Information Retrieval & Data Mining

Information Retrieval & Data Mining Universität des Saarlandes, Saarbrücken Wintersemester 2013/14

Chapter III: Ranking Principles

Zipf's Law (after George Kingsley Zipf)

• The collection frequency cf_i of the i-th most frequent word in the document collection is inversely proportional to the rank i

$$cf_i \propto \frac{1}{i}$$

• For the relative collection frequency with language-specific constant c (for English $c \approx 0.1$) we obtain

$$\frac{cf_i}{\sum_j cf_j} \propto \frac{c}{i}$$

• In an English document collection, we can thus expect the most frequent word to account for 10% of all term occurrences

George Kingsley Zipf

Levenshtein Edit Distance

- Levenshtein edit distance between two strings x and y is the minimal number of edit operations (*insert*, *replace*, *delete*) required to transform x into y
- The minimal number of operations m[i, j] to transform the **prefix** substring x[1:i] into y[1:j] is defined via the **recurrence**

$$m[i,j] = \min \left\{ \begin{array}{ll} m[i-1,j-1] \; + \; (x[i] = y[j] \; ? \; 0 \; : \; 1) & \text{(replace } x[i]?) \\ m[i-1,j] \; + \; 1 & \text{(delete } x[i]) \\ m[i,j-1] \; + \; 1 & \text{(insert } y[j]) \end{array} \right.$$

and can be computed using dynamic programming

• Examples: d(house, rose) = 2

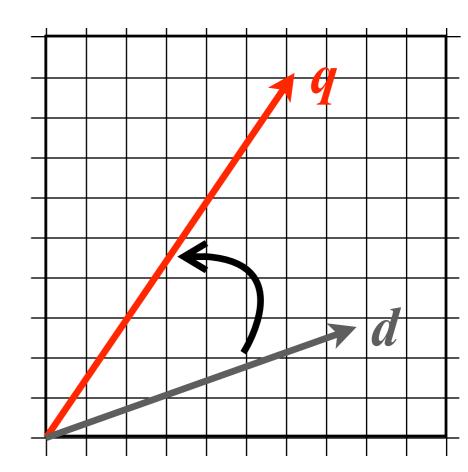
Vector Space Model (VSM)

- Boolean retrieval model provides **no** (**or only rudimentary**) **ranking of results** severe limitation for large result sets
- Vector space model views **documents and queries as vectors** in a |V|-dimensional vector space (i.e., one dimension per term)
- Cosine similarity between two vectors q and d is the cosine of the angle between them

$$sim(\mathbf{q}, \mathbf{d}) = \frac{\mathbf{q} \cdot \mathbf{d}}{\|\mathbf{q}\| \|\mathbf{d}\|}$$

$$= \frac{\sum_{i=1}^{|V|} \mathbf{q}_i \, \mathbf{d}_i}{\sqrt{\sum_{i=1}^{|V|} \mathbf{q}_i^2} \sqrt{\sum_{i=1}^{|V|} \mathbf{d}_i^2}}$$

$$= \frac{\mathbf{q}}{\|\mathbf{q}\|} \frac{\mathbf{d}}{\|\mathbf{d}\|}$$



TF*IDF

- Term frequency $tf_{t,d}$ as the number of times the term t occurs in document d
- Document frequency df_t as the number of documents that contain the term t
- Inverse document frequency idf_t as

$$idf_t = \frac{|D|}{df_t}$$

with |D| as the **number of documents** in the collection

• The tf.idf weight of term t in document d is then defined as

$$tf.idf_{t,d} = tf_{t,d} \times idf_t$$

favoring terms that occur often in the document d and/or not in many documents from the collection D

Precision, Recall, and Accuracy

• **Precision** P is the fraction of retrieved documents that is relevant

$$P = \frac{tp}{tp + fp}$$

• **Recall** R is the fraction of relevant results that is retrieved

$$R = \frac{tp}{tp + fn}$$

• Accuracy
$$A$$
 is the fraction of correctly classified decomments
$$A = \frac{tp+tn}{tp+fp+tn} \text{ for all } t$$

