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IRDM Chapter 10, overview 

 Stream Mining 
1. Basic Ideas 
2. Uniform Sampling 
3. Membership Queries 
4. Counting Distinct Items 
5. Mining Frequent Items 
6. Mining Frequent Itemsets 

 
 

You’ll find this covered in  
Aggarwal Ch. 12(.2) 

X: 2 



IRDM ‘15/16 

Chapter 10:  
Streams 

Aggarwal Ch. 12 
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Motivation 

In stream processing 
 (all) data cannot be stored – we can only make one pass 
 analysis needs to be online – no time to wait for an answer 
 time per update is limited 
 
Many normally trivial questions become very hard 
 how much traffic from/to one IP adress? 
 how many distinct flows? 
 what are the heavy hitters? 
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Stream Mining 

Abstraction 
 a stream 𝒮 is a continuous sequence of items or elements 

 
 

Notation 
 stream 𝒮 = 𝑋1,𝑋2, …  

 possibly infinite 
 of 𝑛 observed elements, i.e. from 𝑋1 up till 𝑋𝑛 
 of 𝑚 distinct elements 
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Stream Mining 

Abstraction 
 a stream 𝒮 is a continuous sequence of items or elements 

 
 

Problems 
 maintain a uniform sample 

 
 how many distinct items do I have in my stream? 
        (6) 
 

 give all frequent items in the stream 
     sup (⋅) or more: 

X: 6 
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Approximations 

It won’t (always) be possible to give an exact answer 
 therefore, approximations 

 
Popular: 𝜖, 𝛿-approximations 
 𝑃 𝑋 − 𝐸 𝑋 > 𝜖 ≤ 𝛿 
 in 1 − 𝛿 of the cases we are at most 𝜖 off 

 
We will see a few example stream mining algorithms 
 uniform sampling 
 number of distinct items 
 frequent items and itemsets 
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Chapter 10.2:  
Uniform Sampling 

Aggarwal Ch. 12.2 
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Maintaining a uniform sample 

Sampling 
 stream 𝒮 = 𝑋1,𝑋2,𝑋3,𝑋4, … 
 goal: at any time 𝑛, have a uniform sample of size 𝑘 from {𝑋1, …𝑋𝑛} 

 
Why?  
 
A uniform sample characterises the distribution well1 

 flexible synopsis of a database 
 speeds up processing of analytical queries and data mining tasks 
 enhances query optimization 
 … 

1 if there is no concept drift 
X: 9 
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Reservoir Sampling 

How can we get a uniform sample 𝑅  
of 𝑘 elements over a stream 𝒮? 
 that is, how do we make sure that after 𝑛 elements of 𝒮,  

each of those have the same probability to be in 𝑅? 
 

Reservoir Sampling, The Key Idea: 
 initialise reservoir 𝑅 with first 𝑘 elements of 𝒮 
 insert 𝑛th element into 𝑅 with probability 𝑘

𝑛
 

 if successful, remove one of the 𝑘 old points uniformly at random 
 

Now, every element of 𝒮 has the probability 𝑘
𝑛
 to be in 𝑅 (!) 

(Aggarwal Ch. 2.4.1) 
X: 10 
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Example: reservoir sampling 
For example, for the following stream of data 
 
 
 
 
we maintain the following reservoir of size 3       
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Min-Wise Algorithm 

The min-wise algorithm is even simpler 
 we maintain a sample 𝑅 of 𝑘 elements 
 at every time point 𝑖 draw a random number in 0,1  

and only keep the objects of the highest 𝑘 draws 
 

For example, for 𝑘 = 4 
 
 
 

 at any time, every point has the same chance to be in the top-𝑘 
 

Concept is simpler than reservoir sampling, but (slightly) more costly 

X: 12 
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Concept Drift 

The process generating a stream is seldom stationary 
 when the distribution of the stream changes, we call this concept drift 
 uniform sample may be stale 
 

To have a relevant sample, we need a recency bias 
 a bias function gives higher sample probabilities to recent elements 
 most commonly, we use an exponential bias function 

 
𝑓 𝑟,𝑛 = 𝑒−𝜆 𝑛−𝑟  
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Synopses for Massive-Domains 

In certain settings, not just the number of data points  
is a problem, but also the size of the domain 
 

Storing even simple summary statistics, such as 
 set membership determination,  
 distinct element counts, 
 (frequent) item counts,  

become challenging w.r.t. space constraints. 
 

