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1. What are Recommender Systems?

e Recommender systems are about matching users and items

e Recommender systems are about discovery not search

® no explicit information need; no explicit query

n 1%

® rather: “entertain me”, “show me something interesting”

e Recommender systems have big business impact [5]
© 66% of movies watched on Netflix have been recommended

® 35% of sales of Amazon.com are based on recommendations
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Goals

e User: A good recommender brings up items that are

@ relevant (i.e., the user likes them once he uses them)

@ novel (i.e., the user does not yet know about the items)

® surprising (i.e., the items are different from what the user already knows)

e Company: A good recommender brings up items that

® users are likely to purchase (i.e., buy, rent, watch)

@ have high margins (e.g., to drive earnings)
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Netflix Prize

e Competition by Netflix video rental company N ETFLIX

®

®

®

driver for research in recommender systems
ran over three years (2007 — 2009)

goal was to beat CineMatch (Netflix's recommendation algorithm)
by more than 10% in terms of root mean squared error (RMSE)

award: $1,000,000

included a data release (100M ratings from 480K users for 17K movies);
now retracted due to legal issues

winning approach BellKor’s Pragmatic Chaos [2]
was a combination of several independently proposed approaches
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Approaches

e Different research communities (e.g., DM, IR, ML) have worked
on recommender systems and come up with very different ideas

e Collaborative filtering only assumes (partial) knowledge about
how useful specific items are to specific users (e.qg., ratings)

e Content-based recommendation, in addition, knows about
properties of the items (e.g., cast of movie, content of book)

e Hybridization strategies aim to provide better recommendations
by systematically combining multiple baseline recommenders
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2. Collaborative Filtering

e Collaborative filtering only assumes (partial) knowledge about
how useful specific items are to specific users (e.g., ratings)

@ No background knowledge about items (e.g., cast or content)
or users (e.g., age, gender, location)

e Challenges:

® recommend few items from a large pool
@ data sparsity (large number of users and items)

o scalability
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Explicit vs. Implicit Utility

e Explicit utility values are directly provided by users (e.qg., ratings)
@ none available for new users (cold start problem)
® users are typically reluctant to provide ratings

@ not necessarily comparable (pessimists vs. optimists)

o Implicit utility values can be obtained by observing users
® based on transactions (e.g., purchases or clicks)

© by measuring engagement (e.g., time spend watching video)
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Utility Matrix

Advanced Topics in Information Retrieval / Recommender Systems

10



Utility Matrix

Advanced Topics in Information Retrieval / Recommender Systems

10



Utility Matrix

Advanced Topics in Information Retrieval / Recommender Systems

I, =1{1,3,4}

10



Utility Matrix

Advanced Topics in Information Retrieval / Recommender Systems

10



Utility Matrix

Uy ={1,5}
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Characteristics

@ Most values of the utility matrix are missing, i.e., the data is
very sparse (e.g., In Netflix dataset only 1% of values is known)

@ Missing values are different from zeros and do
not indicate that the user dislikes the item

e Magnitude of utility values (e.g., ratings) differs
from user to user (optimists vs. pessimists)
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2.1. User-User Collaborative Filtering

® User-user collaborative filtering aka. k-NN collaborative filtering
as first generation of recommenders (proposed in early 1990’s)

e |dea: Recommend items that are of high utility to similar users
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Measures of User Similarity

@ How can we measure the similarity between two users u and v?

@ Pearson correlation (on items with known utility for both users)
Z’LEI NI, (Tu 1 Fu) | (Tv,i _ F’U)

\/Zzel N1, Tu Y ru ' \/Zie]uﬂlv (T’U,i o Fv) :

s(u,

e Cosine similarity (missing utility values as zeros)

(Tu i * To z

@ r2o /22,
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Generating Recommendations

e |dentify neighborhood N(u,k) of k users most similar to u

e Predict utility of itemias

Deviation of
similar user v
A
. _ ZUEN(u,k) s(u,v) - (rvi — To)
Tw,s = Ty T
= ZvEN(u,k) S(u7 U)
Baseline
prediction

© Recommend n items having highest predicted utility
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Discussion

@ Pearson correlation and cosine similarity only work if
users u and v have known utility values for common item
(e.g., have rated at least one common movie)

@ User similarity is sensitive to updates (e.g., additional ratings)
so that precomputing user similarities is not attractive

@ Neighborhood computation is computationally expensive

Advanced Topics in Information Retrieval / Recommender Systems 15



2.2. Item-Item Collaborative Filtering

e ltem-item collaborative filtering addresses the shortcomings of
user-user collaborative filtering (proposed in early 2000’s)

® ldea: Recommend items that are similar to items of high utility

A
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Measures of Iltem Similarity

e How can we measure the similarity between two items i and j?