(Mean) Average Precision

- Precision, recall, and F-measure ignore the order of results
- Average precision (AP) averages over retrieved relevant results
 - Let $\{d_1, ..., d_{mj}\}$ be the set of relevant results for the query q_j
 - Let R_{jk} be the set of ranked retrieval results for the query q_j from top until you get to the relevant result d_k

$$AP(q_j) = \frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk})$$

• Mean average precision (MAP) averages over multiple queries

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} AP(q_j)$$

(Normalized) Discounted Cumulative Gain

- What if we have **graded labels** as relevance assessments? (e.g., 0 : not relevant, 1 : marginally relevant, 2 : relevant)
- Discounted cumulative gain (DCG) for query q

$$DCG(q,k) = \sum_{m=1}^{k} \frac{2^{R(q,m)} - 1}{\log(1+m)}$$

with $R(q, m) \in \{0, ..., 2\}$ as label of m-th retrieved result

Normalized discounted cumulative gain (NDCG)

$$NDCG(q, k) = \frac{DCG(q, k)}{IDCG(q, k)}$$

normalized by idealized discounted cumulative gain (IDCG)

(Normalized) Discounted Cumulative Gain

- IDCG(q, k) is the **best-possible** value DCG(q, k) achievable for the query q on the document collection at hand
- Example: Let $R(q, m) \in \{0, ..., 2\}$ and assume that two documents have been labeled with 2, two with 1, all others with 0. The best-possible top-5 result thus has labels < 2, 2, 1, 1, 0 > and determines the value of IDCG(q, k) for this query
- NDCG also considers rank at which relevant results are retrieved
- NDCG is typically averaged over multiple queries

$$NDCG(Q, k) = \frac{1}{|Q|} \sum_{q \in Q} NDCG(q, k)$$

Okapi BM25

• State-of-the-art retrieval model (among top-ranked in TREC) having roots in Probabilistic Information Retrieval

$$w_{t,d} = \frac{(k_1 + tf_{t,d})}{k_1((1-b) + b\frac{|d|}{avdl}) + tf_{t,d}} \log \frac{|D| - df_j + 0.5}{df_j + 0.5}$$

- k_1 controls **impact of term frequency** (common choice $k_1 = 1.2$)
- b controls impact of document length (common choice b = 0.75)

Multinomial Language Model

• Query q is seen as a **bag of terms** and generated from document d by **drawing terms** from the bag of terms corresponding to d

$$P(q|d) = \begin{pmatrix} |q| \\ tf(t_1, q) \dots tf(t_{|q|}, q) \end{pmatrix} \prod_{t_i \in q} P(t_i|d)^{tf(t_i, q)}$$

$$\propto \prod_{t_i \in q} P(t_i|d)^{tf(t_i, q)}$$

$$\approx \prod_{t_i \in q} P(t_i|d) \quad (\text{assuming } \forall t_i \in q : tf(t_i, q) = 1)$$

• Maximum-likelihood estimate for parameters $P(t_i|d)$

$$P(t_i|d) = \frac{tf(t_i,d)}{|d|}$$

Smoothing

• Jelinek-Mercer smoothing as linear combination of document language model θ_d and document-collection language model θ_D

$$P(t|d) = \lambda \frac{tf(t,d)}{|d|} + (1-\lambda) \frac{tf(t,D)}{|D|}$$

with document D as concatenation of entire document collection

• Dirichlet-prior smoothing with a conjugate Dirichlet prior instead of the Maximum-Likelihood Estimation

$$P(t|d) = \frac{tf(t,d) + \alpha \frac{tf(t,D)}{|D|}}{|d| + \alpha}$$

Chapter IV: Link Analysis

PageRank

- Random surfer model
 - follows a uniform random outgoing link with probability (1- ε)
 - jumps to a uniform random web page with probability ε
- Matrix T captures following of a uniform random outgoing link

$$\mathbf{T}_{ij} = \begin{cases} 1/out(i) & : & (i,j) \in E \\ 0 & : & \text{otherwise} \end{cases}$$

