
IRDM ‘15/16

Jilles Vreeken

Chapter 10:
Data Streams

15 Dec 2015

IRDM ‘15/16

IRDM Chapter 10, overview

 Stream Mining
1. Basic Ideas
2. Uniform Sampling
3. Membership Queries
4. Counting Distinct Items
5. Mining Frequent Items
6. Mining Frequent Itemsets

You’ll find this covered in
Aggarwal Ch. 12(.2)

X: 2

IRDM ‘15/16

Chapter 10:
Streams

Aggarwal Ch. 12

X: 3

IRDM ‘15/16

Motivation

In stream processing
 (all) data cannot be stored – we can only make one pass
 analysis needs to be online – no time to wait for an answer
 time per update is limited

Many normally trivial questions become very hard
 how much traffic from/to one IP adress?
 how many distinct flows?
 what are the heavy hitters?

X: 4

IRDM ‘15/16

Stream Mining

Abstraction
 a stream 𝒮 is a continuous sequence of items or elements

Notation
 stream 𝒮 = 𝑋1,𝑋2, …

 possibly infinite
 of 𝑛 observed elements, i.e. from 𝑋1 up till 𝑋𝑛
 of 𝑚 distinct elements

X: 5

…

IRDM ‘15/16

Stream Mining

Abstraction
 a stream 𝒮 is a continuous sequence of items or elements

Problems
 maintain a uniform sample

 how many distinct items do I have in my stream?
 (6)

 give all frequent items in the stream
 sup (⋅) or more:

X: 6

…

IRDM ‘15/16

Approximations

It won’t (always) be possible to give an exact answer
 therefore, approximations

Popular: 𝜖, 𝛿-approximations
 𝑃 𝑋 − 𝐸 𝑋 > 𝜖 ≤ 𝛿
 in 1 − 𝛿 of the cases we are at most 𝜖 off

We will see a few example stream mining algorithms
 uniform sampling
 number of distinct items
 frequent items and itemsets

X: 7

IRDM ‘15/16

Chapter 10.2:
Uniform Sampling

Aggarwal Ch. 12.2

X: 8

IRDM ‘15/16

Maintaining a uniform sample

Sampling
 stream 𝒮 = 𝑋1,𝑋2,𝑋3,𝑋4, …
 goal: at any time 𝑛, have a uniform sample of size 𝑘 from {𝑋1, …𝑋𝑛}

Why?

A uniform sample characterises the distribution well1

 flexible synopsis of a database
 speeds up processing of analytical queries and data mining tasks
 enhances query optimization
 …

1 if there is no concept drift
X: 9

IRDM ‘15/16

Reservoir Sampling

How can we get a uniform sample 𝑅
of 𝑘 elements over a stream 𝒮?
 that is, how do we make sure that after 𝑛 elements of 𝒮,

each of those have the same probability to be in 𝑅?

Reservoir Sampling, The Key Idea:
 initialise reservoir 𝑅 with first 𝑘 elements of 𝒮
 insert 𝑛th element into 𝑅 with probability 𝑘

𝑛

 if successful, remove one of the 𝑘 old points uniformly at random

Now, every element of 𝒮 has the probability 𝑘
𝑛
 to be in 𝑅 (!)

(Aggarwal Ch. 2.4.1)
X: 10

IRDM ‘15/16

Example: reservoir sampling
For example, for the following stream of data

we maintain the following reservoir of size 3

X: 11

.85
>

3
4

.31
< 3

5

.52
>

3
6

.13
<

3
7

.25
<

3
8

.17
<

3
9

.85
>

3
10

.33
>

3
11

.52
>

3
12

.33
>

3
13

.52
>

3
14

.13
<

3
15

IRDM ‘15/16

Min-Wise Algorithm

The min-wise algorithm is even simpler
 we maintain a sample 𝑅 of 𝑘 elements
 at every time point 𝑖 draw a random number in 0,1

and only keep the objects of the highest 𝑘 draws

For example, for 𝑘 = 4

 at any time, every point has the same chance to be in the top-𝑘

Concept is simpler than reservoir sampling, but (slightly) more costly

X: 12

.13 .25 .17 .85 .33 .52 .66 .91 .77 .98 .53 .31

IRDM ‘15/16

Concept Drift

The process generating a stream is seldom stationary
 when the distribution of the stream changes, we call this concept drift
 uniform sample may be stale