® Pearson correlation (on users with known utility for both items)
ZuEU NU,; (T’UJ,?: - F’UJ) ' (TU,j — Fu)

s(2,
\/ZuEU NU; T“ L Fu) * \/ZUEUimUj (Tuaj o FU) °

e Cosine similarity (missing utility values as zeros)

(Tu 1 Tu]

@u 2o/,

Advanced Topics in Information Retrieval / Recommender Systems

17



Generating Recommendations

@ Predict utility of item i as

Deviation for
similar item |

ﬁ
. _ ZjGS(u,i,k) $(%,7) + (Tu,j — Tu)
Fus = Tu .
- ZjES(u,i,k) s(2,7)
Baseline
prediction

with S(u,i,Kk) as the set of k items with known utility for user u
that are most similar to item |

© Recommend n items having highest predicted utility
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Discussion

@ Pearson correlation and cosine similarity only work
if tems 1 and | have known utility values for common user
(e.g., have been rated by the same user)

e [tem similarity is less sensitive to updates (e.g., additional
ratings), assuming that there are many more users than items

® In practice, item similarities are typically precomputed, and
truncated (keeping top-k most similar items per item)
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2.3. Association Rules

© Association rule mining developed for market basket analysis
to learn rules (patterns) from customer transactions
(e.g., buys soda and beer => buys snhacks)

@ Association rules can be used to generate recommendations
by considering items with known utility per user a transaction

@ Let A and B be set of items, we are interested in identifying
association rules A => B with sufficient support and confidence
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Support and Confidence

@ For a set of items (itemset) A its support s(A) is the
fraction of transactions that contains A

# transactions containing A

s(A) =

+# transactions

@ For an association rule A => B its confidence c(A=>B) is the
fraction of transactions containing A that also contain B

transactions containine A U B
c(A= B) = f 5

# transactions containing A
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Identifying Frequent ltemsets

e Apriori algorithm [1] can be used to identify frequent itemsets
having a support above a minimum support threshold

e Iterative algorithm exploiting anti-monotonicity of supports
A C B=s(A) > s(B)
® Sketch:

o identify frequent 1-itemsets (i.e., containing a single item)
® repeat (until no frequent k-itemsets are found)
® generate candidates by joining frequent (k-1)-itemsets

® prune infrequent candidates and emit frequent k-itemsets
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Generating Association Rules

@ (Generate association rules from frequent itemset X
@ consider every non-empty subset Ac XandletB=X\A

® output association rule A => B if c(A => B) above threshold
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Generating Recommendations

e Consider all items ly with known utility for user u
o identify all association rules A => B so that A C |,

e Iitems from B\ |y are candidates for recommendation;
for each candidate keep track of highest confidence
of any association rule suggesting it

® recommend n items having highest confidence
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2.4. Dimensionality Reduction

e |dea: Identify a small number (in comparison to m and n)
of common interests (topics) to represent users and items;
recommend items to users that belong to the same topics

o Utility matrix R can be seen as user vectors (in a m-dimensional
vector space) or item vectors (in a n-dimensional vector space)

@ Dimensionality reduction methods reveal the latent structure of
a matrix by representing it as a product of multiple smaller
matrices (e.g., UV decomposition, singular value decomposition,
principal component analysis)
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Singular Value Decomposition

© Determine k-SVD of utility matrix R (m x n)
n K K n

as best possible rank-k approximation under Frobenius norm

o U captures user-topic associations
e ) captures topic importance

o T captures item-topic associations
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Imputation

@ SVD requires a complete matrix but R misses a lot of values

@ Imputation is the process of filling missing values with defaults
® average utility assigned to item by different users
® average utility assigned to other items by same user

