
Information Retrieval
& Data Mining

Information Retrieval & Data Mining
Universität des Saarlandes, Saarbrücken
Wintersemester 2013/14

Chapter III: 
Ranking Principles

IR&DM ’13/’14

Zipf’s Law (after George Kingsley Zipf)

• The collection frequency cfi of the i-th most frequent word in the
document collection is inversely proportional to the rank i 

!

• For the relative collection frequency with language-specific
constant c (for English c ≈ 0.1) we obtain  
 
 

• In an English document collection,  
we can thus expect the most frequent word  
to account for 10% of all term occurrences  

!3

cfi /
1

i

cfiP
j cfj

/ c

i

George Kingsley Zipf

IR&DM ’13/’14

Levenshtein Edit Distance

• Levenshtein edit distance between two strings x and y is the
minimal number of edit operations (insert, replace, delete)
required to transform x into y

• The minimal number of operations m[i, j] to transform the prefix
substring x[1:i] into y[1:j] is defined via the recurrence  
 
 
 
 
 
and can be computed using dynamic programming

• Examples: d(house, rose) = 2

!4

m[i, j] = min

8
<

:

m[i� 1, j � 1] + (x[i] = y[j] ? 0 : 1) (replace x[i]?)
m[i� 1, j] + 1 (delete x[i])
m[i, j � 1] + 1 (insert y[j])

IR&DM ’13/’14

Vector Space Model (VSM)

• Boolean retrieval model provides no (or only rudimentary) 
ranking of results – severe limitation for large result sets

• Vector space model views documents and queries as vectors in
a |V |-dimensional vector space (i.e., one dimension per term)

• Cosine similarity between two vectors q and d  
is the cosine of the angle between them

!5

sim(q,d) =
q · d

kqk kdk

=

P|V |
i=1 qi diqP|V |

i=1 q
2
i

qP|V |
i=1 d

2
i

=
q

kqk
d

kdk

q

d

IR&DM ’13/’14

TF*IDF

• Term frequency tft,d as  
the number of times the term t occurs in document d

• Document frequency dft as  
the number of documents that contain the term t

• Inverse document frequency idft as  
 
 
 
with |D| as the number of documents in the collection

• The tf.idf weight of term t in document d is then defined as  
 
 
favoring terms that occur often in the document d 
and/or not in many documents from the collection D

!6

idft =
|D|
dft

tf.idft,d = tft,d ⇥ idft

IR&DM ’13/’14

• Precision P is the fraction of retrieved documents that is relevant

!

!

• Recall R is the fraction of relevant results that is retrieved

!

!

• Accuracy A is the fraction of correctly classified documents

Precision, Recall, and Accuracy

!7

P =
tp

tp+ fp

R =
tp

tp+ fn

A =
tp+ tn

tp+ fp+ tn+ fnNot appropriate

for IR

IR&DM ’13/’14

(Mean) Average Precision

• Precision, recall, and F-measure ignore the order of results

• Average precision (AP) averages over retrieved relevant results

• Let {d1, …, dmj} be the set of relevant results for the query qj

• Let Rjk be the set of ranked retrieval results for the query qj  
from top until you get to the relevant result dk 
 
 
 

• Mean average precision (MAP) averages over multiple queries

!8

AP(qj) =
1

mj

mjX

k=1

Precision(Rjk)

MAP(Q) =
1

|Q|

|Q|X

j=1

AP(qj)

IR&DM ’13/’14

(Normalized) Discounted Cumulative Gain

• What if we have graded labels as relevance assessments?  
(e.g., 0 : not relevant, 1 : marginally relevant, 2 : relevant)

• Discounted cumulative gain (DCG) for query q 
 
 
 
 
with R(q, m) ∈ {0, …, 2} as label of m-th retrieved result

• Normalized discounted cumulative gain (NDCG) 
 
 
 
normalized by idealized discounted cumulative gain (IDCG)

!9

DCG(q, k) =
kX

m=1

2R(q,m) � 1

log(1 +m)

NDCG(q, k) =
DCG(q, k)

IDCG(q, k)

IR&DM ’13/’14

(Normalized) Discounted Cumulative Gain

• IDCG(q, k) is the best-possible value DCG(q, k) achievable  
for the query q on the document collection at hand

• Example: Let R(q, m) ∈ {0, …, 2} and assume that two  
documents have been labeled with 2, two with 1, all others with 0.
The best-possible top-5 result thus has labels < 2, 2, 1, 1, 0 > and
determines the value of IDCG(q, k) for this query

• NDCG also considers rank at which relevant results are retrieved

• NDCG is typically averaged over multiple queries

!10

NDCG(Q, k) =
1

|Q|
X

q2Q

NDCG(q, k)

IR&DM ’13/’14

Okapi BM25

• State-of-the-art retrieval model (among top-ranked in TREC)  
having roots in Probabilistic Information Retrieval

!

