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Generating association rules
• We can generate the association rules from the 

frequent itemsets 
– If Z is a frequent itemset and X ⊂ Z is its proper subset, we 

have rule X → Y, where Y = Z \ X
• These rules are frequent because 

supp(X → Y) = supp(X ∪ Y) = supp(Z)
–We still need to compute the confidence as supp(Z)/supp(X)

• If rule X → Z \ X is not confident, no rule of type 
W → Z \ W, with W ⊆ X, is confident
–We can use this to prune the search space

2
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Pseudo-code for generating association 
rules
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CHAPTER 8. ITEMSET MINING 262

Algorithm 8.6: Algorithm AssociationRules

AssociationRules (F, minconf ):
foreach Z ∈ F , such that |Z| ≥ 2 do1

A←
{
X | X ⊂ Z,X ̸= ∅

}
2

while A ≠ ∅ do3

X ← maximal element in A4

A← A \X// remove X from A5

c← sup(Z)/sup(X)6

if c ≥ minconf then7

print X −→ Y , sup(Z), c8

else9

A← A \
{
W | W ⊂ X

}
// remove all subsets of X from A10

strong association rules we initialize the set of antecedents to

A = {ABD(3), ABE(4), ADE(3), BDE(3), AB(3), AD(4), AE(4),

BD(4), BE(5),DE(3), A(4), B(6),D(4), E(5)}

The first subset is X = ABD, and the confidence of ABD −→ E is 3/3 = 1.0, so we
output it. The next subset is X = ABE, but the corresponding rule ABE −→ D
is not strong since conf (ABE −→ D) = 3/4 = 0.75. We can thus remove from A
all subsets of ABE; the updated set of antecedents is therefore

A = {ADE(3), BDE(3), AD(4), BD(4),DE(3),D(4)}

Next, we select X = ADE, which yields a strong rule, and so do X = BDE and
X = AD. However, when we process X = BD, we find that conf (BD −→ AE) =
3/4 = 0.75, and thus we can prune all subsets of BD from A, to yield

A = {DE(3)}

The last rule to be tried is DE −→ AB which is also strong. The final set of strong
rules that are output are as follows

ABD −→ E, conf = 1.0

ADE −→ B, conf = 1.0

BDE −→ A, conf = 1.0

AD −→ BE, conf = 1.0

DE −→ AB, conf = 1.0

Algorithm 8.6 of Zaki & Meira
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Measures of Interestingness

4

• Consider the following example:

• The rule {Tea} → {Coffee} has 15% support and 
75% confidence
–Reasonably good numbers

• Is this a good rule? 

Coffee Not	
  Coffee ∑

Tea

Not	
  Tea

∑

150 50 200

650 150 800

800 200 1000

• The overall fraction of coffee drinkers is 80%
⇒ Drinking tea reduces the probability of drinking 
coffee!
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Problems with Confidence
• Support–Confidence framework doesn’t take into 

account the support of the consequent (tail)
–Rules with relatively small support for the antecedent and 

high support for the consequent often have high confidence
• To fix this, many other measures have been proposed
• Most measures are easy to express using contingency 

tables 

5

B ¬B ∑

A

¬A

∑

f11 f10 f1+

f01 f00 f0+

f+1 f+0 N
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Interest Factor
• The interest factor I of rule A → B is defined as

– It is equivalent to lift conf(A → B)/supp(B) 
• Interest factor compares the frequencies against the 

assumption that A and B are independent
– If A and B are independent, 

• Interpreting interest factor:
– I(A, B) = 1 if A and B are independent
– I(A, B) > 1 if A and B are positively correlated
– I(A, B) < 1 if A and B are negatively correlated

6

f11 =
f1+ f+1
N

I (A, B) = N ⇥ supp(AB)
supp(A)⇥ supp(B) =

Nf11
f1+ f+1
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The IS measure
• The IS measure of rule A → B is defined as

• If we think A and B as binary vectors, IS is their 
cosine
• IS is also the geometric mean between confidences of 

A → B and B → A

7

IS(A, B) =

s
supp(AB)
supp(A)

⇥ supp(AB)
supp(B)

=
p
con f (A! B) ⇥ con f (B ! A)