• Vector j captures jumping to a uniform random web page

$$\mathbf{j}_i = 1/|V|$$

• Transition probability matrix of Markov chain then obtained as

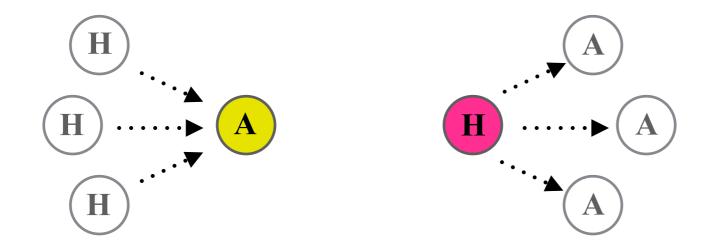
$$\mathbf{P} = (1 - \epsilon) \mathbf{T} + \epsilon \begin{bmatrix} 1 & \dots & 1 \end{bmatrix}^T \mathbf{j}$$

HITS

- Hyperlinked-Induced Topic Search (HITS) identifies
 - authorities as good content sources (~high indegree)
 - hubs as good link sources (~high outdegree)
- HITS [Kleinberg '99] considers a web page
 - a good authority if many good hubs link to it
 - a good hub if it links to many good authorities

Jon Kleinberg

~ mutual reinforcement between hubs & authorities



HITS

• Given (partial) Web graph G(V, E), let a(v) and h(v) denote the **authority score** and **hub score** of the web page v

$$a(v) \propto \sum_{(u,v)\in E} h(u)$$
 $h(v) \propto \sum_{(v,w)\in E} a(w)$

Authority and hub scores in matrix notation

$$\mathbf{a} = \alpha \mathbf{A}^T \mathbf{h} \qquad \mathbf{h} = \beta \mathbf{A} \mathbf{a}$$

with adjacency matrix A, hub vector a, authority vector h, and constants α and β

• Authority vector a and hub vector h are eigenvectors of cocitation matrix A^TA and coreference matrix AA^T

Chapter V: Indexing & Searching

Inverted Index

- Inverted index keeps a **posting list** for each term, which usually reside on secondary storage, with each **posting** capturing information about term's **occurrences in a specific document**
 - document identifier (e.g., d_{123} , d_{234} , ...)
 - **term frequency** (e.g., $tf(house, d_{123}) = 2$, $tf(house, d_{234}) = 4$)
 - score impacts (e.g., $tf(house, d_{123}) * idf(house) = 3.75$)
 - offsets (i.e., absolute positions at which the term occurs in the document)

giants
$$d_{123}$$
, 2, [4, 14] d_{133} , 1, [47] d_{266} , 3, [1, 9, 20] -----

Posting

Posting list

• Posting lists are usually **compressed** for time and space efficiency

Inverted Index

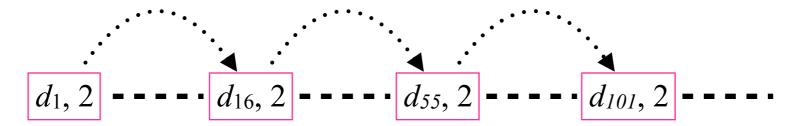
• Document-ordered posting lists for more efficient intersections (e.g., required for Boolean queries and phrase queries)

$$d_{123}, 2, [4, 14]$$
 $d_{133}, 1, [47]$ $d_{266}, 3, [1, 9, 20]$ ----

• Impact-ordered posting lists for more efficient top-k queries (i.e., terminate query processing as soon as top-k result is known)

$$d_{231}, 1.0$$
 $d_{12}, 0.9$ $d_{662}, 0.8$ $d_{3}, 0.5$ ----

• Skip pointers allow "fast forwarding" in a posting list

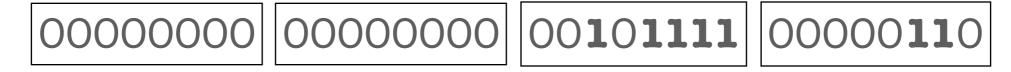


Ziv-Lempel Compression

- LZ77 (Adaptive Dictionary) and further variants:
 - Scan text and identify in a **lookahead window** the longest string that occurs repeatedly and is contained in **backwards window**
 - Replace this string by a **pointer** to its previous occurrence
- Encode text into list of **triples < back**, **count**, **new >** where
 - back is the backward distance to a prior occurrence of the string that starts at the current position
 - count is the length of this repeated string
 - new is the next symbol that follows the repeated string
- Triples themselves can be further encoded (with variable length)
- Variants use explicit dictionary with statistical analysis of text but need to scan text twice (for statistics and compression)