® oOther baseline predictors
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Generating Recommendations

® Predict utility of item i for user u as

PaN T
Fui = E Uik X Ty
k

@ Predict utilities of all items for user u as

U, x 2 x Tt
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3. Content-Based Recommendation

e Content-based recommendation assumes (partial) knowledge
about how useful specific items are to specific users and
pbackground knowledge about properties of the items

e |dea: Recommend items that are similar to items of high utility

A

Advanced Topics in Information Retrieval / Recommender Systems

29



3. Content-Based Recommendation

e Content-based recommendation assumes (partial) knowledge
about how useful specific items are to specific users and
pbackground knowledge about properties of the items

e |dea: Recommend items that are similar to items of high utility

Advanced Topics in Information Retrieval / Recommender Systems

29



3. Content-Based Recommendation

e Content-based recommendation assumes (partial) knowledge
about how useful specific items are to specific users and
pbackground knowledge about properties of the items

e |dea: Recommend items that are similar to items of high utility

Advanced Topics in Information Retrieval / Recommender Systems 29



3. Content-Based Recommendation

e Content-based recommendation assumes (partial) knowledge
about how useful specific items are to specific users and
pbackground knowledge about properties of the items

e |dea: Recommend items that are similar to items of high utility
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Items and Users as Vectors

® Represent items as vectors in a high-dimensional vector space
(works well, for instance, for text documents with tf.idf weighting)

0.13] 10.04 |

0.6 0.99

® Represent user as vector obtained as weighted combination of
item vectors of items with known utility values

ZQEI rua.]

€1,

e Recommend items with high cosine similarity to user vector
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Domain-Specific Iltem Similarity

@ Not all item properties are suitable for representation in vector
and we may loose their semantics when doing so

o Category (e.q., /Travel/U.S.A., /Travel/Canada, /Cooking/Italian)
@ Year (e.g., 1980 should be less similar to 2002 than 1981)

e Define domain-specific item similarity based on their properties,
for iInstance, as weighted sum of property-specific similarities

s(RoK,GC) = a - s4(RoK,GC)
+ B - s, (RoK,GC')
+ v sc(RoK, GC)
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Domain-Specific Iltem Similarity
e Recommend items that are similar to items of high utility

score(u,j) = Z Tui - S(2,7)

1€1,,
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4. Hybridization & Evaluation

e Combining different recommenders can be attractive
® improved recommendations (cf. winner of Netflix competition)
® overcoming cold start problems

® Improved performance

e Hybridization strategies systematically combine recommenders
e Ensemble (combine outputs of different recommenders)

o Switch (choose recommender to use)
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Ensemble

@ Obtain (top-k) recommendations from multiple recommenders

e Combine recommendations by aggregating per item
o predicted utility by different recommenders
® reciprocal rank in output of different recommenders

e votes (item in output) from different recommenders

utility 0.6 0.6
1/rank 1/1 4/3 1/2 1/3 1/2
vote 1 2 1 1 1
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Switch

@ Decide (or learn to decide) when to use which recommender

o Example: Collaborative filtering suffers from cold start problem

@ UuUse content-based recommender, if user has too few
known utility values (e.g.,, has rated too few items)

® otherwise, use item-item collaborative filtering
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Evaluation

© Recommender systems can be evaluated like other IR systems
® user judges whether recommended items are relevant
® determine precision, recall, F1

® captures only whether relevant items are returned

@ More commonly, the focus is on prediction accuracy

o split utility values from dataset (e.g., movie ratings) into
training and test data (repeat multiple times)

® measure mean absolute absolute error on test data

_Z‘Tuz 7Ouz|

(w,7)
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Summary
© Recommender systems help users to discover relevant and
surprising items and drive many of today’s businesses

@ Collaborative filtering uses only knowledge albout how useful
items are to users; variety of approaches have been proposed

e Content-based recommendation also uses knowledge about
properties of the items (e.g., content); IR-style approaches

@ Hybridization strategies combine multiple recommenders, for
iInstance, to obtain better recommendations or performance

e Evaluation of recommender systems usually focuses on
prediction accuracy and uses training/test splitting of data
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