()) {

emit(word, 1)

b

reduce(string word, list<int> counts) {

int total = 0

for(int count : counts) {

total += count

b

emit(word, total)

[R&DM °13/°14

80

Inverted Index Construction

* Problem: Construct a positional inverted index with postings
containing positions (e.g., {di23, 3,[1,9, 20] })

map(long did, string content) {

int pos =0
map<string, list<int>> positions = new map<string, list<int>>()
for(string word : content.split()) { // tokenize document content
positions.get(word).add(pos++) // aggregate word positions
)
for(string word : map.keys()) {
emit(word, new posting(did, positions.get(word))) // emit posting
}
}
reduce(string word, list<posting> postings) {
postings.sort() // sort postings (e.g., by did)
emit(word, postings) // emit posting list

[R&DM °13/°14 81

3. Hadoop

* Open source implementation of GFS and MapReduce

* Hadoop File System (HDFS)

e name node (master)

 data node (chunkserver)

e Hadoop MapReduce

e job tracker (master)

Doug Cutting

e task tracker (worker)

» Has been successfully deployed on clusters of 10,000s machines

* Productive use at Yahoo!, Facebook, and many more

[R&DM °13/°14 82

Jim Gray Benchmark

e Jim Gray Benchmark:
e sort large amount of 100 byte records (10 first bytes are keys)
e minute sort: sort as many records as possible in under a minute

e gray sort: must sort at least 100 TB, must run at least 1 hours

 November 2008: Google sorts 1 TB 1n 68 s and 1 PB 1in 6:02 h on
MapReduce using a cluster of 4,000 computers and 48,000 hard disks

http://googleblog.blogspot.com/2008/11/sorting-1pb-with-mapreduce.html

e May 2011: Yahoo! sorts 1 TB1n 62 sand 1 PB in 16:15 h on Hadoop
using a cluster of approximately 3,800 computers 15,200 hard disks

http://developer.yahoo.com/blogs/hadoop/posts/2009/05/hadoop_sorts_a_petabyte in_162/

[R&DM °13/°14

83

Summary of V.4

* MapReduce
a system of distributed data processing
a programming model

* Hadoop
a widely-used open-source implementation of MapReduce

[R&DM °13/°14

84

Additional Literature for V.4

e Apache Hadoop (http://hadoop.apache.org)

J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, OSDI 2004

J. Dean and S. Ghemawat: MapReduce: Simplified Data Processing on Large
Clusters, CACM 51(1):107-113, 2008

S. Ghemawat, H. Gobioff, and S.-T. Leung: 7he Google File System,
SOPS 2003

J. Lin and C. Dyer: Data-Intensive Text Processing with MapReduce, Morgan &
Claypool Publishers, 2010 (http://lintool.github.io/MapReduceAlgorithms)

[R&DM °13/°14

85

V.S Near-Duplicate Detection

1. Shingling
SpotSigs

Min-Wise Independent Permutations

H » N

Locality-Sensitive Hashing

Based on MRS Chapter 19 and RU Chapter 3

[R&DM °13/°14

86

Near-Duplicate Detection

[R&DM °13/°14

87

Near-Duplicate Detection

SFGate..

SFGATE HOME * NEWS * BUSINESS = SPORTS * ENTERTAINMENT = TRAVEL

HOME PAGE | MY TIMES | TODAY'S PAPER | VIDEO | MOST POPULAR l TIMES TOPICS l

GetHome Delivery LogIn Register Now

| Im © SFGate () Web Search by YAHOO!

AP Associated Press

Obama Takes on Question of Faith

By NEDRA PICKLER, Associated Press Writer
Monday, January 21, 2008

D PRINTABLE

] emAL ¢S° sHAre [) commenTs (D)

[FonT | sizZE: B

Barack Obama is stepping up his effort to correct the misconception that he's a Muslim now
that the presidential campaign has hit the Bible Belt.

