Chapter VII.3: Association Rules

- 1. Generating the Association Rules
- 2. Measures of Interestingness
 - 2.1. Problems with confidence
 - 2.2. Some other measures
- 3. Properties of Measures
- 4. Simpson's Paradox

Zaki & Meira, Chapter 10; Tan, Steinbach & Kumar, Chapter 6

Generating association rules

- We can generate the association rules from the frequent itemsets
 - If Z is a frequent itemset and $X \subseteq Z$ is its proper subset, we have rule $X \to Y$, where $Y = Z \setminus X$
- These rules are frequent because $supp(X \rightarrow Y) = supp(X \cup Y) = supp(Z)$
 - We still need to compute the confidence as supp(Z)/supp(X)
- If rule $X \to Z \setminus X$ is not confident, no rule of type $W \to Z \setminus W$, with $W \subseteq X$, is confident
 - We can use this to prune the search space

Pseudo-code for generating association rules

```
Algorithm 8.6: Algorithm AssociationRules
```

```
ASSOCIATION RULES (\mathcal{F}, minconf):
 1 foreach Z \in \mathcal{F}, such that |Z| \geq 2 do
          \mathcal{A} \leftarrow \{X \mid X \subset Z, X \neq \emptyset\}
 2
          while A \neq \emptyset do
 3
                X \leftarrow \text{maximal element in } \mathcal{A}
 4
                \mathcal{A} \leftarrow \mathcal{A} \setminus X / / remove X from \mathcal{A}
               c \leftarrow sup(Z)/sup(X)
 6
               if c \geq minconf then
                     print X \longrightarrow Y, sup(Z), c
                else
                 \mathcal{A} \leftarrow \mathcal{A} \setminus \{W \mid W \subset X\} // remove all subsets of X from \mathcal{A}
10
```

Measures of Interestingness

Consider the following example:

	Coffee	Not Coffee	Σ
Tea	150	50	200
Not Tea	650	150	800
Σ	800	200	1000

- The rule {Tea} → {Coffee} has 15% support and 75% confidence
 - Reasonably good numbers
- Is this a good rule?
- The overall fraction of coffee drinkers is 80%
 - ⇒ Drinking tea reduces the probability of drinking coffee!

Problems with Confidence

- Support–Confidence framework doesn't take into account the support of the consequent (tail)
 - -Rules with relatively small support for the antecedent and high support for the consequent often have high confidence
- To fix this, many other measures have been proposed

• Most measures are easy to express using contingency

tables

	В	¬В	Σ
A	f_{11}	f_{10}	f_{1+}
¬А	f_{01}	f_{00}	f_{0+}
Σ	f_{+1}	f_{+0}	Ν

Interest Factor

• The interest factor I of rule $A \rightarrow B$ is defined as

$$I(A, B) = \frac{N \times supp(AB)}{supp(A) \times supp(B)} = \frac{Nf_{11}}{f_{1+}f_{+1}}$$

- It is equivalent to **lift** $conf(A \rightarrow B)/supp(B)$
- Interest factor compares the frequencies against the assumption that *A* and *B* are independent
 - If A and B are independent, $f_{11} = \frac{f_{1+}f_{+1}}{N}$
- Interpreting interest factor:
 - -I(A, B) = 1 if A and B are independent
 - -I(A, B) > 1 if A and B are positively correlated
 - -I(A, B) < 1 if A and B are negatively correlated

The IS measure

• The IS measure of rule $A \rightarrow B$ is defined as

$$IS(A, B) = \sqrt{I(A, B) \times supp(AB)/N} = \frac{f_{11}}{\sqrt{f_{1+}f_{+1}}}$$

- If we think A and B as binary vectors, IS is their cosine
- *IS* is also the geometric mean between confidences of $A \rightarrow B$ and $B \rightarrow A$

$$IS(A, B) = \sqrt{\frac{supp(AB)}{supp(A)}} \times \frac{supp(AB)}{supp(B)}$$
$$= \sqrt{conf(A \to B) \times conf(B \to A)}$$

Examples (1)

	Coffee Not Coffee		Σ
Tea	150	50	200
Not Tea	650	150	800
Σ	800	200	1000

- The interest factor of $\{\text{Tea}\} \rightarrow \{\text{Coffee}\}\$ is $(1000 \times 150)/(800 \times 200) = 0.9375$
 - Slight negative correlation
- The IS of the rule is 0.375

Examples (2)

	p	¬p	Σ		r	¬ <i>r</i>	Σ
q	880	50	930	S	20	50	70
$\neg q$	50	20	70	¬ <i>S</i>	50	880	930
Σ	930	70	1000	Σ	70	930	1000

- I(p, q) = 1.02 and I(r, s) = 4.08
 - -p and q are close to independent
 - -r and s have higher interest factor

