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1.1. What is Social Media?
๏ Content creation is supported by software 

(no need to know HTML, CSS, JavaScript) 

๏ Content is user-generated (as opposed to by 
big publishers) or collaboratively-edited (as 
opposed to by a single author) 

๏ Web 2.0 (if you like –outdated– buzzwords) 

๏ Examples: 
๏ Blogs (e.g., Wordpress, Blogger, Tumblr)  

๏ Social Networks (e.g., facebook, Google+) 

๏ Wikis (e.g., Wikipedia but there are many more) 

๏ …
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Weblogs, Blogs, the Blogosphere
๏ Journal-like website, editing supported by 

software, self-hosted or as a service 

๏ Initially often run by enthusiasts, now also 
common in the business world, and some 
bloggers make their living from it 

๏ Reverse chronological order (newest first) 

๏ Blogroll (whose blogs does the blogger read) 

๏ Posts of varying length and topics 

๏ Comments 

๏ Backed by XML feed (e.g., RSS or Atom)  
for content syndication
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Weblogs, Blogs, the Blogosphere
๏ WordPress.com 

๏ ~ 60M blogs 

๏ ~ 50M posts/month 

๏ ~ 50M comments/month 

๏ Tumblr.com (by Yahoo!) 
๏ ~ 208M blogs 

๏ ~ 95B posts 

๏ ~ 100M posts/day 

๏ Blogger.com (by Google)
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Twitter
๏ Micro-blogging service created in March ‘06 

๏ Posts (tweets) limited to 140 characters 

๏ 271M monthly active users 

๏ 500M tweets/day = ~6K tweets/second 

๏ 2B queries per day  

๏ 77% of accounts are outside of the U.S. 

๏ Hashtags (#atir2014) 

๏ Messages (@kberberi) 

๏ Retweets
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Facebook, Google+, LinkedIn, Pinterest, …
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Facebook, Google+, LinkedIn, Pinterest, …
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Challenges & Opportunities
๏ Content 

๏ plenty of context (e.g., publication timestamp, relationships between 
users, user profiles, comments) 

๏ short posts (e.g., on Twitter), colloquial/cryptic language 

๏ spam (e.g., splogs, fake accounts) 

๏ Dynamics 
๏ up-to-date content – real-world events covered as they happen 

๏ high update rates pose severe engineering challenges 
(e.g., how to maintain indexes and collection statistics)
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How do People Search Blogs?
๏ Mishne and de Rijke [8] analyzed a month-long query log  

from a blog search engine (blogdigger.com) and found that 
๏ queries are mostly informational (vs. transactional or navigational) 

๏ contextual: in which context is a specific named entity (i.e., person, location, 
organization) mentioned, for instance, to find out opinions about it 

๏ conceptual: which blogs cover a specific high-level concept or topic (e.g., 
stock trading, gay rights, linguists, islam) 

๏ contextual more common than conceptual both for ad-hoc and filtering queries 

๏ most popular topics: technology, entertainment, and politics 

๏ many queries (15–20%) related to current events
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How do People Search Twitter?
๏ Teevan et al. [10] conducted a survey (54 MS employees), 

compared query logs from web search and Twitter, finding that 
queries on Twitter 
๏ are often related to celebrities, memes, or other users 

๏ are often repeated to monitor a specific topic 

๏ are on average shorter than web queries (1.64 vs. 3.08 words) 

๏ tend to return results that are shorter (19.55 vs. 33.95 words), less 
diverse, and more often relate to social gossip and recent events 

๏ People also directly express information needs using Twitter:  
17% of tweets in the analyzed data correspond to questions
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10,000ft
๏ Feeds (e.g., blog, twitter user, facebook page) 

๏ Posts (e.g., blog posts, tweets, facebook posts) 

๏ We’ll consider 
๏ textual content of posts 

๏ publication timestamps of posts 

๏ hyperlinks contained in posts 

๏ We’ll ignore 
๏ other links (e.g., friendship, follower/followee) 

๏ hashtags, images, comments
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Tasks
๏ Post retrieval identifies posts relevant to a specific information 

need (e.g., how is life in Iceland?) 