Variable-Byte Encoding

• 32-bit binary code represents 12,038 using 4 bytes as



- Variable-byte encoding (aka. 7-bit encoding) uses one bit per byte as a continuation bit indicating whether the current number expands into the next bytes
- Variable-byte encoding represents 12,038 using only 2 bytes as

• Byte-aligned, i.e., each number corresponds to sequence of bytes

Gamma Encoding

- Gamma (γ) encoding represents an integer x as
 - $length = floor(\log_2 x)$ in **unary**
 - $offset = x 2^{length}$ in **binary**

results in $(1 + \log_2 x + \log_2 x)$ bits for integer x

- Not byte-aligned, i.e., needs to be packed into bytes or words
- Useful when distribution of numbers is not known ahead of time or when small numbers (e.g., gaps, tf) are frequent

Term-at-a-Time Query Processing

- Term-at-a-Time (TAAT) query processing
 - reads posting lists for query terms $\langle t_1, ..., t_{|q|} \rangle$ successively
 - maintains an accumulator for each result document with value

$$acc(d) = \sum_{i \leq j} score(t_i, d)$$
 after the first j posting lists have been read

 $a \cdots d_1, 1.0$ $d_4, 2.0$ $d_7, 0.2$ $d_8, 0.1$ $d_{11}, 1.0$ $d_{12}, 1.0$ $d_{13}, 1.0$ $d_{14}, 1.0$ $d_{15}, 1.0$ $d_{15}, 1.0$ $d_{15}, 1.0$ $d_{15}, 1.0$

Accumulators

- required memory depends on the number of accumulators maintained
- top-k results can be determined by sorting accumulators at the end

Document-at-a-Time Query Processing

- Document-at-a-Time (DAAT) query processing
 - assumes document-ordered posting lists
 - reads posting lists for query terms $\langle t_1, ..., t_{|q|} \rangle$ concurrently
 - computes score when **same document** is seen in one or more posting lists

	d_1	•	1.0
$a \cdots d_1, 1.0$ $d_4, 2.0$ $d_7, 0.2$ $d_8, 0.1$	d_4	•	6.0
$b \cdots d_4, 1.0 d_7, 2.0 d_8, 0.2 d_9, 0.1$	d_7	:	3.2
$c \cdots d_4, 3.0 d_7, 1.0$	d_8	•	0.3
	d_9	:	0.1

- always advances posting list with lowest current document identifier
- required main memory depends on the **number of results** to be reported
- top-k results can be determined by keeping results in priority queue

Fagin's Threshold Algorithms

- Threshold Algorithm (TA)
 - original version, often used as synonym for entire family of algorithms
 - requires eager random access to candidate objects
 - worst-case memory consumption: O(k)
- No-Random-Accesses (NRA)
 - no random access required, may have to scan large parts of the lists
 - worst-case memory consumption: O(m*n + k)

Fagin's Threshold Algorithms

- Assume score-ordered posting lists and additional index for score look-ups by document identifier
- Scan posting lists using **inexpensive sequential accesses** (SA) in round-robin manner
- Perform expensive random accesses (RA) to look up scores for a specific document when beneficial
- Support monotone score aggregation function

$$aggr: \mathbb{R}^m \to \mathbb{R}: \forall x_i \geq x_i' \Rightarrow aggr(x_1, \dots, x_m) \geq aggr(x_1', \dots, x_m')$$

- Compute aggregate scores incrementally in candidate queue
- Compute **score bounds** for candidate results and stop when **threshold test** guarantees correct top-*k* result

No-Random-Accesses Algorithm (NRA)