But p and q appear together in 88% of cases

But r and s seldom appear together

• Now $conf(p \to q) = 0.946$ and $conf(r \to s) = 0.286$

Measures for pairs of itemsets

Measure (Symbol)	Definition
Correlation (ϕ)	$\frac{Nf_{11} - f_{1+} f_{+1}}{\sqrt{f_{1+} f_{+1} f_{0+} f_{+0}}}$
Odds ratio (α)	$(f_{11}f_{00})/(f_{10}f_{01})$
Kappa (κ)	$\frac{Nf_{11} + Nf_{00} - f_{1+}f_{+1} - f_{0+}f_{+0}}{N^2 - f_{1+}f_{+1} - f_{0+}f_{+0}}$
Interest (I)	$(Nf_{11})/(f_{1+}f_{+1})$
Cosine (IS)	$(f_{11})/(\sqrt{f_{1+}f_{+1}})$
Piatetsky-Shapiro (PS)	$\frac{f_{11}}{N} - \frac{f_{1+}f_{+1}}{N^2}$
Collective strength (S)	$\frac{f_{11}+f_{00}}{f_{1+}f_{+1}+f_{0+}f_{+0}} \times \frac{N-f_{1+}f_{+1}-f_{0+}f_{+0}}{N-f_{11}-f_{00}}$ $f_{11}/(f_{1+}+f_{+1}-f_{11})$
Jaccard (ζ)	$f_{11}/(f_{1+}+f_{+1}-f_{11})$
All-confidence (h)	$\min\left[\frac{f_{11}}{f_{1+}}, \frac{f_{11}}{f_{+1}}\right]$

Tan, Steinbach & Kumar Table 6.11

Measures for association rules

Measure (Symbol)	Definition
Goodman-Kruskal (λ)	$\left(\sum_{j} \max_{k} f_{jk} - \max_{k} f_{+k}\right) / \left(N - \max_{k} f_{+k}\right)$
Mutual Information (M)	$\left(\sum_{i} \sum_{j} \frac{f_{ij}}{N} \log \frac{N f_{ij}}{f_{i+} f_{+j}}\right) / \left(-\sum_{i} \frac{f_{i+}}{N} \log \frac{f_{i+}}{N}\right)$
J-Measure (J)	$\frac{f_{11}}{N}\log\frac{Nf_{11}}{f_{1+}f_{+1}} + \frac{f_{10}}{N}\log\frac{Nf_{10}}{f_{1+}f_{+0}}$
Gini index (G)	$\frac{f_{1+}}{N} \times (\frac{f_{11}}{f_{1+}})^2 + (\frac{f_{10}}{f_{1+}})^2] - (\frac{f_{+1}}{N})^2$
	$+\frac{f_{0+}}{N} \times \left[\left(\frac{f_{01}}{f_{0+}} \right)^2 + \left(\frac{f_{00}}{f_{0+}} \right)^2 \right] - \left(\frac{f_{+0}}{N} \right)^2$
Laplace (L)	$(f_{11}+1)/(f_{1+}+2)$
Conviction (V)	$(f_{1+}f_{+0})/(Nf_{10})$
Certainty factor (F)	$\left(\frac{f_{11}}{f_{1+}} - \frac{f_{+1}}{N}\right) / \left(1 - \frac{f_{+1}}{N}\right)$
Added Value (AV)	$rac{f_{11}}{f_{1+}} - rac{f_{+1}}{N}$

Tan, Steinbach & Kumar Table 6.12

Properties of Measures

- The measures do not agree on how they rank itemset pairs or rules
- To understand how they behave, we need to study their properties
 - Measures that share some property behave similarly under that property's conditions

Three properties

- Measure has the **inversion property** if its value stays the same if we exchange f_{11} with f_{00} and f_{10} with f_{01}
 - The measure is invariant for flipping the bits
- Measure has the **null addition property** if it is not affected by increasing f_{00} if other values stay constant
 - The measure is invariant on adding new transactions that don't have the items in the itemsets
- Measure has the **scaling invariance property** if it is not affected by replacing the values f_{11} , f_{10} , f_{01} , and f_{00} with values $k_1k_3f_{11}$, $k_2k_3f_{10}$, $k_1k_4f_{01}$, and $k_2k_4f_{00}$
 - -k's are positive constants

Which properties hold?