๏ Opinion retrieval finds posts relevant to a specific named entity 
(e.g., a company or celebrity) which express an opinion about it  

๏ Feed distillation identifies feeds relevant to a topic, so that the 
user can subscribe to their posts (e.g., who tweets about C++?)  

๏ Top-story identification leverages social media to determine the 
most important news stories (e.g., to display on front page)
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1.2. Opinion Retrieval
๏ Opinion retrieval finds posts relevant to a specific named entity 

(e.g., a company or celebrity) which express an opinion about it 

๏ Examples: (from TREC Blog track 2006) 
๏ macbook pro 

๏ jon stewart 

๏ whole foods 

๏ mardi gras 

๏ cheney hunting 

๏ Standard retrieval models can help with finding relevant posts;  
but how to determine whether a post expresses an opinion?
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Title: 
 whole foods 

Description: 
 Find opinions on the quality, expense, and value 
 of purchases at Whole Foods stores. 

Narrative: 
 All opinions on the quality, expense and value of Whole Foods  
 purchases are relevant. Comments on business and labor  
 practices or Whole Foods as a stock investment are not relevant. 
 Statements of produce and other merchandise carried by Whole 
 Foods without comment are not relevant.
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Opinion Dictionary
๏ What if we had a dictionary of opinion words? 

(e.g., like, good, bad, awesome, terrible, disappointing) 

๏ Lexical resources with word sentiment information 
๏ SentiWordNet (http://sentiwordnet.isti.cnr.it/) 
 
 
 
 
 
 

๏ General Inquirer (http://www.wjh.harvard.edu/~inquirer/) 

๏ OpinionFinder (http://mpqa.cs.pitt.edu)
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Opinion Dictionary

15

๏ He et al. [4] construct an opinion dictionary from training data 
๏ consider only words that are neither too frequent (e.g., and, or) 

nor too rare (e.g., aardvark) in the post collection D 

๏ let Drel be a set of relevant posts (to any query in a workload) and  
Drelopt ⊂ Drel be the subset of relevant opinionated posts 

๏ two options to measure opinionatedness of a word v 

๏ Kullback-Leibler Divergence  
 
 

๏ Bose Einstein Statistics  
 
		 	 	 	 	 	 	 	 	 	 	     with

op

KLD

(v) = P [ v |D
relopt

] log 2
P [ v |D

relopt

]

P [ v |D
rel

]

opBO(v) = tf (v,Drelopt) log 2
1 + �

�
+ log 2(1 + �) � =

tf (v ,Drel)

|Drel|
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Re-Ranking
๏ He et al. [4] measure opinionatedness of a post d as follows


๏ consider the set Qopt of k most opinionated words from the dictionary 

๏ issue Qopt as a query (e.g., using Okapi BM25 as a retrieval model) 

๏ the retrieval status value score(d, Qopt) measures how opinionated d is 

๏ Posts are ranked in response to query Q (e.g., whole foods) 
according to a (linear) combination of retrieval scores  
 
 
 
with 0 ≤ α ≤ 1 as a tunable mixing parameter
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score(d) = ↵ · score(d,Q) + (1� ↵) · score(d,Q
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Sentiment Expansion
๏ Huang and Croft [5] expand the query with query-independent 

(QI) and query-dependent (QD) opinion words; posts are then 
ranked according to 
 
 
 
 
with 0 ≤ α, β ≤ 1 as a tunable mixing parameters  
and retrieval scores based on language model divergences  

๏ Query-independent opinion words are obtained as 
๏ seed words (e.g, good, nice, excellent, poor, negative, unfortunate, …) 

๏ most frequent words in opinionated corpora (e.g., movie reviews)
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score(d) = ↵ · score(d,Q) + � · score(d,QI)

+ (1� ↵� �) · score(d,QD)
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Sentiment Expansion
๏ Examples: (of most frequent words in different corpora) 