- Sequential accesses (SA) only
- Worst-case memory consumption O(m*n + k)

```
No-Random-Accesses Algorithm (NRA):
scan index lists (e.g., round-robin)
consider d = cdid(i) in posting list for t_i
high(i) = cscore(i)
eval(d) = eval(d) \cup \{i\} // where have we seen d?
worst(d) = aggr\{ score(t_j, d) | j \in eval(d) \}
best(d) = aggr\{ worst(d), aggr\{ high(j) | j \notin eval(d) \} \}
if worst(d) > min_k then
                              // good enough for top-k?
      add d top top-k
      min_k = min\{ worst(d') \mid d' \in top-k \}
else if best(d) > min_k then // good enough for cand?
      cand = cand \cup \{d\}
ub = max\{ best(d') | d' \in cand \}
if ub \leq min_k then
      exit
```

```
d_{23}, 0.8
            d_{10}, 0.8
                         d_1, 0.7
                                     d_{88}, 0.2
                                       d_{78}, 0.1
                         d_{12}, 0.2
            d_{10}, 0.6
            d_{64}, 0.3
                         d99, 0.2
                                       d_{34}, 0.1
```

ub = 2.0

		worst		best		
	<i>d</i> ₇₈	:	0.4	:	2.0	Top-
	d _{B8}	:	0.8	:	2.0	
	dza	:	0.8	•	2.4	
	do	•	0.7	•	2.9	
'						