!

• k1 controls impact of term frequency (common choice k1 = 1.2)

• b controls impact of document length (common choice b = 0.75)

!11

wt,d =
(k1 + tft,d)

k1((1� b) + b

|d|
avdl) + tft,d

log

|D|� dfj + 0.5

dfj + 0.5

IR&DM ’13/’14

Multinomial Language Model

• Query q is seen as a bag of terms and generated from document d 
by drawing terms from the bag of terms corresponding to d 

!

!

!

!

!

• Maximum-likelihood estimate for parameters P(ti|d)

!12

P (q|d) =

✓
|q|

tf(t1, q) . . . tf(t|q|, q)

◆ Q
ti2q

P (ti|d) tf(ti,q)

/
Q
ti2q

P (ti|d) tf(ti,q)

⇡
Q
ti2q

P (ti|d) (assuming 8ti 2 q : tf(ti, q) = 1)

P (ti|d) =
tf(ti, d)

|d|

IR&DM ’13/’14

Smoothing

• Jelinek-Mercer smoothing as linear combination of document
language model θd and document-collection language model θD  
 
 
 
with document D as concatenation of entire document collection

!

• Dirichlet-prior smoothing with a conjugate Dirichlet prior  
instead of the Maximum-Likelihood Estimation

!13

P (t|d) = �
tf(t, d)

|d| + (1� �)
tf(t,D)

|D|

P (t|d) =
tf(t, d) + ↵ tf(t,D)

|D|

|d|+ ↵

Chapter IV: 
Link Analysis

IR&DM ’13/’14

PageRank

• Random surfer model

• follows a uniform random outgoing link with probability (1-ε)

• jumps to a uniform random web page with probability ε

• Matrix T captures following of a uniform random outgoing link  
 
 

• Vector j captures jumping to a uniform random web page

!

• Transition probability matrix of Markov chain then obtained as

!15

Tij =

⇢
1/out(i) : (i, j) 2 E

0 : otherwise

ji = 1/|V |

P = (1� ✏)T+ ✏
⇥
1 . . . 1

⇤T
j

IR&DM ’13/’14

HITS

• Hyperlinked-Induced Topic Search (HITS) identifies

• authorities as good content sources (~high indegree)

• hubs as good link sources (~high outdegree)

• HITS [Kleinberg ‘99] considers a web page

• a good authority if many good hubs link to it

• a good hub if it links to many good authorities  
 
~ mutual reinforcement between hubs & authorities

!16

Jon Kleinberg

H

A

A

A

A

H

H

H

IR&DM ’13/’14

HITS

• Given (partial) Web graph G(V, E), let a(v) and h(v) denote  
the authority score and hub score of the web page v

!

!

• Authority and hub scores in matrix notation  
 
 
with adjacency matrix A, hub vector a, authority vector h, 
and constants α and β  

• Authority vector a and hub vector h are eigenvectors of  
cocitation matrix ATA and coreference matrix AAT

!17

a = ↵ AT h h = � Aa

a(v) /
X

(u,v)2E

h(u) h(v) /
X

(v,w)2E

a(w)

Chapter V: 
Indexing & Searching

IR&DM ’13/’14

Inverted Index

• Inverted index keeps a posting list for each term, which usually
reside on secondary storage, with each posting capturing
information about term’s occurrences in a specific document

• document identifier (e.g., d123, d234, …)

• term frequency (e.g., tf(house, d123) = 2, tf(house, d234) = 4)

• score impacts (e.g., tf(house, d123) * idf(house) = 3.75)

• offsets (i.e., absolute positions at which the term occurs in the document)  
 
 
 
 
 

• Posting lists are usually compressed for time and space efficiency

!19

giants d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

Posting list

Posting

IR&DM ’13/’14

Inverted Index

• Document-ordered posting lists for more efficient intersections  
(e.g., required for Boolean queries and phrase queries)  
 