(01-21) 04:22 PST Columbia, S.C. (AP) --

At a rally to kick off a weeklong campaign for the South Carolina primary, Obama tried to
set the record straight from an attack circulating widely on the Internet that is designed to
play into prejudices against Muslims and fears of terrorism.

Che New Hork Eimes g,

Amerip;ise 13

@us. © annvyT Search

WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

POLMICS WASHINGTON EDUCATION

Obama Takes on Question of Faith

By THE ASSOCIATED PRESS

Published: January 21, 2008
SIGN IN TO E-MAIL
OR SAVE THIS

Filed at 7:16 a.m. ET
{5 PRINT

COLUMBIA, S.C. (AP) -- Barack Obama is stepping up his effort to

correct the misconception that he's a Muslim now that the presidential

campaign has hit the Bible Belt.

ARTICLE TOOLS
SPONSORED BY

SAVAGES
At a rally to kick off a weeklong campaign for the South Carolina primary, Obama tried to

set the record straight from an attack circulating widely on the Internet that is designed to
play into prejudices against Muslims and fears of terrorism.

ARTS

STYLE TRAVEL JOBS REALESTATE AUTOS

MOST POPULAR

E-MAILED | BLOGGED SEARCHED

[S L

o]

. Nicholas D. Kristof: Hillary, Barack, Experience
. Paul Krugman: Debunking the Reagan Myth

. Pregnancy Problems Tied to Caffeine

. Maureen Dowd: Red, White and Blue Tag Sale

. Roger Cohen: U.S. Soldiers and Shoppers Hit the

wall

. Stocks Plunge Worldwide on Fears of a U.S.

Recession

. New York Measuring Teachers by Test Scores
. Op-Ed Contributor: Radical Love Gets a Holiday
. A Cutting Tradition

[R&DM °13/°14

87

ear-Duplicate Detection

SFGate..

SFGATE HOME * NEWS * BUSINESS = SPORTS * ENTERTAINMENT = TRAVEL

| HOME PAGE | MY TIMES | TODAY'S PAPER | VIDEO | MOST POPULAR l TIMES TOPICS l GetHome Delivery | LogIn | Register Now

|
Ameriprise 3

95 U . S . ©@ys. © ainvyt Search Financial

OLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

BAKER suvatgumy. sl W —

HOME ABOUT RECIPEINDEX ARCHIVES RESOURCES UNPLUGGED RECIPE
E S Sk Barack, Experience

AP Associated

Obama Take BROWN%

By NEDRA PICKLER
Monday, January 2

. . about Allspice Crumb Muffins : fhe Reagan Myth
-0 oa:22p4 Allspice Crumb Muffins P ; gom Growing Caffeine
(01-21) 04:22 PS§ o MUS |
4 March 5,2010 @ 60 comments » :
: i cec s ‘_’w and Blue Tag Sale
Barack Obama nd Shoppers Hit the
that the presiden|
Fearsofa U.S.

At a rally to kick

prs by Test Scores
Love Gets a Holiday

set the record str|
play into prejudi

4

It's Friday and the weekend is here (cue the trumpets). With the hustle and bustle of typical
weekday mornings, many people barely manage a bowl of Cheerios, let alone a homemade
treat for breakfast. It seems that pancakes and sausage, fluffy waffles, and jumbo muffins are
often reserved for weekend indulgences. Snuggled under your mountain of blankets,
convinced that nothing could pry you out of bed after a week of sleep deprivation, you catch a
whiff. The bacon sizzling, the sweet maple aroma of sausage, or spiced muffins coming from
the oven, and | guarantee you're out of bed in a flash. It seems ingrained in all of us - being

roused from sleep with your nose, it's almost inevitable that as soon as your feet hit the floor

