Chapter VIL3: Association Rulesill

1. Generating the Association Rules

2. Measures of Interestingness
2.1. Problems with confidence
2.2. Some other measures

3. Properties of Measures
4. Simpson’s Paradox

Zaki & Meira, Chapter 10; Tan, Steinbach & Kumar, Chapter 6

IR&DM °13/14 19 December 2013 VIL.3&4-1



Generating association rules

* We can generate the association rules from the
frequent 1temsets

—If Z 1s a frequent 1itemset and X C Z 1s 1ts proper subset, we
haverule X — Y, where Y=\ X

* These rules are frequent because

supp(X — Y) = supp(X U Y) = supp(Z)
— We still need to compute the confidence as supp(Z)/supp(X)

 I[f rule X — Z\ X 1s not confident, no rule of type
W — Z\ W, with WC X, 1s confident

— We can use this to prune the search space



Pseudo-code for generating association
rules

Algorithm 8.6: Algorithm ASSOCIATIONRULES

ASSOCIATIONRULES (F, minconf):
foreach Z € F, such that |Z]| > 2 do
A—{X|XCZX+#0}
while A # () do
X < maximal element in A
A+ A\ X// remove X from A
c <+ sup(Z)/sup(X)
if ¢ > minconf then
print X — Y, sup(Z), ¢
else
A+ A\{W |W C X} // remove all subsets of X from A
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Algorithm 8.6 of Zaki & Meira



Measures of Interestingness

* Consider the following example:

T T
0 10 800

300 200 1000

* The rule {Tea} — {Coftee} has 15% support and
75% confidence

—Reasonably good numbers

e |s this a good rule?
 The overall fraction of cotfee drinkers 1s 80%

= Drinking tea reduces the probability of drinking
coffee!
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Problems with Confidence

* Support—Confidence framework doesn’t take into
account the support of the consequent (tail)

— Rules with relatively small support for the antecedent and
high support for the consequent often have high confidence

* To fix this, many other measures have been proposed
* Most measures are easy to express using contingency

tables
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Interest Factor

 The interest factor / of rule A — B 1s defined as

_ NXsupp(AB) _ Nfu
I[(A,B) = supp(A)Xsupp(B) — fi+f+1

— It 1s equivalent to lift conf(4 — B)/supp(B)

* Interest factor compares the frequencies against the
assumption that 4 and B are independent

—If A and B are independent, f;; = L 1;\1; 1

* Interpreting interest factor:
—1(4, B) =1 1f A and B are independent

—1(4, B) > 1 1 A and B are positively correlated
—1(4, B) <1 1f A and B are negatively correlated




The IS measure
 The IS measure of rule 4 — B 1s defined as

- _Ju
IS(A, B) = \/I(A’ B) x supp(AB)/N = V14 fr1

* If we think 4 and B as binary vectors, 1S 1s their
COSINe

* [§ 1s also the geometric mean between confidences of
A—Band B— A

supp(AB) o supp(AB)
supp(A) supp(B)

= \/conf(A — B) X conf(B — A)

IS(A,B) = \




Examples (1)

ot orcoree] 5
0 10 g0

300 200 1000

* The interest factor of {Tea} — {Coftee} 1s
(1000x150)/(800x200) = 0.9375

— Slight negative correlation

e The IS of the rule 15 0.375
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Examples (2)

I
O s s s

0 0 1000 o e 000

I T N

* I(p, q) =1.02 and I(r, s) = 4.08

—p and g are close to independent But p and q appear

together in 887 of cases
—r and s have higher interest factor But r and s seldowm appear

together
* Now conf(p — q) = 0.946 and conf(r — s) = 0.286
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Measures for pairs of itemsets

Measure (Symbol) Definition

C lat; Nfii—fi4+ 41
orrelation (¢) V1 Feifor fro

Odds ratio («) (f11.f00) / (fr0f01)

N f11+N foo—f1+ f+1—fo+ f+o

Kappa (r) I P i

Interest (1) (Nf11)/(f1+f+1)

Cosine (I5) (f11)/(\/ f1+f+1)
Piatetsky-Shapiro (P.S) % — fl}‘éﬂ

Collective strength (.5) f1+ffjii§81f+o X N_”’E\l,i"}i:ﬁ;m
Jaccard (¢) fin/(fis + 41— f11)
All-confidence (h) min | j,flljr, ffiﬂ

Tan, Steinbach & Kumar Table 6.11




Measures for association rules

Measure (Symbol)

Definition

Goodman-Kruskal ()
Mutual Information (M)
J-Measure (J)

Gini index (G)

Laplace (L)

(Zj maxy, fix — maa:kf+k)/(N — maxg f+k)
(Zz D ];\; log foj)/( - D ff log ff)

B (2 + (207 - ()3

Conviction (V) fiafro (Nflo)
Certainty factor (F) L — L) /(1 - %)
Added Value (AV) % _ %