Symbol	Measure	Inversion	Null Addition	Scaling
ϕ	ϕ -coefficient	Yes	No	No
α	odds ratio	Yes	No	Yes
κ	Cohen's	Yes	No	No
I	Interest	No	No	No
IS	Cosine	No	Yes	No
PS	Piatetsky-Shapiro's	Yes	No	No
S	Collective strength	Yes	No	No
ζ	Jaccard	No	Yes	No
h	All-confidence	No	No	No
s	Support	No	No	No

Tan, Steinbach & Kumar Table 6.17

Simpson's Paradox

 Consider the following data on who bought HDTVs and exercise machines

	Exercise Machine	No Exercise Machine	Σ
HDTV	99	81	180
No HDTV	54	66	120
Σ	153	147	300

- {HDTV} → {Exercise mach.} has confidence 0.55
- {¬HDTV} → {Exercise mach.} has confidence 0.45 ⇒ Customers who buy HDTVs are more likely to buy exercise machines than those who don't buy HDTVs

Deeper analysis

		Exerc.		
Group	HDTV	Yes	No	Σ
College	Yes	1	9	10
	No	4	30	34
Working	Yes	98	72	170
	No	50	36	86

For college students

$$-\text{conf}(\text{HDTV} \rightarrow \text{Exerc. mach.}) = 0.10$$

$$-\operatorname{conf}(\neg HDTV \rightarrow \operatorname{Exerc. mach.}) = 0.118$$

For working adults

$$-\text{conf}(\text{HDTV} \rightarrow \text{Exerc. mach.}) = 0.577$$

$$-\operatorname{conf}(\neg HDTV \rightarrow Exerc. \, mach.) = 0.581$$

No HDTV is more likely to by exercise machine!

The paradox and why it happens

- In the combined data, HDTVs and exercise machines correlate positively
- In the stratified data, they correlate negatively
 - This is the Simpson's paradox
- The explanation:
 - -Most customers were working adults
 - They also bought most HDTVs and exercise machines
 - In the combined data this increased the correlation between HDTVs and exercise machines
- Moral of the story: stratify your data properly!

Chapter VII.4: Summarizing Itemsets

- 1. The flood of itemsets
- 2. Maximal and closed frequent itemsets
 - 2.1. Definitions
 - 2.2. Algorithms
- 3. Non-derivable itemsets
 - 3.1. Inclusion-exclusion principle
 - 3.2. Non-derivability

Zaki & Meira, Chapter 11; Tan, Steinbach & Kumar, Chapter 6

The Flood of Itemsets

Consider the following table:

tid	Α	В	С	D	Е	F	G	н
1	~	/	/	/	/			
2		✓	✓	✓	✓	~	✓	
3			/	/	/	/	/	✓
4	•	✓			✓	~	✓	✓
5		/	/		/	/		✓
6	~			✓	✓	~		~
7	•	✓	✓	✓	✓	✓	✓	/

- How many itemsets with minimum frequency of 1/7 it has?
- · 255!
- Still 31 frequent itemsets with 50% minfreq

- "Data mining is ... to summarize the data"
 - Hardly a summarization!

Maximal and closed frequent itemsets

- Let \mathcal{F} be the collection of all frequent itemsets of some data set
- Itemset $X \in \mathcal{F}$ is maximal it has no frequent supersets
 - -I.e. for all $Y \supset X$, freq(Y) < minfreq
- We can use the set of all maximal itemsets to decide whether an itemset is frequent
 - -X is frequent if and only if there exists a maximal frequent itemset M such that $X \subseteq M$
 - This does not tell us what is the frequency of X

Example of maximal frequent itemsets

Figure 6.16. Maximal frequent itemset.

Closed frequent itemsets

- Let \mathcal{F} be the collection of all frequent itemsets of some data set
- Itemset $X \in \mathcal{F}$ is **closed** if all its supersets are less frequent
 - I.e. for all $Y \supset X$, freq(Y) < freq(X)
 - All maximal itemsets are also closed itemsets
- Given the set of all frequent closed itemsets, we can decide if an itemset is frequent and its frequency
 - -X is frequent if it is a subset of a frequent closed itemset
 - $-supp(X) = \max\{supp(Z) : X \subseteq Z, Z \text{ is frequent and closed}\}$

Why "closed"?

- Consider the following functions
 - $-\mathbf{t}(X)$ returns all transactions that contain itemset X
 - -i(T) returns all items that are contained in all transactions in T
- The closure function c(X) maps itemsets to itemsets by $c(X) = i \circ t(X) = i(t(X))$
- Closure function satisfies the following properties
 - -Extensive: $X \subseteq \mathbf{c}(X)$
 - Monotonic: if $X \subseteq Y$, then $\mathbf{c}(X) \subseteq \mathbf{c}(Y)$
 - Idempotent: $\mathbf{c}(\mathbf{c}(X)) = \mathbf{c}(X)$
- Itemset X is closed if and only if $X = \mathbf{c}(X)$

Example of closed frequent itemsets

Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).