IR&DM '13/'14

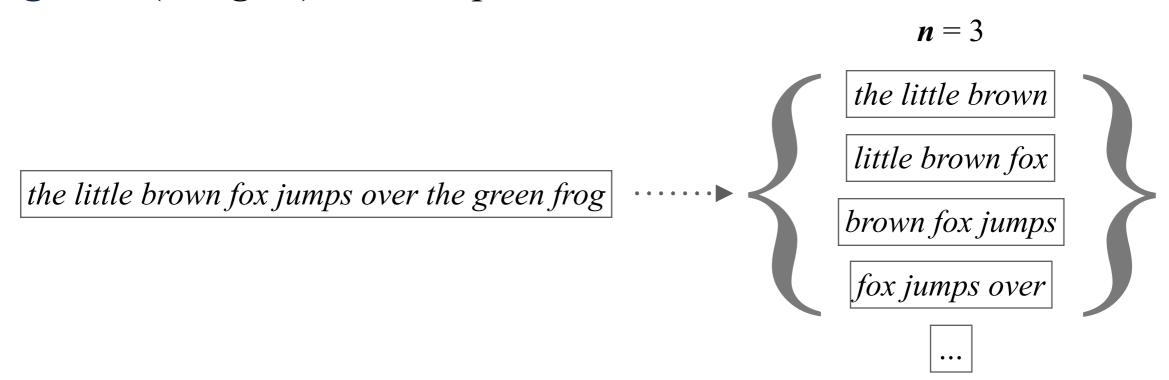
ub = 2.1

ub = 2.4

28

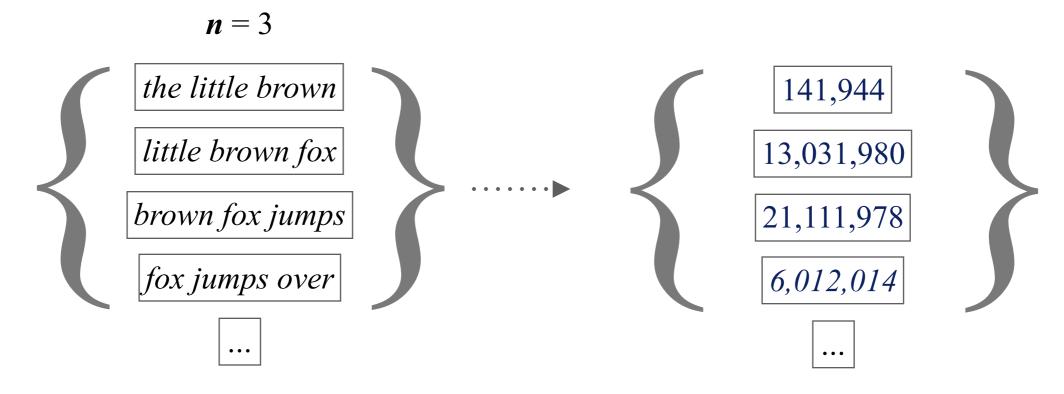
Shingling

- <u>Observation</u>: Duplicates on the Web are often **slightly perturbed** (e.g., due to different boilerplate, minor rewordings, etc.)
- **Document fingerprinting** (e.g., SHA-1 or MD5) is not effective, since we need to allow for minor differences between documents
- Shingling represents document d as set S(d) of word-level n-grams (shingles) and compares documents based on these sets



Shingling

• Encode shingles by **hash fingerprints** (e.g., using SHA-1), yielding a set of numbers $S(d) \subseteq [1, ..., n]$ (e.g., for $n = 2^{64}$)



- Compare suspected near-duplicate documents d and d' by
 - Resemblance $\frac{|S(d) \cap S(d')|}{|S(d) \cup S(d')|}$ (Jaccard coefficient)
 - Containment $\frac{|S(d) \cap S(d')|}{|S(d)|}$ (Relative overlap)

Min-Wise Independent Permutations

- Statistical sketch to estimate the resemblance of S(d) and S(d')
 - consider *m* independent random permutations of the two sets, implemented by applying *m* independent hash functions
 - keep the **minimum value** observed for each of the *m* hash functions, yielding a *m*-dimensional MIPs vector for each document
 - estimate resemblance of S(d) and S(d') based on MIPs(d) and MIPs(d')

$$\hat{r}(d, d') = \frac{|\{1 \le i \le m \mid MIPs(d)[i] = MIPs(d')[i]\}|}{m}$$

• Full details: [Broder et al. '00]

Min-Wise Independent Permutations

Set of shingle fingerprints

$$S(d) = \{ 3, 8, 12, 17, 21, 24 \}$$

$$h_1(x) = 7x + 3 \mod 51$$

$$\{ 24, 8, 36, 20, 48, 18 \}$$

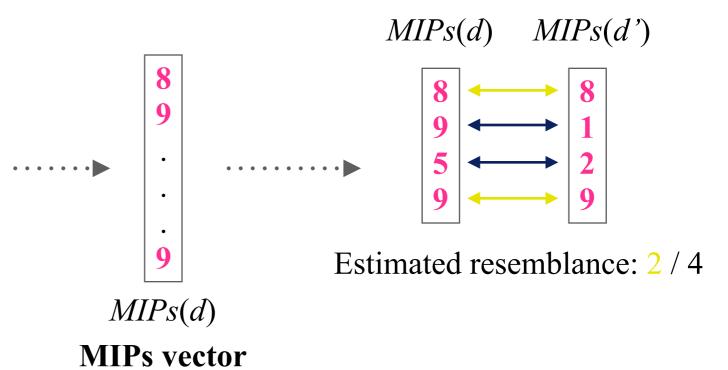
$$h_2(x) = 5x + 6 \mod 51$$

$$\{ 21, 46, 15, 40, 9, 24 \}$$

$$\vdots$$

$$h_m(x) = 3x + 9 \mod 51$$

$$\{ 18, 33, 45, 9, 21, 30 \}$$



MIPs are an unbiased estimator of resemblance

$$P[min\{h(x)|x \in A\} = min\{h(y)|y \in B\}] = |A \cap B|/|A \cup B|$$

• MIPs can be seen as repeated random sampling of x,y from A,B

Chapter VI: Information Extraction

Hidden Markov Models (HMMs)

- Hidden Markov Model (HMM) is a discrete-time, finite-state Markov model consisting of
 - state space $S = \{s_1, ..., s_n\}$ and the state in step t is denoted as X(t)
 - initial state probabilities p_i (i = 1, ..., n)
 - transition probabilities $p_{ij}: S \times S \rightarrow [0,1]$, denoted $p(s_i \rightarrow s_j)$
 - output alphabet $\Sigma = \{w_1, ..., w_m\}$
 - state-specific output probabilities $q_{ik}: S \times \Sigma \rightarrow [0,1]$, denoted $q(s_i \uparrow w_k)$
- Probability of emitting output sequence $o_1, ..., o_T \in \Sigma^T$