IS(A, B) =
p
I (A, B) ⇥ supp(AB)/N = f11p

f1+ f+1
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Examples (1)

• The interest factor of {Tea} → {Coffee} is 
(1000×150)/(800×200) = 0.9375
– Slight negative correlation

• The IS of the rule is 0.375

8

Coffee Not	
  Coffee ∑

Tea

Not	
  Tea

∑

150 50 200

650 150 800

800 200 1000
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Examples (2)

• I(p, q) = 1.02 and I(r, s) = 4.08
– p and q are close to independent
– r and s have higher interest factor

9

p ¬p ∑

q

¬q

∑

880 50 930

50 20 70

930 70 1000

r ¬r ∑

s

¬s

∑

20 50 70

50 880 930

70 930 1000

But p and q appear 
together in 88% of cases
But r and s seldom appear

together
• Now conf(p → q) = 0.946 and conf(r → s) = 0.286
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Measures for pairs of itemsets
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6.7 Evaluation of Association Patterns 377

Alternative Objective Interestingness Measures

Besides the measures we have described so far, there are other alternative mea-
sures proposed for analyzing relationships between pairs of binary variables.
These measures can be divided into two categories, symmetric and asym-
metric measures. A measure M is symmetric if M(A −→ B) = M(B −→ A).
For example, interest factor is a symmetric measure because its value is iden-
tical for the rules A −→ B and B −→ A. In contrast, confidence is an
asymmetric measure since the confidence for A −→ B and B −→ A may not
be the same. Symmetric measures are generally used for evaluating itemsets,
while asymmetric measures are more suitable for analyzing association rules.
Tables 6.11 and 6.12 provide the definitions for some of these measures in
terms of the frequency counts of a 2 × 2 contingency table.

Consistency among Objective Measures

Given the wide variety of measures available, it is reasonable to question
whether the measures can produce similar ordering results when applied to
a set of association patterns. If the measures are consistent, then we can
choose any one of them as our evaluation metric. Otherwise, it is important
to understand what their differences are in order to determine which measure
is more suitable for analyzing certain types of patterns.

Table 6.11. Examples of symmetric objective measures for the itemset {A,B}.

Measure (Symbol) Definition

Correlation (φ) Nf11−f1+f+1√
f1+f+1f0+f+0

Odds ratio (α)
(
f11f00

)/(
f10f01

)

Kappa (κ) Nf11+Nf00−f1+f+1−f0+f+0

N2−f1+f+1−f0+f+0

Interest (I)
(
Nf11

)/(
f1+f+1

)

Cosine (IS)
(
f11

)/(√
f1+f+1

)

Piatetsky-Shapiro (PS) f11

N − f1+f+1

N2

Collective strength (S) f11+f00

f1+f+1+f0+f+0
× N−f1+f+1−f0+f+0

N−f11−f00

Jaccard (ζ) f11

/(
f1+ + f+1 − f11

)

All-confidence (h) min
[ f11

f1+
, f11

f+1

]

Tan, Steinbach & Kumar Table 6.11
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Measures for association rules

11

Tan, Steinbach & Kumar Table 6.12

378 Chapter 6 Association Analysis

Table 6.12. Examples of asymmetric objective measures for the rule A −→ B.

Measure (Symbol) Definition

Goodman-Kruskal (λ)
( ∑

j maxk fjk − maxkf+k

)/(
N − maxk f+k

)

Mutual Information (M)
( ∑

i

∑
j

fij

N log Nfij

fi+f+j

)/(
−

∑
i

fi+

N log fi+

N

)

J-Measure (J) f11

N log Nf11

f1+f+1
+ f10

N log Nf10

f1+f+0

Gini index (G) f1+

N × ( f11

f1+
)2 + ( f10

f1+
)2] − ( f+1

N )2

+ f0+

N × [( f01

f0+
)2 + ( f00

f0+
)2] − ( f+0

N )2

Laplace (L)
(
f11 + 1

)/(
f1+ + 2

)

Conviction (V )
(
f1+f+0

)/(
Nf10

)

Certainty factor (F )
( f11

f1+
− f+1

N

)/(
1 − f+1

N

)

Added Value (AV ) f11

f1+
− f+1

N

Table 6.13. Example of contingency tables.