1 hi bling. And suddenl 't get to the kitchen fast h. It
PR ST 9 bTu:flrlzh SA B LIS S SRR LI LA Gl ¢ It's Friday and the weekend is here (cue the trumpets). With the hustle and bustle of typical

weekday mornings, many people barely manage a bowl of Cheerios, let alone a homemade
treat for breakfast. It seems that pancakes and sausage, fluffy waffles, and jumbo muffins
are often reserved for weekend indulgences. Snuggled under your mountain of blankets,
convinced that nothing could pry you out of bed after a week of sleep deprivation, you catch
a whiff. The bacon sizzling, the sweet maple aroma of sausage, or spiced muffins coming
from the oven, and | guarantee you’re out of bed in a flash. It seems ingrained in all of us -
being roused from sleep with your nose, it’s almost inevitable that as soon as your feet hit
the floor your stomach is rumbling. And suddenly you can’t get to the kitchen fast enough. Search AilRoll
It's a marvelous way to wake up, and a perfect way to remember to slow down and savor the
small things that bring us joy. Whether it be loved ones, the perfect cup of coffee, or a

plateful of bacon @ Mo matter your favorite way to enjoy the laziness of a morning where AR et

you have nowhere to be, these muffins should be penciled into your weekend-slow-down- Homemade Bread
and-smell-the-bacon plans. Crumbs

marvelous way to wake up, and a perfect way to remember to slow down and savor the small
things that bring us joy. Whether it be loved ones, the perfect cup of coffee, or a plateful of
bacon @ No matter your favorite way to enjoy the laziness of a morning where you have
nowhere to be, these muffins should be penciled into your weekend-slow-down-and-smell-the-

bacon plans.

Vinegar Creamed

Yumnmv Caramel Poncorn

[R&DM °13/°14

SFGate..n

ear-Duplicate Detection

| HOME PAGE | MY TIMES | TODAY'S PAPER | VIDEO | MOST POPULAR ‘ TIMES TOPICS ‘

GetHome Delivery LogIn Register Now

SFGATE HOME * NEWS * BUSINESS = SPORTS * ENTERTAINMENT = TRAVEL |

At al
set 1]
play

login careers 2.0

= StackExchange v sign up

A\
|=I stackoverflow

Stack Overflow is a question and answer site for professional and enthusiast programmers. It's 100% free, no registration
required.

Best HashMap initial capacity while indexing a List

Ameriprise 3
Financial

U.S.

SCIENCE HEALTH SPORTS

@us. © annvyT Search

OLOGY OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

£ Tzt MOST POPULAR

Barack, Experience

Ask Question

fins the Reagan Myth
Caffeine
x And Blue Tag Sale
ind Shoppers Hit the

Fearsofa U.S.

&k\;;)‘); G \ ?);3’?;’(’&&\;;4 tagged prs by Test Scores
é —?"t‘““frb‘i & Javalmage Enabling SDK that S)))) Java | = 524791 Love Gets a Holiday
A . . . 3 .
S %% ™ Keeps You From Running in Circles Joutimage aigorthm | x 35510
- ~ map | = 7384 |
4 1havealist (List<T»> 1list)and | want to index its objects by their ids using a map hashmap | x 3587 !
(HashMap<Integer, T> map). |l always use list.size() as the initial capacity in the HashMap =
4 ~
- constructor (like in the code below). Is this the best initial capacity to be used in this case? VERIOUS . catagores ~
A Home [Q&8A [

Note: I'll never add more items to the map.

2 List<T>» list = myList;
Map<Integer, T> map =
for(T item : 1ist) {

map.put(item.getId(), item);

new HashMap<Integer, T>(list.size());

}

java | algorithm | map | hashmap

share | improve this question edited Apr 5 at 22:19 asked Apr 5 at 21:38
} italo

2,122

11023

1 Iwould recommend: 1) Declare your variable as Map instead of HashMap , 2) Let this kind of problems to
the JVM, if you notice with a profiler that is giving your performance hits, then start evaluating it. —
Luiggi Mendoza Apr 5 at 21:41 #

5 Answers active oldest votes

If you wish to avoid rehashing the HashMap , and you know that no other elements will be placed into the
HashMap , then you must take into account the load factor as well as the initial capacity. The load factor
fora HashMap defaults to 0.75.