• Impact-ordered posting lists for more efficient top-k queries  
(i.e., terminate query processing as soon as top-k result is known)  
 

• Skip pointers allow “fast forwarding” in a posting list

!20

d123, 2, [4, 14] d133, 1, [47] d266, 3, [1, 9, 20]

d231, 1.0 d12, 0.9 d662, 0.8 d3, 0.5

d1, 2 d16, 2 d55, 2 d101, 2

IR&DM ’13/’14

Ziv-Lempel Compression

• LZ77 (Adaptive Dictionary) and further variants:

• Scan text and identify in a lookahead window the longest string that
occurs repeatedly and is contained in backwards window

• Replace this string by a pointer to its previous occurrence

• Encode text into list of triples < back, count, new > where

• back is the backward distance to a prior occurrence of the string that  
starts at the current position

• count is the length of this repeated string

• new is the next symbol that follows the repeated string

• Triples themselves can be further encoded (with variable length)

• Variants use explicit dictionary with statistical analysis of text  
but need to scan text twice (for statistics and compression)

!21

IR&DM ’13/’14

Variable-Byte Encoding

• 32-bit binary code represents 12,038 using 4 bytes as  
 

• Variable-byte encoding (aka. 7-bit encoding) uses one bit per
byte as a continuation bit indicating whether the current number
expands into the next bytes

• Variable-byte encoding represents 12,038 using only 2 bytes as

!

!

!

• Byte-aligned, i.e., each number corresponds to sequence of bytes

!22

00000000 00000000 00101111 00000110

01011110 10000110

7 data bits
1 continuation bit

IR&DM ’13/’14

Gamma Encoding

• Gamma (γ) encoding represents an integer x as

• length = floor(log2 x) in unary

• offset = x - 2length in binary

 results in (1 + log2 x + log2 x) bits for integer x 

• Not byte-aligned, i.e., needs to be packed into bytes or words  

• Useful when distribution of numbers is not known ahead of time  
or when small numbers (e.g., gaps, tf) are frequent

!23

IR&DM ’13/’14

• Term-at-a-Time (TAAT) query processing

• reads posting lists for query terms ⟨ t1, …, t|q| ⟩ successively

• maintains an accumulator for each result document with value  
 
 after the first j posting lists have been read

!

!

!

!

• required memory depends on the number of accumulators maintained

• top-k results can be determined by sorting accumulators at the end

d1, 1.0 d4, 2.0 d7, 0.2 d8, 0.1a

d4, 1.0 d7, 2.0 d8, 0.2 d9, 0.1b

d4, 3.0 d7, 1.0c

Term-at-a-Time Query Processing

!24

acc(d) =
X

ij

score(ti, d)

d1 : 0.0
d4 : 0.0
d7 : 0.0
d8 : 0.0
d9 : 0.0

d1 : 1.0
d4 : 0.0
d7 : 0.0
d8 : 0.0
d9 : 0.0

d1 : 1.0
d4 : 2.0
d7 : 0.0
d8 : 0.0
d9 : 0.0

d1 : 1.0
d4 : 2.0
d7 : 0.2
d8 : 0.0
d9 : 0.0

d1 : 1.0
d4 : 2.0
d7 : 0.2
d8 : 0.1
d9 : 0.0

d1 : 1.0
d4 : 3.0
d7 : 0.2
d8 : 0.1
d9 : 0.0

d1 : 1.0
d4 : 3.0
d7 : 2.2
d8 : 0.1
d9 : 0.0

d1 : 1.0
d4 : 3.0
d7 : 2.2
d8 : 0.3
d9 : 0.0

d1 : 1.0
d4 : 3.0
d7 : 2.2
d8 : 0.3
d9 : 0.1

d1 : 1.0
d4 : 6.0
d7 : 2.2
d8 : 0.3
d9 : 0.1

d1 : 1.0
d4 : 6.0
d7 : 3.2
d8 : 0.3
d9 : 0.1

Accumulators

IR&DM ’13/’14

d1, 1.0 d4, 2.0 d7, 0.2 d8, 0.1a

d4, 1.0 d7, 2.0 d8, 0.2 d9, 0.1b

d4, 3.0 d7, 1.0c

Document-at-a-Time Query Processing

• Document-at-a-Time (DAAT) query processing

• assumes document-ordered posting lists

• reads posting lists for query terms ⟨ t1, …, t|q| ⟩ concurrently

• computes score when same document is seen in one or more posting lists

!