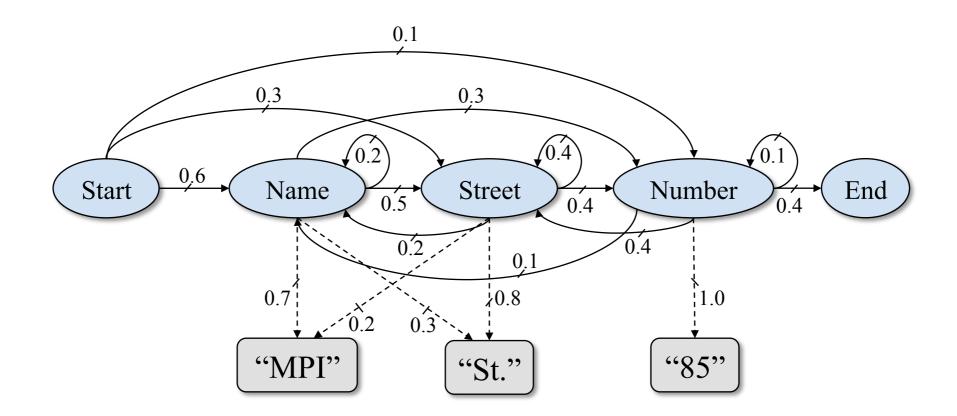
$$\sum_{x_1,\ldots,x_T\in S} \prod_{i=1}^T p(x_{i-1}\to x_i) \ q(x_i\uparrow o_i) \text{ with } p(x_0\to x_i)=p(x_i)$$

HMM Example

• Goal: Label the tokens in the sequence

Max-Planck-Institute, Stuhlsatzenhausweg 85
with the labels Name, Street, Number

```
\Sigma = \{\text{"MPI", "St.", "85"}\} // output alphabet S = \{\text{Name, Street, Number}\} // (hidden) states p_i = \{0.6, 0.3, 0.1\} // initial state probabilities
```



Forward Computation

• Probability of emitting output sequence $o_1, ..., o_T \in \Sigma^T$ is

$$\sum_{x_1,\ldots,x_T\in S} \prod_{i=1}^T p(x_{i-1}\to x_i) q(x_i\uparrow o_i) \text{ with } p(x_0\to x_i)=p(x_i)$$

- Naïve computation would require $O(n^T)$ operations!
- Iterative forward computation with clever caching and reuse of intermediate results ("memoization") requires $O(n^2 T)$ operations
 - Let $\alpha_i(t) = P[o_1, ..., o_{t-1}, X(t) = i]$ denote the probability of being in state i at time t and having already emitted the prefix output $o_1, ..., o_{t-1}$
 - Begin: $\alpha_i(1) = p_i$
 - Induction: $\alpha_j(t+1) = \sum_{i=1}^n \alpha_i(t) p(s_i \to s_j) p(s_i \uparrow o_t)$

Viterbi Algorithm

- Goal: Identify state sequence $x_1, ..., x_T$ most likely of having generated the observed output $o_1, ..., o_T$
- Viterbi algorithm (dynamic programming)

$$\delta_i(1) = p_i$$
 // highest probability of being in state i at step 1 $\psi_i(1) = 0$ // highest-probability predecessor of state i

for
$$t = 1, ..., T$$

$$\delta_j(t+1) = \max_{i=1,\ldots,n} \delta_i(t) \, p(x_i \to x_j) \, q(x_i \uparrow o_t) \quad // \text{ probability}$$

$$\psi_j(t+1) = \underset{i=1,\ldots,n}{arg \, max} \, \delta_i(t) \, p(x_i \to x_j) \, q(x_i \uparrow o_t) \quad // \text{ state}$$

• Most likely state sequence can be obtained by means of **backtracking** through the memoized values $\delta_i(t)$ and $\psi_i(t)$

Thanks!