Example f11 f10 f01 f00

E1 8123 83 424 1370
E2 8330 2 622 1046
E3 3954 3080 5 2961
E4 2886 1363 1320 4431
E5 1500 2000 500 6000
E6 4000 2000 1000 3000
E7 9481 298 127 94
E8 4000 2000 2000 2000
E9 7450 2483 4 63
E10 61 2483 4 7452

Suppose the symmetric and asymmetric measures are applied to rank the
ten contingency tables shown in Table 6.13. These contingency tables are cho-
sen to illustrate the differences among the existing measures. The ordering
produced by these measures are shown in Tables 6.14 and 6.15, respectively
(with 1 as the most interesting and 10 as the least interesting table). Although
some of the measures appear to be consistent with each other, there are certain
measures that produce quite different ordering results. For example, the rank-
ings given by the φ-coefficient agree with those provided by κ and collective
strength, but are somewhat different than the rankings produced by interest
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Properties of Measures

12

• The measures do not agree on how they rank itemset 
pairs or rules
• To understand how they behave, we need to study 

their properties
–Measures that share some property behave similarly under 

that property’s conditions
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Three properties
• Measure has the inversion property if its value stays 

the same if we exchange f11 with f00 and f10 with f01 
–The measure is invariant for flipping the bits

• Measure has the null addition property if it is not 
affected by increasing f00 if other values stay constant
–The measure is invariant on adding new transactions that 

don’t have the items in the itemsets
• Measure has the scaling invariance property if it is 

not affected by replacing the values f11, f10, f01, and f00 
with values k1k3f11, k2k3f10, k1k4f01, and k2k4f00 
– k’s are positive constants 

13



IR&DM ’13/14 VII.3&4-19 December 2013

Which properties hold?

14

382 Chapter 6 Association Analysis

Table 6.17. Properties of symmetric measures.

Symbol Measure Inversion Null Addition Scaling
φ φ-coefficient Yes No No
α odds ratio Yes No Yes
κ Cohen’s Yes No No
I Interest No No No

IS Cosine No Yes No
PS Piatetsky-Shapiro’s Yes No No
S Collective strength Yes No No
ζ Jaccard No Yes No
h All-confidence No No No
s Support No No No

Definition 6.8 (Scaling Invariance Property). An objective measure M
is invariant under the row/column scaling operation if M(T ) = M(T ′), where
T is a contingency table with frequency counts [f11; f10; f01; f00], T ′ is a
contingency table with scaled frequency counts [k1k3f11; k2k3f10; k1k4f01;
k2k4f00], and k1, k2, k3, k4 are positive constants.

From Table 6.17, notice that only the odds ratio (α) is invariant under
the row and column scaling operations. All other measures such as the φ-
coefficient, κ, IS, interest factor, and collective strength (S) change their val-
ues when the rows and columns of the contingency table are rescaled. Although
we do not discuss the properties of asymmetric measures (such as confidence,
J-measure, Gini index, and conviction), it is clear that such measures do not
preserve their values under inversion and row/column scaling operations, but
are invariant under the null addition operation.

6.7.2 Measures beyond Pairs of Binary Variables

The measures shown in Tables 6.11 and 6.12 are defined for pairs of binary vari-
ables (e.g., 2-itemsets or association rules). However, many of them, such as
support and all-confidence, are also applicable to larger-sized itemsets. Other
measures, such as interest factor, IS, PS, and Jaccard coefficient, can be ex-
tended to more than two variables using the frequency tables tabulated in a
multidimensional contingency table. An example of a three-dimensional con-
tingency table for a, b, and c is shown in Table 6.18. Each entry fijk in this
table represents the number of transactions that contain a particular combi-
nation of items a, b, and c. For example, f101 is the number of transactions
that contain a and c, but not b. On the other hand, a marginal frequency

Tan, Steinbach & Kumar Table 6.17
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Simpson’s Paradox

15

• Consider the following data on who bought HDTVs 
and exercise machines

• {HDTV} → {Exercise mach.} has confidence 0.55
• {¬HDTV} → {Exercise mach.} has confidence 0.45
⇒ Customers who buy HDTVs are more likely to buy 
exercise machines than those who don’t buy HDTVs

Exercise	
  
Machine

No	
  Exercise	
  
Machine

∑

HDTV

No	
  HDTV

∑

99 81 180

54 66 120

153 147 300
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Deeper analysis

• For college students
– conf(HDTV → Exerc. mach.) = 0.10
– conf(¬HDTV → Exerc. mach.) = 0.118

• For working adults
– conf(HDTV → Exerc. mach.) = 0.577
– conf(¬HDTV → Exerc. mach.) = 0.581

16

Group HDTV
Exerc.	
  mach.Exerc.	
  mach.