!

!

!

• always advances posting list with lowest current document identifier

• required main memory depends on the number of results to be reported

• top-k results can be determined by keeping results in priority queue

!25

d1 : 1.0

d4 : 6.0

d7 : 3.2

d8 : 0.3

d9 : 0.1

IR&DM ’13/’14

Fagin’s Threshold Algorithms

• Threshold Algorithm (TA)

• original version, often used as synonym for entire family of algorithms

• requires eager random access to candidate objects

• worst-case memory consumption: O(k)

• No-Random-Accesses (NRA)

• no random access required, may have to scan large parts of the lists

• worst-case memory consumption: O(m*n + k)

!26

IR&DM ’13/’14

Fagin’s Threshold Algorithms

• Assume score-ordered posting lists  
and additional index for score look-ups by document identifier

• Scan posting lists using inexpensive sequential accesses (SA) 
in round-robin manner

• Perform expensive random accesses (RA) to look up scores for  
a specific document when beneficial

• Support monotone score aggregation function  
 

• Compute aggregate scores incrementally in candidate queue

• Compute score bounds for candidate results and  
stop when threshold test guarantees correct top-k result

!27

aggr : Rm ! R : 8xi � x

0
i) aggr(x1, . . . , xm) � aggr(x0

1, . . . , x
0
m)

IR&DM ’13/’14

Top-1

• Sequential accesses  
(SA) only

• Worst-case memory  
consumption O(m*n + k)

 worst best
d78 : 1.4 : 2.0
d23 : 1.4 : 1.9
d64 : 0.8 : 2.1
d10 : 0.7 : 2.1

ub = 2.1

No-Random-Accesses Algorithm (NRA):
scan index lists (e.g., round-robin)  
consider d = cdid(i) in posting list for ti
high(i) = cscore(i)
eval(d) = eval(d) ∪ {i} // where have we seen d? 
!
worst(d) = aggr{ score(tj, d) | j ∈ eval(d) }
best(d) = aggr{ worst(d), aggr{ high(j) | j ∉ eval(d) } } 
!
if worst(d) > mink then // good enough for top-k?
 add d top top-k
 mink = min{ worst(d’) | d’ ∈ top-k }
else if best(d) > mink then // good enough for cand?
 cand = cand ∪ { d }
ub = max{ best(d’) | d’ ∈ cand }
if ub ≤ mink then
 exit

 worst best
d10 : 2.1 : 2.1
d78 : 1.4 : 2.0
d23 : 1.4 : 1.7
d64 : 1.1 : 1.9

ub = 2.0ub = 2.4

 worst best
d78 : 0.9 : 2.4
d64 : 0.8 : 2.4
d10 : 0.7 : 2.4

No-Random-Accesses Algorithm (NRA)

!28

d78, 0.9

d64, 0.8

d10, 0.7

a

b

c

d23, 0.8 d10, 0.8 d1, 0.7 d88, 0.2

d23, 0.6 d10, 0.6 d12, 0.2 d78, 0.1

d78, 0.5 d64, 0.3 d99, 0.2 d34, 0.1

SA RA

STOP!

IR&DM ’13/’14

Shingling

• Observation: Duplicates on the Web are often slightly perturbed
(e.g., due to different boilerplate, minor rewordings, etc.)  

• Document fingerprinting (e.g., SHA-1 or MD5) is not effective,
since we need to allow for minor differences between documents  

• Shingling represents document d as set S(d) of word-level n-
grams (shingles) and compares documents based on these sets

!29

the little brown fox jumps over the green frog

the little brown

little brown fox

brown fox jumps

fox jumps over

n = 3

…

{ }

IR&DM ’13/’14

Shingling

• Encode shingles by hash fingerprints (e.g., using SHA-1),
yielding a set of numbers S(d) ⊆ [1, …, n] (e.g., for n = 264)  

!

!

!

!

• Compare suspected near-duplicate documents d and d’ by

• Resemblance (Jaccard coefficient)

!

• Containment (Relative overlap)

!30

|S(d) \ S(d0)|
|S(d) [S(d0)|

|S(d) \ S(d0)|
|S(d)|

the little brown

little brown fox

brown fox jumps

fox jumps over

n = 3

…

{ } 141,944

13,031,980

21,111,978

6,012,014

…

{ }

IR&DM ’13/’14

Min-Wise Independent Permutations

• Statistical sketch to estimate the resemblance of S(d) and S(d’)

• consider m independent random permutations of the two sets,  
implemented by applying m independent hash functions

• keep the minimum value observed for each of the m hash functions,  
yielding a m-dimensional MIPs vector for each document

• estimate resemblance of S(d) and S(d’) based on MIPs(d) and MIPs(d’)  

!