The calculation to determine whether rehashing is necessary occurs whenever an new entry is added, e.g.
put places a new key/value. So if you specify an initial capacity of list.size() , and a load factor of 1,
then it will rehash after the last put . So to prevent rehashing, use a load factor of 1 and a capacity of

FN
4
v
v

list.size() + 1.

Stack Exchange Network

Fastest and
Most Complete...

Excel Compatible
Muftithreaded Calculations

—=& SpreadsheelGear

mance Spreadsheet Companents
Download Free Trial

-

@ 2 * 0 10

Best HashMap initial capacity while indexing a List

italo via StackOverflow April 05, 2013

score

| have a list (List<T: list) and | want to index its objects by their ids using a map (HashMap<Integer, T> map). | always use list.size() as the initial capacity in the HashMap constructor (like in the code
below). Is this the best initial capacity to be used in this case?

E Note: I'll never add more items to the map.

score

List<T»> list = myList;
Map<Integer, T> map = new HashMap<Integer, T>(list.size(});
for(T item : list) {
map.put(item.getId(), item);
}

If you wish to avoid rehashing the HashMap, and you know that no other elements will be placed into the HashMap, then you must take into account the load factor as well as the initial capacity. The
load factor for a HashMap defaults to 0.75.

The calculation to determine whether rehashing is necessary occurs whenever an new entry is added, e.g. put places a new key/value. So if you specify an initial capacity of list.size(), and a load factor
of 1, then it will rehash after the last put. So to prevent rehashing, use a load factor of 1 and a capacity of list.size() + 1.

EDIT
Looking at the HashMap source code, it will rehash if the old size meets or exceeds the threshold, so it won't rehash on the last put. So it looks like a capacity of list.size() should be fine.

| HashMap<Integer, T> map = new HashMap<Integer, T>(list.size(), 1.0);

Here's the relevant piece of HashMap source code:

[R&DM °13/°14

87

Near-Duplicate Detection

* Why near-duplicate detection?
« smaller indexes and thus faster response times

e improved result quality

* Building blocks of a near-duplicate detection method

* document representation (e.g., bag of words, bag of n-grams, set of
links, anchor text of inlinks, set of relevant queries, feature vector)

 similarity measure (e.g., Jaccard coefficient, cosine similarity)
e near-duplication detection algorithm
* sorting- and indexing-based approaches

» similarity hashing (e.g., MIPS, LSH)

[R&DM °13/°14

88

1. Shingling

» Observation: Duplicates on the Web are often slightly perturbed

(e.g., due to different boilerplate, minor rewordings, etc.)

* Document fingerprinting (e.g., SHA-1 or MD)5) 1s not effective,

since we need to allow for minor differences between documents

* Shingling represents document d as set S(d) of word-level n-
srams (shingles) and compares documents based on these sets

the little brown fox jumps over the green frog

[R&DM °13/°14

n=23

the little brown

little brown fox

brown fox jumps

fox jumps over

89

Shingling

» Encode shingles by hash fingerprints (e.g., using SHA-1),
yielding a set of numbers S(d) C [1, ..., n] (e.g., for n = 2%)

n=73
the little brown 141,944
little brown fox 13,031,980
brown fox jumps| & g 21,111,978
fox jumps over 6,012,014

» Compare suspected near-duplicate documents d and d’ by
5(d) N S(d')
5(d) U S(d")

 Resemblance (Jaccard coefficient)

e Containment S5(d) 0 S(d')]
15(d)

[R&DM °13/°14 90

(Relative overlap)

Shingle-Based Clustering

* Remove near-duplicate document d’ 1f resemblance or
containment 1s above a user-specified threshold t

* How to avoid comparing all pairs of documents?

1.
2.