๏ Cornell movie reviews: like, even, good, too, plot 

๏ MPQA opinion corpus: against, minister, terrorism, even, like 

๏ Blog06(op): like, know, even, good, too 

๏ Observation: Query-independent opinion words are very general 
(e.g., like, good) or specific to the corpus (e.g., minister, terrorism)
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Sentiment Expansion
๏ Query-dependent opinion words are obtained as words that 

frequently co-occur with query terms in pseudo-relevant 
documents (following the approach by Lavrenko and Croft [6] 

๏ Given a query q, identify the set of R of top-k pseudo-relevant 
documents, and top-n words having highest probability  
 
 
 
 
 
 
 
 
with parameter set as k = 5 and n = 20 in practice
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P [w |R ] /
X

d2R

P [w | d ]
Y

v 2 q

P [ v | d, w ]

P [ v | d, w ] =

(
tf (v,d)P
u tf (u,d) : w 2 d

0 : otherwise
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Sentiment Expansion
๏ Examples: (of query-dependent opinion words) 

๏ mozart → (like, good, too, even, death, best, great, genius) 

๏ allianz → (best, premium, great, value, traditional, fidelity) 

๏ wikipedia → (like, open, good, know, free, great, knowledge)
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1.3. Feed Distillation
๏ Feed distillation identifies feeds (e.g., blogs, Twitter users)  

that are relevant to a specific (typically rather broad) topic 

๏ Examples: (from TREC Blog track 2007) 
๏ movie review 

๏ firearm control 

๏ baseball 

๏ garden 

๏ mobile phone 

๏ Challenges: How to capture whether a blog consistently covers 
the given topic? How to bridge vocabulary gap to posts?
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Title: 
 baseball 

Description: 
 Blogs with recurring interests in Major League Baseball, or lesser 
 leagues, for example, giving news or analysis of games or player 
 moves. 

Narrative: 
 Relevant blogs will have news or analysis from the major league  
 baseball and other leagues.  Blogs listing only product reviews, or 
 with other nonsensical information are not relevant.
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Language Models
๏ Weerkamp et al. [11] develop two approaches to feed distillation 

estimating language models for entire blog(ger)s and individual 
posts, respectively 

๏ Notation: 
๏ a blog b is a set of posts; |b| is the number of posts by b 

๏ a post p is a bag of terms 

๏ tf(v, p) denotes the term frequency of term v in post p 

๏ B denotes a virtual post concatenating all posts from all blogs
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Blogger Model (BM)
๏ Estimates a language model for each blog(ger) b 

 
 

๏ Smooths probability estimates using the collection of blogs B  
 
 
 
with blog-specific smoothing parameter 
 
 
 
thus smoothing blogs with shorter posts more aggressively
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P [ v | ✓b ] = (1� �b) · P [ v | b ] + �b · P [ v |B ]

P [ q | ✓b ] =
Y

v2q

P [ v | ✓b ] tf (v,q)

�b =
�

(1/|b| ·
P

p2 b

P
v tf (v, p)) + �
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Blogger Model
๏ Two-step generation of term v from blog b 

 
 
 
assuming conditional independence of terms given blog  
 

๏ Uniform probability of posts given blog (i.e., equal importance)  
 

๏ Maximum-likelihood estimate
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P [ v | b ] =
X

p2 b

P [ v | p, b ]P [ p | b ]

P [ v | b ] =
X

p2 b

P [ v | p ]P [ p | b ]

1. Draw post 
from blog

2. Draw term 
from post

{{
P [ p | b ] = 1/|b|

P [ v | p ] = tf (v, p)P
w tf (w, p)
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Posting Model (PM)
๏ Estimates a language model for each individual post p 

 
 
 
with post-specific smoothing parameter 
 
 
 
thus smoothing short posts more aggressively  

๏ Maximum-likelihood estimate 
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P [ v | ✓p ] = (1� �p) · P [ v | p ] + �p · P [ v |B ]

P [ v | p ] = tf (v, p)P
w tf (w, p)

�p =
�

(
P

w tf (w, p)) + �
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Posting Model
๏ Likelihood of generating query q from language model of post p 