For example, we often deal with pairs of identifiers  
 e.g. such as from and to email or ip-addresses. 
 for a 108 unique addresses, there are 1016 unique pairs (!) 

X: 14 
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Chapter 10.3:  
Membership Queries 

Aggarwal Ch. 12.2.2 
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Bloom filters 
Given an element    , has it ever occurred in the stream? 
 no false negatives, probabilistic guarantee on false positives 
 using only 𝑂 𝑘  space 
 
A bloom filter is an array 𝐵 of 𝑘 bits,  
together with 𝑤 indepdent hash functions, 
each of which of type ℎ ∶ 𝑈 → {0,1,2, … , 𝑘 − 1} 
 

 initialise 𝐵 to all 0’s 
 item    enters at time 𝑡 

 for 𝑗 = 1 to 𝑤 do 
 update ℎ𝑗    𝑡𝑡 element of 𝐵 to 1 

 

 when membership of element    is queried 
 return 1 if all ℎ𝑗   𝑡𝑡 elements of 𝐵 are set to 1 for all 𝑗 = 1 to 𝑤 
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Example: Bloom filters 
Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 3 hash functions 
and the following stream of elements 
 
 
ℎ1   = 2 ℎ2   = 3 ℎ3   = 5  
 

X: 17 
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Example: Bloom filters 
Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 3 hash functions 
and the following stream of elements 
 
 
ℎ1   = 2 ℎ2   = 3 ℎ3   = 5  
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0 0 1 1 0 1 0 0 
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Example: Bloom filters 
Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 3 hash functions 
and the following stream of elements 
 
 
ℎ1   = 3 ℎ2   = 4 ℎ3   = 2  
 

X: 19 

0 0 1 1 0 1 0 0 
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Example: Bloom filters 
Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 2 hash functions 
and the following stream of elements 
 
 
ℎ1   = 3 ℎ2   = 4 ℎ3   = 2  
 

X: 20 

0 0 1 1 1 1 0 0 
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0 0 1 1 1 1 0 0 

Example: Bloom filters 
Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 3 hash functions 
after the following stream of elements 
 
 
Now, for membership query of element 
ℎ1   = 0 ℎ2   = 7 ℎ3   = 2  
 
 
 
All ℎ𝑗(  ) in 𝐵 are 1, so answer is yes 

X: 21 
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1 0 1 1 1 1 0 1 

Suppose a bloom filter 𝐵  
of 𝑘 = 8 bits and 3 hash functions 
after the following stream of elements 
 
 
While for membership query for element 
ℎ1   = 3 ℎ2   = 6 ℎ3   = 0  
 
 
 
Not all ℎ𝑗(  ) in 𝐵 are 1, so answer is no 

Example: Bloom filters 

X: 22 
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Bloom filters, analysis 
An upper bound for the probability of giving a false positive answer is 
related to number of bits 𝑘 of the filter and number 𝑤 of hash functions 
 

𝑃 = 1 − 1 −
1
𝑘

𝑤𝑛 𝑤

 

 
For very few or many hash functions performance deteriorates.  
Optimum is at 𝑤 = 𝑘 ⋅ ln (2)/𝑛. We can rewrite to 
 

𝑃 = 2−𝑘⋅ln (2)/𝑛 
 
For which 𝑘/𝑛 is most important. This means the length of the bloom 
filter should be proportional to the number of distinct elements in 𝒮. 
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Chapter 10.3:  
Counting Distinct Items 

Aggarwal Ch. 12.2.2.2 
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The number of distinct items 

How to estimate the number of distinct items 𝑚,   
if there are too many of them to keep in memory? 
 

Naive solution 
 store all elements 
 requires 𝑂(𝑚) space for 𝑚 distinct elements 
 

Can we do better using approximations? 
 what can we do with only 𝑂 log𝑛  space? 

