Chapter VIII: Clustering

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2013/14

Chapter VIII: Clustering*

1. Basic idea

2. Representative-based clustering

- 2.1. *k*-means
- 2.2. EM-clustering

3. Hierarchical clustering

- 3.1. Basic idea
- **3.2. Cluster distances**
- 4. Density-based clustering
- 5. Co-clustering

6. Discussion and clustering applications

*Zaki & Meira, Chapters 13–15; Tan, Steinbach & Kumar, Chapter 8 IR&DM '13/14 7 January 2014

1. Basic idea

1. Example

2. Distances between objects

The clustering task

- Given a set U of objects and a distance d:U² → R⁺ between them, group objects of U into clusters such that the distance between points in the same cluster is low and the distance between the points in different clusters is large
 - Small and large are not well defined
 - -Clustering can be
 - exclusive (each point belongs to exactly one cluster)
 - **probabilistic** (each point-cluster pair is associated with a probability of the point belonging to that cluster)
 - fuzzy (each point can belong to multiple clusters)
 - -Number of clusters can be pre-defined or not

On distances

- A function $d: U^2 \rightarrow R^+$ is a **metric** if:
 - -d(u,v) = 0 if and only if u = v Self-similarity
 - -d(u,v) = d(v,u) for all $u, v \in U$ Symmetry
 - $-d(u,v) \le d(u,w) + d(w,v)$ for all u, v, and $w \in U$ Triangle inequality
- A metric is a **distance**; if $d:U^2 \rightarrow [0, a]$ for some positive *a*, then a d(u,v) is **similarity**
- Common metrics:
 - - L_p : $\left(\sum_{i=1}^{d} |u_i v_i|^p\right)^{\frac{1}{p}}$ for *d*-dimensional space
 - L_1 = Hamming = city-block; L_2 = Euclidean
 - -Correlation distance: 1φ
 - Jaccard distance: $1 |A \cap B| / |A \cup B|$

More on distances

- For all-numerical data, the sum of squared errors (SSE) is the most common one $-SSE: \sum_{i=1}^{d} |u_i - v_i|^2$
- For all-binary data, either Hamming or Jaccard is used
- For categorical data either
 - first convert the data to binary by adding one binary variable per category label and then use Hamming; or
 - -count the agreements and disagreements of category labels with Jaccard
- For mixed data, some combination must be used

Implicit distance and distance matrix

$$\begin{pmatrix} 0 & d_{1,2} & d_{1,3} & & d_{1,n} \\ d_{1,2} & 0 & d_{2,3} & \cdots & d_{2,n} \\ d_{1,3} & d_{2,3} & 0 & & d_{3,n} \\ & \vdots & \ddots & \vdots \\ d_{1,n} & d_{2,n} & d_{3,n} & \cdots & 0 \end{pmatrix}$$

A distance (or dissimilarity) matrix is

- *n*-by-*n* for *n* objects
- non-negative $(d_{i,j} \ge 0)$
- symmetric $(d_{i,j} = d_{j,i})$
- zero on diagonal ($d_{i,i} = 0$)

2. Representative-based clustering

- 1. Partitions and prototypes
- 2. The *k*-means algorithm
 - 2.1. Basic algorithm
 - 2.2. Analysis
 - 2.3. The *k*-means++ algorithm
- 3. The EM clustering algorithm3.1. 1-D Gaussian
 - 3.2. General Gaussian
 - 3.3. The k-means as EM
- 4. How to select the k

Partitions and prototypes

- Exclusive representative-based clustering:
 - The set of objects U is partitioned into k clusters $C_1, C_2, ..., C_k$
 - $\bigcup_i C_i = U$ and $C_i \cap C_j = \emptyset$ for $i \neq j$
 - Each cluster is represented by a prototype (also called centroid or mean) μ_i
 - Prototype does not have to be (and usually is not) one of the objects
 Over all objects in this cluster
 - -Clustering quality is based on sum of squared errors between objects in cluster and cluster prototype

$$\sum_{i=1}^{k} \sum_{x_j \in C_i} \|x_j - \mu_i\|_2^2 = \left\{\sum_{i=1}^{k} \sum_{x_j \in C_i} \sum_{l=1}^{d} x_{jl} - \mu_{ll}\right\}^2$$

$$\underbrace{\sum_{i=1}^{k} \sum_{x_j \in C_i} \sum_{l=1}^{d} x_{jl} - \mu_{ll}}_{\text{Over all dimensions}}$$

$$\underbrace{\sum_{j=1}^{k} \sum_{x_j \in C_i} \sum_{l=1}^{d} \sum_{j=1}^{k} \sum_$$