๏ Two-step generation of query q from blog b 

๏ Uniform probability of posts given blog (i.e., equal importance)
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P [ q | ✓p ] =
Y

v 2 q

P [ v | ✓p ] tf (v,q)

P [ q | b ] =
X

p2 b

P [ q | ✓p ]P [ p | b ]

P [ p | b ] = 1/|b|

1. Draw post 
from blog

2. Generate query  
from post
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Query Expansion
๏ Elsass et al. [3] proposed the highly similar Large Document 

Model (~BM) and Small Document Model (~PM) approaches 

๏ Focus on bridging the vocabulary gap between high-level topic 
descriptions (e.g., garden) and posts (e.g., seed, flower, crop) 

๏ Query expansion with terms from pseudo-relevant documents 
retrieved from different corpora (again using the method from [6]) 
๏ Blogs (MAP 0.266 compared to small document model 0.315) 

๏ Posts (MAP 0.282) 

๏ Wikipedia articles (MAP 0.314) 

๏ Wikipedia passages (MAP 0.313)
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Query Expansion
๏ Query expansion based on anchor phrases in Wikipedia 

๏ issue original query q against Wikipedia articles as corpus 

๏ consider top-k and top-n (k < n) results returned by query 

๏ score every anchor phrase a occurring in any top-n result 
and pointing to a document d from the top-k result as 
 
 
 
 
 
 
favoring frequent anchor phrases pointing to highly ranked articles 

๏ expand query with top-m anchor phrases (MAP 0.361)

28

score(a) =
X

(a,d)

(k � rank(d))

anchor phrase a from top-n article 
pointing to top-k article d

{

http://en.wikipedia.org/wiki/United_States

united states

united states of america

america

land of the free

the states

IMPROVEMENT!
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1.4. Top-Story Identification
๏ Top-story identification (another task within the TREC Blog 

track) aims to identify the most important news stories for a 
specific day d based on their coverage in the blogosphere 
๏ real-time (online, limited statistics, time critical: small lag) 

๏ retrospective: (offline, full statistics) 

๏ Notation: 

๏ d denotes the day of interest 

๏ Bd is the set of posts published at day d; p denotes a post

๏ n denotes a news article (consisting of headline and content) 

๏ tf(v,p) is the term frequency of term v in post p
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Top-Story Identification
๏ Lee and Lee [7] address retrospective top-story identification 

using language models estimated from news and blogs  

๏ Intuition: “News article important if discussed by many posts” 
 
 
 
 
(Note: This is a simplified version of the approach described in [7])  

๏ Only articles published -1/+1 around the day of interest d 
are considered as candidates and ranked by the approach 

30

Importance(n,d) / KL(✓n k ✓Bd)

LM representing 
news article n

{ {

LM representing posts 
published at day d
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Blog Post Language Model
๏ Language model for blog posts published at d is estimated as  
 
 
 
 
using Dirichlet smoothing with the collection of all posts B

31

P [ v | ✓Bd ] =
tf (v,Bd) + µ · tf (v,B)P

w tf (w,B)

(
P

w tf (w,Bd)) + µ
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News-Story Language Model
๏ Option 1: Estimate directly from content of news article  
 
 
 
 
using Dirichlet smoothing with the entire news collection N 

๏ Option 2: Estimate from top-k pseudo-relevant blog posts Bn 
retrieved using headline as query and published within  
-1/+1 month of the news article; again using Dirichlet smoothing 
with the collection of all posts B


๏ Option 3: Interpolate language models estimated from news 
article content and top-k pseudo-relevant blog posts

32

P [ v | ✓n ] =
tf (v, n) + µ · tf (v,N)P

w tf (w,N)

(
P

w tf (w, n)) + µ
VOCABULARY GAP?!?
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Summary
๏ Opinion retrieval  

finds posts expressing an opinion about a specific named entity 

๏ Feed distillation 
identifies feeds worth following for a given high-level topic 

๏ Top-story identification 
spots most important news articles based on coverage in blogs 

๏ Vocabulary gaps 
are a common obstacle in IR but can often be bridged 

๏ Language models 
are versatile and can be used to address many (if not most) tasks
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