 𝑛 is an upper bound for 𝑚 
 

X: 25 
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The number of distinct items 

How to estimate the number of distinct items 𝑚,  
if there are too many of them to keep in memory? 
 

Observation: 
If ℎ(⋅) is a hash function: every 𝑋𝑖 → [0,1]      (u.a.r if ℎ(⋅) does its job well) 

then by maintaining min{ℎ 𝑋1 ,ℎ 𝑋2 , … ,ℎ 𝑋𝑛 }, we have  
𝐸 min ℎ 𝑋1 ,ℎ 𝑋2 , … ,ℎ 𝑋𝑛 = 1/(1 + 𝑚) 

 

In other words:  
the minimal hash gives an estimate of the number of distinct items! 
 

This is called the min-hash algorithm. To decrease its variance, we 
average over (many) (independent) hash functions.  

(Flajolet-Martin’85, Alon-Matias-Szegedy’96) 
X: 26 
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Example: min-hash 
For example, for the following stream of data 
 
 
 
we get the above stream of hash values 
 
The minimum observed hash value, minℎ 𝑋𝑖 = ℎ   = .13    

by which we can estimate 𝑚:     1
1+𝑚

= 0.13,     𝑚 = 1
0.13

− 1 

 
 
Averaging over independent trials makes the result more accurate 

X: 27 
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Distinct elements – even less space 

We can store 𝑚𝑖𝑛𝑚𝑚𝑚ℎ approximately 
 store the minimal count of trailing zeroes 

 needs only 𝑂(log log 𝑛) bits in worst case 
 log log𝑛 is an upper bound on 𝑚 

 
Algorithm DISTINCT 
 initialisation 

 𝑚𝑖𝑛𝑚 = 0 
 hash function ℎ ∶ 𝑈 → [0,1] 

 item    enters at time 𝑡 
 if ℎ    < 1/2𝑚𝑖𝑛𝑚, then 𝑚𝑖𝑛𝑚 = 𝑧𝑒𝑟𝑧𝑒𝑚(ℎ    ) 

 when the distinct element count is needed, return 2𝑚𝑖𝑛𝑚 
 

 (Flajolet-Martin’85, Alon-Matias-Szegedy’96) 
X: 28 

𝑥 = 0.0000001100101 

𝑧𝑒𝑟𝑧𝑒𝑚(𝑥) 
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Chapter 10.4:  
Mining Frequent Items 

Aggarwal Ch. 12 
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Identifying frequent items 

Counting every item is impossible 
 e.g. all pairs of people that phone each other 

 

Beforehand we do not know the frequent combinations 
 

Example: 
 

30 items:  (8)      (6)      (5) 
all others have support 3 
 

For min-freq 𝜎 =20%,    and     need to be reported 

(here 𝜎 is a minimal frequency threshold, as absolute support is useless in an infinite stream) 
 X: 30 
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Superset of the frequent items 

We consider an algorithm that finds a superset of  
the 𝜎-frequent items: 

 
 initialisation: no item has a counter 
 item    enters at time 𝑡 

 if     has a counter, then 𝑐𝑧𝑐𝑛𝑡𝑒𝑟   + + 
 else 

 𝑐𝑧𝑐𝑛𝑡𝑒𝑟   = 1 
 𝑚𝑡𝑚𝑟𝑡   = 𝑡 

 for all other counters    do 
 if 𝑐𝑐𝑐𝑛𝑡𝑐𝑟   

𝑡−𝑠𝑡𝑠𝑟𝑡   +1
< 𝜎 then 

 delete 𝑐𝑧𝑐𝑛𝑡𝑒𝑟   , 𝑚𝑡𝑚𝑟𝑡    
 

 when the frequent items are needed, return all items with a counter 
 

 
(here 𝜎 is a minimal frequency threshold, as absolute support is useless in an infinite stream) 
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Example – frequent items in a stream 

𝜎 = 20% 

X: 32 

1 1 (100%) 
start # (freq) 
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Example – frequent items in a stream 