The naïve algorithm

- The naïve algorithm:
 - -Generate all possible clusterings one-by-one
 - -Compute the squared error
 - Select the best
- But this approach is infeasible
 - There are too many possible clusterings to try
 - k^n different clusterings to k clusters (some possibly empty)
 - The number of ways to cluster *n* points in *k* nonempty clusters is the Stirling number of the second kind, *S*(*n*, *k*),

$$S(n,k) = {n \\ k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$$

An iterative k-means algorithm

- 1. select k random cluster centroids
- 2. assign each point to its closest centroid and compute the error

3. do

- 3.1. for each cluster C_i
 - 3.1.1. compute new centroid as $\mu_i = \frac{1}{|C_i|} \sum_{x_j \in C_i} x_j$
- 3.2. for each element $x_j \in U$
 - 3.2.1. assign x_j to its closest cluster centroid
- 4. while error decreases

k-means example

Some notes on the algorithm

- Always converges eventually
 - -On each step the error decreases
 - Only finite number of possible clusterings
 - -Convergence to local optimum
- At some point a cluster can become empty
 - -All points are closer to some other centroid
 - -Some options:
 - Split the biggest cluster
 - Take the furthest point as a singleton cluster
- Outliers can yield bad clusterings

Computational complexity

- How long does the iterative *k*-means algorithm take?
 - -Computing the centroid takes O(nd) time
 - Averages over total of *n* points in *d*-dimensional space
 - -Computing the cluster assignment takes O(*nkd*) time
 - For each *n* points we have to compute the distance to all *k* clusters in *d*-dimensional space
 - If the algorithm takes *t* iterations, the total running time is O(*tnkd*)
 - -But how many iterations we need?

How many iterations?

- In practice the algorithm doesn't usually take many iterations
 - -Some hundred iterations is usually enough
- Worst-case upper bound is $O(n^{dk})$
- Worst-case lower bound is superpolynomial: $2^{\Omega(\sqrt{n})}$
- The discrepancy between practice and worst-case analysis can be (somewhat) explained with smoothed analysis [Arthur & Vassilvitskii '06]:
 - If the data is sampled from independent *d*-dimensional normal distributions with same variance, iterative *k*-means algorithm will terminate in time $O(n^k)$ with high probability.

On the importance of initial centroids

The k-means++ algorithm

- Careful initial seeding [Arthur & Vassilvitskii '07]:
 - Choose first centroid u.a.r. from data points
 - Let D(x) be the shortest distance from x to any already-selected centroid
 - Choose next centroid to be x' with probability $\frac{D(x')^2}{\sum_{x \in \mathcal{X}} D(x)^2}$
 - Points that are further away are selected more probably
 - Repeat until k centroids have been selected and continue as normal iterative k-means algorithm
- The *k*-means++ algorithm achieves $O(\log k)$ approximation ratio on expectation $-E[\cos t] \le 8(\ln k + 2)OPT$
- The *k*-means++ algorithm converges fast in practice

Limitations of cluster types for k-means

- The clusters have to be of roughly equal size
- The clusters have to be of roughly equal density
- The clusters have to be of roughly spherical shape

The EM clustering algorithm

- Probabilistic clustering
 - –I.e. not exclusive
- Representative in a way
 - -Each cluster is represented by some parameters
 - The parameters can include cluster centroid
- Requires us to assume something about the distribution of the points
 - -For now, each cluster is independent Gaussian
- We use the expectation-maximization approach

The basics

 We aim at finding parameters μ_i and Σ_i for each Gaussian cluster plus k mixture parameters P(C_i) (all together denoted by θ)

-pdf of point x in cluster i is

$$f_{i}(\mathbf{x}) = f(\mathbf{x} \mid \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_{i}|^{-\frac{1}{2}} \exp\left\{-\frac{(\mathbf{x} - \boldsymbol{\mu}_{i})^{\mathsf{T}} \boldsymbol{\Sigma}_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i})}{2}\right\}$$