Itemset taxonomy

Mining maximal and closed itemsets

- Frequent maximal and closed itemsets can be found by post-processing the set of frequent itemsets
- To find maximal itemsets:
 - Start with empty set of candidate maximal itemsets M
 - -For each frequent itemset F
 - If a superset of F is in M, continue
 - Else insert F in \mathcal{M} and remove all subsets of F from \mathcal{M}
 - -Return set M

Mining frequent closed itemsets

- Closed itemsets can be found from the frequent itemsets by computing their closure
 - This can be very time consuming
- The Charm algorithm avoids testing all frequent itemsets by using the following properties:
 - If $\mathbf{t}(X) = \mathbf{t}(Y)$, then $\mathbf{c}(X) = \mathbf{c}(Y) = \mathbf{c}(X \cup Y)$
 - We can replace X with $X \cup Y$ and prune Y
 - If $\mathbf{t}(X) \subset \mathbf{t}(Y)$, then $\mathbf{c}(X) \neq \mathbf{c}(Y)$, but $\mathbf{c}(X) = \mathbf{c}(X \cup Y)$
 - We can replace X with $X \cup Y$, but not prune Y
 - If $\mathbf{t}(X) \neq \mathbf{t}(Y)$, then $\mathbf{c}(X) \neq \mathbf{c}(Y) \neq \mathbf{c}(X \cup Y)$
 - We cannot prune anything

Non-Derivable Itemsets

- Let F be the set of all frequent itemsets. Itemset $X \in F$ is **non-derivable** if we cannot derive its support from its subsets.
 - We can derive the support of X from its subsets if, by knowing the supports of all of the subsets of X we can compute the support of X
- If X is derivable, it doesn't add any new information
 - -Knowing just the non-derivable frequent itemsets, we can construct every frequent itemset
 - We only return itemsets that add new information on top of what we already knew

The Support of a Generalized Itemset

- A generalized itemset is an itemset of form $X\bar{Y}$
 - -All items is X and no items in Y
- The *support* of a generalized itemset $X\bar{Y}$ is the number of transactions that contain all the items in X, but no items in Y
- To compute the support of a generalized itemset *ABC*, we can
 - Take the support of A
 - -Remove the supports of AB and AC
 - -Add the support of ABC that was removed twice
 - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$

Generalized Itemsets

The Inclusion-Exclusion Principle

- Let $X\bar{Y}$ be a generalized itemset and let $I = X \cup Y$
- Now $supp(X\bar{Y})$ can be expressed as a combination of supports of supersets $J \supseteq X$ such that $J \subseteq I$ using the inclusion-exclusion principle

$$supp(X\bar{Y}) = \sum_{X \subset J \subset I} (-1)^{|J \setminus X|} supp(J)$$

-Example:

$$supp(\overline{ABC}) = supp(\emptyset)$$

$$-supp(A) - supp(B) - supp(C)$$

$$+supp(AB) + supp(AC) + supp(BC)$$

$$-supp(ABC)$$

Support Bounds

- The inclusion-exclusion formula gives us bounds for the supports of itemsets in $X \cup Y$ that are supersets of X
 - All supports are non-negative!
 - $-supp(A\overline{BC}) = supp(A) supp(AB) supp(AC) + supp(ABC)$
 - $\geq 0 \text{ implies } supp(ABC) \geq -supp(A) + supp(AB) + supp(AC)$
 - This is a lower bound, but we can also get upper bounds
- In general the bounds for itemset I w.r.t. $X \subset I$:
 - $-\operatorname{If}|I\setminus X| \text{ is odd: } \sup p(I) \leq \sum_{X\subseteq J\subset I} (-1)^{|I\setminus J|+1} \sup p(J)$
 - $-\operatorname{If}|I\setminus X|$ is even: $supp(I)\geq \sum_{X\subseteq J\subset I}(-1)^{|I\setminus J|+1}supp(J)$

Deriving the Support

- Given the formula for the bounds, we can define
 - -the least upper bound lub(I) and
 - the *greatest lower bound glb(I)* for itemset *I*
- We know that $supp(I) \in [glb(I), lub(I)]$
- If glb(I) = lub(I), then we can compute supp(I) by just knowing its subsets' supports
 - -Hence, *I* is derivable
- Otherwise *I* is non-derivable

Example on deriving support (blackboard)

tid	A	В	C	D	E
1	1	1	0	1	1
2	0	1	1	0	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	1
6	0	1	1	1	0

Question: Is itemset *ACD* derivable?

Conclusions

- Association rules tell us which items we will probably see given that we've seen some other items
 - Many business applications
- Frequent itemsets tell which items appear together
 - -Also, mining them is the first step on mining anything else
 - ⇒ Many algorithms for efficient freq. itemset mining
- The number of freq. itemsets is usually too large to study by itself
 - Maximal, closed, and non-derivable itemsets provide a summarisation of the frequent itemsets