Compute shingle set S(d) for each document d

Build inverted index: shingle => list of document 1dentifiers

. Compute (d, d’, c¢) table with common-shingle count ¢

by considering all pairs of documents (d, d’) per shingle

Keep all pairs of documents (d, d’) with similarity above threshold
and add (d, d’) as edge to a graph

. Compute connected components of graph (using union-find

algorithm) as clusters of near-duplicate documents

[R&DM °13/°14 91

Super Shingles and Complexity

* Super shingles (shingles over shingles) can be used to speed up
steps 2 and 3 of the algorithm, since documents with many
common shingles are likely to have common super shingle

* Algorithm considers only pairs of documents that have at least
one shingle in common, but worst case remains at O(7n?)

* Problem: Shingle sets can become quite large, making the
similarity computation expensive

 Full details: [Broder et al. *97]

[R&DM °13/°14 92

2. SpotSigs

* Problem: Near-duplicate detection on the Web fails for web pages
with same core content but different navigation, header, etc.

* Observation: Stopwords tend to occur mostly 1n core content

* SpotSigs considers only those shingles that begin with a stopword

* Problem: How can we perform fewer similarity computations?

* Upper bound for Jaccard coefficient

r(A,B) =

A
< =27
—|B

[R&DM °13/°14

ANB| _ min(|4],|B|)
AU B| = maz(|A], |B])

(assuming |4| < |B| w.l.o.g.)

93

SpotSigs

* Do not compare any sets |[4| and |B| with |A|/ B| <1

» Given similarity threshold t, partition the documents (based on
their signature set cardinality) into partitions P, ..., Pn

05\ 0.83
P | P> | P3| Py | Ps| Ps| P7 e | Py T=0.6

0 10 20 30 40 S0 60 70 1,000 1,010

* Consider document pairs in P; X Pj (1<]) only 1f
mazx{|S(d)||d e P;}
min{|S(d)| | d € P;}

> T

* Clever partitioning to compare at most neighboring partitions

 Full details: [Theobald et al. 08]

[R&DM °13/°14 94

3. Min-Wise Independent Permutations

 Statistical sketch to estimate the resemblance of S(d) and S(d”)

 consider m independent random permutations of the two sets,
implemented by applying m independent hash functions

* keep the minimum value observed for each of the m hash functions,
yielding a m-dimensional MIPs vector for each document

 estimate resemblance of S(d) and S(d’) based on MIPs(d) and MIPs(d’)

{1 <i<m|MIPs(d)[i] = MIPs(d)[i]}

m™m

A(d,d') =

 Full details: [Broder et al. *00]

[R&DM °13/°14 95

Min-Wise Independent Permutations

Set of shingle fingerprints

« MIPs are an unbiased estimator of resemblance
Plmin{h(x)|lx € A} = min{h(y)|ly € B}| = |AN B|/|AU B|

Sd) = {3.8,12, 17,21, 24}
hi(x) = 7x + 3 mod 51 MIPs(d) MIPs(d’)
{ 24, 8, 36, 20, 48, 18}
8 8 8
ha(x) = 5x + 6 mod 51 9 9 [«— |1
(21,46, 15,40,9,24) |.-...... G I TR > |5|— 2
. ’ 9 9
| 9 Estimated resemblance:
hm(x) =3x+ 9 mod 51 MIPs(d)
{ 18, 33,45,9, 21, 30} MIPs vector

/4

* MIPs can be seen as repeated random sampling of X,y from A,B

[R&DM °13/°14

96

4. Locality Sensitive Hashing (for MIPs)

* General 1dea behind locality sensitive hashing (LSH)

* hash each item / times so that similar items map to same bucket

* consider pairs of items similar that mapped at least once to same bucket

 Locality sensitive hashing with MIPs vectors

e compute / independent MIPs vectors of length m for each document

 consider document pairs with at least one common MIPs vector

Sd)=1{3,8,12, 17,21, 24!