Tan, Steinbach & Kumar Table 6.12




Properties of Measures

* The measures do not agree on how they rank itemset
pairs or rules

* To understand how they behave, we need to study
their properties

— Measures that share some property behave similarly under
that property’s conditions



Three properties

* Measure has the inversion property if its value stays
the same 1f we exchange f11 with foo and f10 with fo;

— The measure 1s invariant for flipping the bits

* Measure has the null addition property if 1t 1s not
affected by increasing foo 1f other values stay constant

— The measure 1s invariant on adding new transactions that
don’t have the items 1n the itemsets

* Measure has the scaling invariance property if 1t 1s
not affected by replacing the values fi1, fio, fo1, and foo
with values kiksfi1, kaksfio, kikafor, and kakafoo

—k’s are positive constants



Which properties hold?

Symbol | Measure Inversion | Null Addition | Scaling
0 ¢-coeflicient Yes No No
o) odds ratio Yes No Yes
K Cohen’s Yes No No
1 Interest No No No
1S Cosine No Yes No

PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
C Jaccard No Yes No
h All-confidence No No No
S Support No No No

Tan, Steinbach & Kumar Table 6.17




Simpson’s Paradox

* Consider the following data on who bought HDTVs
and exercise machines

Exercise | No Exercise
Machine Machine

H DTV

No HDTV 54
153 147 300

« {HDTV} — {Exercise mach.} has confidence 0.55

 {("HDTV} — {Exercise mach.} has confidence 0.45
=> Customers who buy HDTVs are more likely to buy

exercise machines than those who don’t buy HDTVs
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Deeper analysis

HDTV

Yes

College

es

* For college students
—conf(HDTV — Exerc. mach.) G100\

—conf("HDTV — Exerc. mach.) £ 0.118 ' No HDTV is more
* For working adults likely to bp\,,' |
—conf(HDTV — Exerc. mach.) 50.577 exercise macnine:

—conf(—HDTV — Exerec. mach.) '
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The paradox and why 1t happens

* In the combined data, HDTVs and exercise machines
correlate positively

* In the stratified data, they correlate negatively
— This 1s the Stmpson’s paradox

* The explanation:

— Most customers were working adults
* They also bought most HDTVs and exercise machines

— In the combined data this increased the correlation between
HDTVs and exercise machines

* Moral of the story: stratify your data properly!



Chap
Items

1. The flood of itemsets

2. Maximal and closed frequent itemsets
2.1. Definitions
2.2. Algorithms

3. Non-derivable itemsets

3.1. Inclusion-exclusion principle
3.2. Non-derivability

Zaki & Meira, Chapter 11; Tan, Steinbach & Kumar, Chapter 6
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The Flood of Itemsets
* Consider the following table:

ﬂﬂﬂ.ﬂﬂﬂﬂﬂ  How many itemsets with

v v minimum frequency of

. 1/7 1t has?
vV Vv Vv Vv vV
v v vV v v v * 239!
v v. v v v §till31 frequent itemsets
nv v v v v with 50% minireq
./ V vV Vv VvV VvV

* ”Data mining 1s ... to summarize the data”

— Hardly a summarization!
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Maximal and closed frequent itemsets

» Let F be the collection of all frequent itemsets of
some data set

 [temset X € F 1s maximal it has no frequent supersets
—1I.e. for all Y D X, freq(Y) < minfreq

* We can use the set of all maximal itemsets to decide
whether an 1itemset 1s frequent

— X 1s frequent 1f and only 1f there exists a maximal frequent
itemset M such that X C M

— This does not tell us what 1s the frequency of X



Example of maximal frequent itemsets

O Maximal Frequent |
Itemset | — T
( a \ (b)) ¢ ) (d) (e )
Not maximal because of fa, €5 e} <L
! . N
bd ( be ) cd ce ) ( de
- — -~ 7 * / ~/,"
NN - \": .4 ) o '\\._ /
- -\\.- - o \x(i
— ~\ "/,«"’ N\ ,,,4’-v ,,./ : \
-1’ VY \/ ~ \|
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Figure 6.16. Maximal frequent itemset.

Frequent
Itemset
Border

Infrequent
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Closed frequent 1temsets

» Let F be the collection of all frequent itemsets of
some data set

 [temset X € ‘F 1s closed 1f all 1ts supersets are less

frequent

—1I.e. forall Y D X, freq(Y) < freq(X)
— All maximal itemsets are also closed 1itemsets

* Given the set of all frequent closed 1temsets, we can
decide 1f an 1temset 1s frequent and its frequency
— X 1s frequent 1f 1t 1s a subset of a frequent closed 1temset
—supp(X) = max{supp(Z) : X & Z, Z 1s frequent and closed}



Why “closed™?