- Total pdf of x is a mixture model of the k cluster Gaussians:

$$f(\mathbf{x}) = \sum_{i=1}^{k} f_i(\mathbf{x}) P(C_i) = \sum_{i=1}^{k} f(\mathbf{x} \mid \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i) P(C_i)$$
- The log-likelihood of the data D given parameters θ is then

$$\ln P(D \mid \theta) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(x_j \mid \mu_i, \Sigma_i) P(C_i) \right)$$

The general EM clustering algorithm

- Initialization
 - Initialize parameters θ randomly
- Expectation step
 - -Compute the posterior probability $P(C_i | x_j)$
 - -Per Bayes's theorem

$$P(C_i \mid \mathbf{x}_j) = \frac{P(\mathbf{x}_j \mid C_i)P(C_i)}{\sum_{\alpha=1}^k P(\mathbf{x}_j \mid C_\alpha)P(C_\alpha)}$$

Maximization step

-Re-estimate θ given $P(C_i | x_j)$

• Repeat *E* and *M* steps until convergence

EM with Gaussians in 1-D

- Now pdf is $f(x \mid \mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}$
- Initialization step
 - -Mean μ is sampled u.a.r. from possible values, $\sigma^2 = 1$, and $P(C_i) = 1/k$ (each cluster is equiprobable)
- Expectation step

$$w_{ij} = P(C_i \mid x_j) = \frac{f(x_j \mid \mu_i, \sigma_i^2)P(C_i)}{\sum_{\alpha=1}^k f(x_j \mid \mu_\alpha, \sigma_\alpha^2)P(C_\alpha)}$$

• Maximization step Weighted variance reaction of weight in cluster i

$$\mu_{i} = \frac{\sum_{j=1}^{n} w_{ij} x_{j}}{\sum_{j=1}^{n} w_{ij}} \sigma_{i}^{2} = \frac{\sum_{j=1}^{n} w_{ij} (x_{j} - \mu_{i})^{2}}{\sum_{j=1}^{n} w_{ij}} P(C_{i}) = \frac{\sum_{j=1}^{n} w_{ij}}{n}$$
Weighted mean

EM in d dimensions

- The covariance matrix requires d(d + 1)/2 parameters to be estimated
 - -Often all dimensions are assumed to be independent, yielding *d* parameters
- The expectation step is as in 1-D
- The mean and prior $P(C_i)$ are estimated as in 1-D
- The variance of cluster *i* in dimension *a* is

$$(\sigma_{aa}^{i})^{2} = \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{x}_{ja} - \boldsymbol{\mu}_{ia})^{2}}{\sum_{j=1}^{n} w_{ij}}$$

Example

k-means as EM

- The iterative *k*-means algorithm can be seen as a special case of EM algorithm using different cluster density function
 - $-P(x_i | C_i) = 1$ iff centroid *i* is the closest to point x_j
- The posterior probability is then $-P(C_i | x_j) = 1$ iff point x_j belongs to cluster *i*
- The parameters are the centroids and P(C_i)
 The covariance matrix can be ignored

How to select k

- Both *k*-means and EM require user to define *k* before the algorithm is run
 - -But what if we don't know the *k*?
- The larger the *k*,
 - the smaller the error
 - the more complex the model
 - the higher the risk for over-fitting

Cross-validation

- As with regression:
 - -Hold out some random points (test set)
 - -Run clustering on the remaining points (training set)
 - -Compute the error with test set included
 - Re-iterate with different values of *k* and select the one with least overall error
- Normally N-fold cross validation
 - -Typically N = 10
 - -Data is divided in N even sized sets
 - -Cross-validation is run N times, each time keeping one set as the test set and rest N-1 sets together as the training set

AIC and BIC

- Let ln(*L*) be the maximized log-likelihood of the clustering (obtained e.g. via EM algorithm)
- Let *p*(*k*) be the number of parameters we need for *k* clusters
 - For Gaussian with independent dimensions, p(k) = k(d+2)
 - k clusters, d variances, mean, and mixture parameter $P(C_i)$
- Idea: We need to pay for each new parameter in our model
- In Akaike Information Criterion (AIC) we select k that minimizes $AIC = 2p(k) 2\ln(L)$
- In **Bayesian Information Criterion** (BIC) we select *k* that minimizes $BIC = p(k)\ln(n) 2\ln(L)$