S(d)=1{3,5,12,17,22,24}

[R&DM °13/°14

OOOOOOOO

OOOOOOOO

8
2

MIPsi(d) MIPsxd)

9
1

3
8

MIPsi(d’) MIPsxd")

9
1

LSH Analysis

* Let » = r(d, d’) denote the resemblance between d and @”
o P[MIPs(d) = MIPs(d’)]=r™ : same i-th MIPs vector
el -pm : different i-th MIPs vector

e (1-rm! . all MIPs vectors different

e 1-(1-rm)! . at least one MIPs vector in common

A T A T
1 Ideal 1

probability
probability

resemblance resemblance

[R&DM °13/°14 98

LSH Analysis

* Let » = r(d, d’) denote the resemblance between d and @”
o P[MIPs(d) = MIPs(d’)]=r™ : same i-th MIPs vector
el -pm : different i-th MIPs vector

e (1-rm! . all MIPs vectors different

e 1-(1-rm)! . at least one MIPs vector in common

A T A T
1 Ideal 1 m=1/1=1

probability
probability

resemblance resemblance

[R&DM °13/°14 98

LSH Analysis

* Let » =r(d, d’) denote the resemblance between d and @’

 P[MIPsi(d) = MIPs(d’)]=r™ : same i-th MIPs vector

o]l -pm - different i-th MIPs vector

e (1-rm! . all MIPs vectors different

e 1-(1-rm)! . at least one MIPs vector in common

A T A T
1 Ideal 1 m=1/1=1
m=10/1=1
& &
S S
S S
9 9
N N
< <
> >
0 1 0 1
resemblance resemblance

[R&DM °13/°14 98

LSH Analysis

* Let » =r(d, d’) denote the resemblance between d and @’

 P[MIPsi(d) = MIPs(d’)]=r™ : same i-th MIPs vector

o]l -pm - different i-th MIPs vector
e (1-rm! . all MIPs vectors different
e 1-(1-rm)! . at least one MIPs vector in common
A T A T
1 Ideal 1 m=1/1=1
m=10/1=1
§ § m=1 /1=10
S S
S S
9 9
N N
< <
> >
0 1 0 1
resemblance resemblance

[R&DM °13/°14 98

LSH Analysis

* Let » =r(d, d’) denote the resemblance between d and @’

 P[MIPsi(d) = MIPs(d’)]=r™ : same i-th MIPs vector

o]l -pm - different i-th MIPs vector
e (1-rm! . all MIPs vectors different
e 1-(1-rm)! . at least one MIPs vector in common
A T A T
1 Ideal 1 m=1/1=1
m=10/1=1
§\ § m=1 /1=10
S S m=2/1=5
S S
9 9
N N
< <
> >
0 1 0
resemblance resemblance

[R&DM °13/°14 98

LSH Analysis

» Example: For a pair of documents d and d” with »(d, d’) = 0.8,
m =5, and / = 20, the probability of missing the pair 1s
(1-0.8°)20=3.56x10"4

 Full details: [Gionis et al. ‘99]

[R&DM °13/°14

99

Summary of V.5

* Near-Duplicate Detection
essential for smaller indexes and better result quality

e Shingling
to deal with small perturbations in otherwise duplicate documents

* SpotSigs
focuses on shingles beginning with a stopword
uses smart blocking to compare fewer document pairs

* Min-Wise Independent Permutations
as a statistical sketch to approximate resemblance

* Locality-Sensitive Hashing
as a method to reduce the number of document comparisons

[R&DM °13/°14 100

Additional Literature for V.5

e A. Broder, S. Glassman, M. Manasse, and G. Zweig: Syntactic Clustering of the Web,
WWW 1997

e A. Broder, M. Charikar, A. Frieze, M. Mitzenmacher: Min-Wise Independent
Permutations, JCSS 60(3):630-659, 2000

e A. Gionis, P. Indyk, and R. Motwani: Similarity Search in High Dimensions via
Hashing, VLDB 1999

M. Henzinger: Finding Near-Duplicate Web Pages.: a Large-Scale Evaluation of
Algorithms, SIGIR 2006

M. Theobald, J. Siddharth, and A. Paepcke: SpotSigs: Robust and efficient near
duplicate detection in large web collections, SIGIR 2008

[R&DM °13/°14 101