𝜎 = 20% 

X: 33 

1 1 (50%) 
2 1 (100%) 

(100%) 
start # (freq) 
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(100%) 
(50%) 

Example – frequent items in a stream 

𝜎 = 20% 

X: 34 

start # (freq) 
1 1 (20%) 
2 1 (25%) 
3 2 (66%) 
4 1 (50%) 
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(17%) 

Example – frequent items in a stream 

𝜎 = 20% 

X: 35 

start # (freq) 
1 1 (17%) 
2 1 (20%) 
3 2 (50%) 
4 1 (33%) 
6 1 (100%) 

(20%) 
(25%) 
(66%) 
(50%) 
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Example – frequent items in a stream 

𝜎 = 20% 

X: 36 

start # (freq) 
2 2 (25%) 
3 2 (29%) 
6 1 (25%) 
8 2 (100%) 
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Example – frequent items in a stream 

𝜎 = 20% 

X: 37 

start # (freq) 
16 3 (20%) 
17 4 (29%) 
27 1 (25%) 
8 6 (26%) 
19 3 (25%) 

Truly frequent 

False positives 
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If    is not recorded,    is not frequent in the stream 
 
Imagine marking when    was recorded: 
 if     occurs, recording starts 
 only stopped if     becomes infrequent since start of recording 

 
 

 
Whole stream can be partitioned into parts in which    is  
not frequent  →     is not frequent in the whole stream 
 

Algorithm is called lossy counting 

Why does it work 

(Manku & Motwani, 2002) 
X: 38 
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Space requirements 

What is the space complexity of lossy counting? 
 it reports a superset of all frequent items, how large can it be? 

 

Let 𝑛 be the length of the stream,  
𝜎 the minimal frequency threshold, and 𝑘 = 1/𝜎 

 

When is item    in the summary? 
 if it appears once among the last 𝑘 items 
 if it appears twice among the last 2𝑘items 
 … if it appears 𝑥 times among the last 𝑥𝑘 items 
 … if it appears 𝜎𝑛 times among last 𝑛 items 
  

X: 39 
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Space requirements (2) 

Divide stream in blocks of size 𝑘 = 1/𝜎 
 

 
 

 
 
 
 

Constellation with maximum number of candidates: 

X: 40 

𝑘/4 different 
each appears 

4 times 

𝑘/3 different; 
each appears 

3 times 

𝑘/2 different; 
each appears 

2 times 

𝑘 different 
each appears  

1 time 

𝑘 candidates; 
each requires  
4 occurrences 

𝑘 candidates; 
each requires  
3 occurrences 

𝑘 candidates; 
each requires  
2 occurrences 

𝑘 candidates; 
each requires  
1 occurrence 
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Space requirement (3) 

Hence, the total space requirement is 
 

�
𝑘
𝑖

𝑛/𝑘

𝑖=1

   ≈  𝑘 log
𝑛
𝑘

 

 
Recall that 𝑘 = 1/𝜎 
 so, the worst case space requirement is 1

𝜎
log(𝑛𝜎)  
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Guarantees? 

Suppose we want to know the frequency up to a factor 𝜖 
 same algorithm, yet use 𝜖 as minimal frequency threshold 
 report all items with count ≥ 𝜎 − 𝜖 𝑛 

 

Guaranteed: true frequency in the interval 
𝑐𝑧𝑐𝑛𝑡
𝑛

,
𝑐𝑧𝑐𝑛𝑡
𝑛

+ 𝜖  

 
 

X: 42 

no no 
recorded recorded recorded 

Fewer than 𝜖𝑛 occurrences of  
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Summarising Lossy Counting 

Worst case space consumption 
 only 1/𝜖 log(𝑛𝜖) 
 
Comes with guarantees 
 with 100% certainty, the relative error for all 𝜎-frequent itemsets is 𝜖 
 
Performs very well in practice 
 and, can be optimised further 

 e.g. only check if item is frequent every 1
𝜖
 steps 

X: 43 
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Chapter 10.4:  
Mining Frequent Itemsets 

Aggarwal Ch. 12.3 
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What about frequent itemsets? 