Yes No ∑

College
Yes

College
No

Working
Yes

Working
No

1 9 10
4 30 34
98 72 170
50 36 86

No HDTV is more 
likely to by 

exercise machine!
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The paradox and why it happens
• In the combined data, HDTVs and exercise machines 

correlate positively
• In the stratified data, they correlate negatively
–This is the Simpson’s paradox

• The explanation:
–Most customers were working adults
•They also bought most HDTVs and exercise machines

– In the combined data this increased the correlation between 
HDTVs and exercise machines

• Moral of the story: stratify your data properly!

17
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Chapter VII.4: Summarizing 
Itemsets

18

1. The flood of itemsets
2. Maximal and closed frequent itemsets

2.1. Definitions
2.2. Algorithms

3. Non-derivable itemsets
3.1. Inclusion-exclusion principle
3.2. Non-derivability

Zaki & Meira, Chapter 11; Tan, Steinbach & Kumar, Chapter 6
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The Flood of Itemsets
• Consider the following table:

19

Dd A B C D E F G H

1

2

3

4

5

6

7

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

• How many itemsets with 
minimum frequency of 
1/7 it has?
• 255!

• ”Data mining is … to summarize the data”
–Hardly a summarization!

• Still 31 frequent itemsets 
with 50% minfreq
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Maximal and closed frequent itemsets
• Let F be the collection of all frequent itemsets of 

some data set
• Itemset X ∈ F is maximal it has no frequent supersets
– I.e. for all Y ⊃ X, freq(Y) < minfreq 

• We can use the set of all maximal itemsets to decide 
whether an itemset is frequent
–X is frequent if and only if there exists a maximal frequent 

itemset M such that X ⊆ M 
–This does not tell us what is the frequency of X 

20
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Example of maximal frequent itemsets

21

Not maximal because of {a, c, e}
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Closed frequent itemsets
• Let F be the collection of all frequent itemsets of 

some data set
• Itemset X ∈ F is closed if all its supersets are less 

frequent
– I.e. for all Y ⊃ X, freq(Y) < freq(X)
–All maximal itemsets are also closed itemsets

• Given the set of all frequent closed itemsets, we can 
decide if an itemset is frequent and its frequency
–X is frequent if it is a subset of a frequent closed itemset
– supp(X) = max{supp(Z) : X ⊆ Z, Z is frequent and closed}

22
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Why “closed”?
• Consider the following functions
– t(X) returns all transactions that contain itemset X 
– i(T) returns all items that are contained in all transactions in 

T
• The closure function c(X) maps itemsets to itemsets 

by c(X) = i ◦ t(X) = i(t(X))
• Closure function satisfies the following properties
–Extensive: X ⊆ c(X)
–Monotonic: if X ⊆ Y, then c(X) ⊆ c(Y)
– Idempotent: c(c(X)) = c(X)

• Itemset X is closed if and only if X = c(X)
23
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Example of closed frequent itemsets

24

Itemset {a, b} is 
contained in 

transactions 1 
and 2

Closed, but not maximal

Closed and maximal



IR&DM ’13/14 VII.3&4-19 December 2013

Itemset taxonomy

25

Frequent 
itemsets

Closed 
frequent 
itemsets

Maximal 
frequent 
itemsets
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Mining maximal and closed itemsets

26

• Frequent maximal and closed itemsets can be found 
by post-processing the set of frequent itemsets
• To find maximal itemsets:
– Start with empty set of candidate maximal itemsets M 