* Consider the following functions
—t(X) returns all transactions that contain itemset X

—i(7) returns all items that are contained 1n all transactions 1n
T

* The closure function ¢(X) maps itemsets to itemsets
by ¢(X) =1 ° t(X) = i(t(X))
* Closure function satisfies the following properties
— Extensive: X C ¢(X)
— Monotonic: if X € Y, then ¢(X) C ¢(Y)
— Idempotent: ¢(e(X)) = ¢(X)
* [temset X 1s closed 1f and only 1f X = ¢(X)



Example of closed frequent itemsets

Items
abo minsup = 40%

TID
1
2 abcd @
5 -
p 2
5

Itemset {a, b} 1s
contained in 1,2

transactions 1
and 2

Figure 6.17. An example of the closed frequent itemsets (with minimum support count equal to 40%).
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[temset taxonomy

Frequent
itemsets
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Mining maximal and closed itemsets

* Frequent maximal and closed itemsets can be found
by post-processing the set of frequent 1temsets
* To find maximal 1temsets:

— Start with empty set of candidate maximal itemsets ‘M

—For each frequent itemset F

o If a superset of F'1s 1n ‘M, continue

e Else insert F' 1n ‘M and remove all subsets of F' from ‘M

— Return set ‘M



Mining frequent closed 1itemsets

* Closed 1itemsets can be found from the frequent
itemsets by computing their closure

—This can be very time consuming

* The Charm algorithm avoids testing all frequent
itemsets by using the following properties:

_If t(X) = t(Y), then ¢(X) = ¢(¥) = ¢«(X U Y)

* We can replace X with X' U Y and prune Y

—If t(X) C t(Y), then ¢(X) # ¢(Y), but ¢(X) = c(X U Y)

* We can replace X with X U Y, but not prune Y

— I t(X) # t(Y), then c(X) # ¢(¥) # (X U 1)

* We cannot prune anything



Non-Derivable Itemsets

* Let F'be the set of all frequent itemsets. Itemset
X € F'1s non-derivable 1f we cannot derive i1ts

support from 1ts subsets.

— We can derive the support of X from its subsets if, by
knowing the supports of all of the subsets of X we can
compute the support of X

* If X 1s derivable, 1t doesn’t add any new information

—Knowing just the non-derivable frequent itemsets, we can
construct every frequent itemset

— We only return itemsets that add new information on top of
what we already knew



The Support of a Generalized Itemset

* A generalized itemset is an itemset of form XY

— All items 1s X and no items in Y

* The support of a generalized itemset XY is the number
of transactions that contain all the items 1n X, but no
items 1n Y

» To compute the support of a generalized itemset ABC,
Wwe can

— Take the support of 4
—Remove the supports of AB and AC
— Add the support of ABC that was removed twice

—supp(ABC) = supp(A4) — supp(AB) — supp(AC) + supp(ABC)



Generalized Itemsets

A

ABC

AN
o

C

B




The Inclusion-Exclusion Principle
 Let XY be a generalized itemset and let /=X U Y

* Now supp(XY) can be expressed as a combination of
supports of supersets J 2 X such that J C [ using the

inclusion-exclusion principle
supp(X7) = Y. (=1)"Wlsupp(s)

XCJC
— Example:
supp(ABC) = supp(0)

—supp(A) — supp(B) — supp(C)

supp(AB)
— supp(ABC)

supp(AC)

supp(BC)



Support Bounds

* The inclusion-exclusion formula gives us bounds for
the supports of itemsets in X U Y that are supersets of

X

— All supports are non-negative!

—supp(ABC) = supp(A) — supp(AB) — supp(AC) + supp(ABC)
> 0 1implies supp(ABC) > —supp(A) + supp(AB) + supp(AC)

* This 1s a lower bound, but we can also get upper bounds

* In general the bounds for itemset / w.r.t. X C [
—If|[I\X]is odd: supp(I) < Y xcscr(=D" " supp(J)

—If |7\ X|1s even: supp(l) > ZXQJU(—I)”\J'“SMpp(J)



Deriving the Support

* G1ven the formula for the bounds, we can define
—the least upper bound lub(l) and
—the greatest lower bound glb(I) for itemset [

* We know that supp(l) € [glb(1), [ub(1)]

 If glb(I) = lub(l), then we can compute supp([) by just
knowing 1ts subsets’ supports

— Hence, 7 1s derivable

 Otherwise / 1s non-derivable



Example on deriving support
(blackboard)

Question: Is itemset ACD derivable?
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Conclusions

* Association rules tell us which items we will probably
see given that we’ve seen some other 1tems

—Many business applications

* Frequent itemsets tell which items appear together
— Also, mining them 1s the first step on mining anything else
= Many algorithms for efficient freq. itemset mining

* The number of freq. itemsets 1s usually too large to
study by 1tself

—Maximal, closed, and non-derivable itemsets provide a
summarisation of the frequent itemsets