!

!

!

• Full details: [Broder et al. ’00]
!31

r̂(d, d0) =
|{1  i  m |MIPs(d)[i] = MIPs(d0)[i]}|

m

IR&DM ’13/’14

Min-Wise Independent Permutations

• MIPs are an unbiased estimator of resemblance

!

• MIPs can be seen as repeated random sampling of x,y from A,B

!32

S(d) = { 3, 8, 12, 17, 21, 24}

h1(x) = 7x + 3 mod 51
 { 24, 8, 36, 20, 48, 18} 
!
h2(x) = 5x + 6 mod 51
 { 21, 46, 15, 40, 9, 24} 
 .
 .
 .
hm(x) = 3x + 9 mod 51
 { 18, 33, 45, 9, 21, 30}

Set of shingle fingerprints

8
9
.
.
.
9

MIPs vector
MIPs(d)

8
9
5
9

MIPs(d)

8
1
2
9

MIPs(d’)

Estimated resemblance: 2 / 4

P [min{h(x)|x 2 A} = min{h(y)|y 2 B}] = |A \B|/|A [B|

Chapter VI: 
Information Extraction

IR&DM ’13/’14

Hidden Markov Models (HMMs)

• Hidden Markov Model (HMM) is a  
discrete-time, finite-state Markov model consisting of

• state space S = {s1, …, sn} and the state in step t is denoted as X(t)

• initial state probabilities pi (i = 1, …, n)

• transition probabilities pij : S × S → [0,1], denoted p(si → sj)

• output alphabet Σ = {w1, …, wm}

• state-specific output probabilities qik : S × Σ → [0,1], denoted q(si ↑ wk)  

• Probability of emitting output sequence o1, …, oT ∈ ΣT  

 
 with p(x0 → xi) = p(xi)

!34

X

x1,...,xT2S

TY

i=1

p(x
i�1 ! x

i

) q(x
i

" o

i

)

IR&DM ’13/’14

HMM Example

• Goal: Label the tokens in the sequence  
 Max-Planck-Institute, Stuhlsatzenhausweg 85  
with the labels Name, Street, Number 
 
Σ = {“MPI”, “St.”, “85”} // output alphabet  
S = {Name, Street, Number} // (hidden) states  
pi = {0.6, 0.3, 0.1} // initial state probabilities

!35

Start Name Street End Number

“MPI” “St.” “85”

0.1

0.3

0.6
0.2 0.4 0.1

0.5 0.4

0.1 0.2

0.4

0.4

0.7
0.2

0.8 1.0

0.3

0.3

IR&DM ’13/’14

Forward Computation

• Probability of emitting output sequence o1, …, oT ∈ ΣT is  
 
 with p(x0 → xi) = p(xi)  

• Naïve computation would require O(nT) operations!

• Iterative forward computation with clever caching and reuse of
intermediate results (“memoization”) requires O(n2 T) operations

• Let αi(t) = P[o1, …, ot-1, X(t) = i] denote the probability of being in state i 
at time t and having already emitted the prefix output o1, …, ot-1

• Begin:

• Induction:

!36

X

x1,...,xT2S

TY

i=1

p(x
i�1 ! x

i

) q(x
i

" o

i

)

↵i(1) = pi

↵j(t+ 1) =
nX

i=1

↵i(t) p(si ! sj) p(si " ot)

IR&DM ’13/’14

Viterbi Algorithm

• Goal: Identify state sequence x1, …, xT most likely of having
generated the observed output o1, …, oT

• Viterbi algorithm (dynamic programming)  
 
 // highest probability of being in state i at step 1  
 // highest-probability predecessor of state i 
 
for t = 1, …, T  
 
 // probability  
 
 // state 

• Most likely state sequence can be obtained by means of
backtracking through the memoized values δi (t) and ψi (t)

!37

�i(1) = pi
 i(1) = 0

�j(t+ 1) = max

i=1, ..., n
�i(t) p(xi ! xj) q(xi " ot)

 j(t+ 1) = argmax

i=1, ..., n
�i(t) p(xi ! xj) q(xi " ot)

Thanks!