–For each frequent itemset F 
• If a superset of F is in M, continue 

•Else insert F in M and remove all subsets of F from M 

–Return set M  



IR&DM ’13/14 VII.3&4-19 December 2013

Mining frequent closed itemsets
• Closed itemsets can be found from the frequent 

itemsets by computing their closure
–This can be very time consuming

• The Charm algorithm avoids testing all frequent 
itemsets by using the following properties:
– If t(X) = t(Y), then c(X) = c(Y) = c(X ∪ Y)
•We can replace X with X ∪ Y and prune Y 

– If t(X) ⊂ t(Y), then c(X) ≠ c(Y), but c(X) = c(X ∪ Y)
•We can replace X with X ∪ Y, but not prune Y 

– If t(X) ≠ t(Y), then c(X) ≠ c(Y) ≠ c(X ∪ Y)
•We cannot prune anything

27
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Non-Derivable Itemsets
• Let F be the set of all frequent itemsets. Itemset 

X ∈ F is non-derivable if we cannot derive its 
support from its subsets.
–We can derive the support of X from its subsets if, by 

knowing the supports of all of the subsets of X we can 
compute the support of X 

• If X is derivable, it doesn’t add any new information
–Knowing just the non-derivable frequent itemsets, we can 

construct every frequent itemset
–We only return itemsets that add new information on top of 

what we already knew

28
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The Support of a Generalized Itemset

29

• A generalized itemset is an itemset of form XȲ
–All items is X and no items in Y

• The support of a generalized itemset XȲ is the number 
of transactions that contain all the items in X, but no 
items in Y
• To compute the support of a generalized itemset ABC, 

we can
–Take the support of A 
–Remove the supports of AB and AC 
–Add the support of ABC that was removed twice
– supp(ABC) = supp(A) – supp(AB) – supp(AC) + supp(ABC)
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Generalized Itemsets

30

A B

CABC

ABC

ABC ABC ABC

ABCABC

ABC
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The Inclusion-Exclusion Principle
• Let XȲ be a generalized itemset and let I = X ∪ Y
• Now supp(XȲ) can be expressed as a combination of 

supports of supersets J ⊇ X such that J ⊆ I using the 
inclusion-exclusion principle  

–Example:

31

supp(XȲ ) = Â
X✓J✓I

(�1)|J\X |supp(J)

supp(ABC) = supp( /0)
� supp(A)� supp(B)� supp(C)

+ supp(AB)+ supp(AC)+ supp(BC)

� supp(ABC)



supp(I ) � PX✓J⇢ I (�1)| I \J |+1supp(J)
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Support Bounds
• The inclusion-exclusion formula gives us bounds for 

the supports of itemsets in X ∪ Y that are supersets of 
X 
–All supports are non-negative!
– supp(ABC) = supp(A) – supp(AB) – supp(AC) + supp(ABC) 
≥ 0 implies supp(ABC) ≥ –supp(A) + supp(AB) + supp(AC)
•This is a lower bound, but we can also get upper bounds

• In general the bounds for itemset I w.r.t. X ⊂ I:
– If |I \ X| is odd: 

– If |I \ X| is even:

32

supp(I )  PX✓J⇢ I (�1)| I \J |+1supp(J)



IR&DM ’13/14 VII.3&4-19 December 2013

Deriving the Support
• Given the formula for the bounds, we can define
– the least upper bound lub(I) and
– the greatest lower bound glb(I) for itemset I

• We know that supp(I) ∈ [glb(I), lub(I)]
• If glb(I) = lub(I), then we can compute supp(I) by just 

knowing its subsets’ supports
–Hence, I is derivable

• Otherwise I is non-derivable

33
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Example on deriving support 
(blackboard)

34

Dd A B C D E

1

2

3

4

5

6

1 1 0 1 1

0 1 1 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

0 1 1 1 0

Question: Is itemset ACD derivable?
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Conclusions

35

• Association rules tell us which items we will probably 
see given that we’ve seen some other items
–Many business applications

• Frequent itemsets tell which items appear together
–Also, mining them is the first step on mining anything else
⇒ Many algorithms for efficient freq. itemset mining

• The number of freq. itemsets is usually too large to 
study by itself
–Maximal, closed, and non-derivable itemsets provide a 

summarisation of the frequent itemsets 