Mining frequent items is nice, but what about patterns? 
 that is, what if we want to discover more than just frequent elements? 
 

Solution 1: Sampling 
 use reservoir sampling to maintain a reservoir of transactions 
 mine frequent patterns on the sample whenever needed 
 can deal with concept drift 

 

Solution 2: Lossy Counting 
 mine frequent patterns on as many segments as memory permits 
 consider these patterns as elements, lossy-count their frequency 
 without tricks will result in many false positives 
 cannot deal with concept drift 
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Stream of Conclusions 

Stream mining is exciting 
 computing even trivial things becomes challenging 

 

Surprisingly many things can be done 
 especially by smart sampling and hashing 

 

Relatively under-used in data mining 
 tricky to get meaningful, sufficiently tight guarantees 
 

Lots of potential if you get it right 
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What did we do? 

X: 48 

 Data Preprocessing 

Association Patterns 

Clustering 

Sequences 

Graphs 

Classification 
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Take Home: overall 

 
Overview of the core topics in data mining 

somewhat biased sample – by interest and available time 
 

I wanted to give a general picture of  
what data mining is, what makes it special, 

and why it’s so important to know 

X: 49 
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Key Take-Home Message 

 
Data mining is descriptive not predictive 

the goal is to give you insight into your data, 
to offer (parts of) candidate hypotheses, 

what you do with those is up to you. 
 
 

X: 50 
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Take Home: Pre-processing 

 
It’s a dirty job, 

and you have to do it, 
and do it well, or else no  

meaningful results can be discovered. 
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Take Home: Patterns 

 
Pattern mining aims  

to provide a simple descriptions 
of the structures that your data  

exhibits locally. 
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Take Home: Clusters 

 
Clustering aims to group  

similar data points together; 
infinitely many ways to define similar, 

 you have to choose carefully  
for your domain. 
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Take Home: Classification 

 
Classification aims to predict 

the label of a data point. 
 

As insight is our first class citizen, 
we prefer methods that are 

easy to inspect over accuracy. 
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Take Home: Structured Data 

 
Structure in data,  

such as for sequences or graphs,  
make many tasks much more difficult 

e.g. counting support, distance, prediction. 
 

Lots of potential for new mining methods. 
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Structure in data,  

such as for sequences or graphs,  
make many tasks much more interesting 

e.g. counting support, distance, prediction. 
 

Lots of potential for new mining methods. 
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Take Home: Streams 

 
Many instances where you simply cannot 
store or process all the data all the time. 

 
Smart synopses give accurate results  

with probabilistic guarantees 
 

Lots of potential for new mining methods 
 
 X: 56 
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Take Home: Exploratory 

Exploratory data analysis 
wandering around your data, 
looking for interesting things, 
without being asked questions  
you cannot know the answer of. 

 
Questions like: 

What distribution should we assume? 
How many clusters/factors/patterns do you want? 

Please parameterize this Bayesian network? 
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Things to do 

Master thesis projects 
 in principle:  yes! 
 in practice:  depending background, motivation, interests,  

  and grades – plus, on whether I have time 
 interested? mail me 

 
 

Student Research Assistant positions 
 in principle: maybe… 
 in practice: depends on background, grades, and in 

  particular your motivation and interests 
 interested? mail me, include CV and grades 
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Teach us More! 
Well, ok… let me advertise 

 

Topics in Algorithmic Data Analysis 
together with Pauli Miettinen 

Advanced Lecture 
6 ECTS 

 
 

In addition, Hoang Vu Nguyen and me will  
likely teach a seminar next semester 

 
Options include: 

 

Causal Inference    (seminar+lectures) 
Information Theory and Data Mining (seminar+lectures) 
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Question  
  Time! 
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Conclusions 

 
This concludes 

the DM part of IRDM’15. 
I hope you enjoyed the ride so far. 

 
Happy Holidays! 
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Thank you! 
 

This concludes 
the DM part of IRDM’15. 

I hope you enjoyed the ride so far. 
 

Happy Holidays! 
 
 

 
X: 62 
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