To have a relevant sample, we need a recency bias
 a bias function gives higher sample probabilities to recent elements
 most commonly, we use an exponential bias function

𝑓 𝑟,𝑛 = 𝑒−𝜆 𝑛−𝑟

X: 13

IRDM ‘15/16

Synopses for Massive-Domains

In certain settings, not just the number of data points
is a problem, but also the size of the domain

Storing even simple summary statistics, such as
 set membership determination,
 distinct element counts,
 (frequent) item counts,

become challenging w.r.t. space constraints.

For example, we often deal with pairs of identifiers
 e.g. such as from and to email or ip-addresses.
 for a 108 unique addresses, there are 1016 unique pairs (!)

X: 14

IRDM ‘15/16

Chapter 10.3:
Membership Queries

Aggarwal Ch. 12.2.2

X: 15

IRDM ‘15/16

Bloom filters
Given an element , has it ever occurred in the stream?
 no false negatives, probabilistic guarantee on false positives
 using only 𝑂 𝑘 space

A bloom filter is an array 𝐵 of 𝑘 bits,
together with 𝑤 indepdent hash functions,
each of which of type ℎ ∶ 𝑈 → {0,1,2, … , 𝑘 − 1}

 initialise 𝐵 to all 0’s
 item enters at time 𝑡

 for 𝑗 = 1 to 𝑤 do
 update ℎ𝑗 𝑡𝑡 element of 𝐵 to 1

 when membership of element is queried
 return 1 if all ℎ𝑗 𝑡𝑡 elements of 𝐵 are set to 1 for all 𝑗 = 1 to 𝑤

X: 16

IRDM ‘15/16

Example: Bloom filters
Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 3 hash functions
and the following stream of elements

ℎ1 = 2 ℎ2 = 3 ℎ3 = 5

X: 17

0 0 0 0 0 0 0 0

IRDM ‘15/16

Example: Bloom filters
Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 3 hash functions
and the following stream of elements

ℎ1 = 2 ℎ2 = 3 ℎ3 = 5

X: 18

0 0 1 1 0 1 0 0

IRDM ‘15/16

Example: Bloom filters
Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 3 hash functions
and the following stream of elements

ℎ1 = 3 ℎ2 = 4 ℎ3 = 2

X: 19

0 0 1 1 0 1 0 0

IRDM ‘15/16

Example: Bloom filters
Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 2 hash functions
and the following stream of elements

ℎ1 = 3 ℎ2 = 4 ℎ3 = 2

X: 20

0 0 1 1 1 1 0 0

IRDM ‘15/16

0 0 1 1 1 1 0 0

Example: Bloom filters
Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 3 hash functions
after the following stream of elements

Now, for membership query of element
ℎ1 = 0 ℎ2 = 7 ℎ3 = 2

All ℎ𝑗() in 𝐵 are 1, so answer is yes

X: 21

1 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1

IRDM ‘15/16

1 0 1 1 1 1 0 1

Suppose a bloom filter 𝐵
of 𝑘 = 8 bits and 3 hash functions
after the following stream of elements

While for membership query for element
ℎ1 = 3 ℎ2 = 6 ℎ3 = 0

Not all ℎ𝑗() in 𝐵 are 1, so answer is no

Example: Bloom filters

X: 22

1 0 1 1 1 1 0 1

IRDM ‘15/16

Bloom filters, analysis
An upper bound for the probability of giving a false positive answer is
related to number of bits 𝑘 of the filter and number 𝑤 of hash functions

𝑃 = 1 − 1 −
1
𝑘

𝑤𝑛 𝑤

For very few or many hash functions performance deteriorates.
Optimum is at 𝑤 = 𝑘 ⋅ ln (2)/𝑛. We can rewrite to

𝑃 = 2−𝑘⋅ln (2)/𝑛

For which 𝑘/𝑛 is most important. This means the length of the bloom
filter should be proportional to the number of distinct elements in 𝒮.

X: 23

IRDM ‘15/16

Chapter 10.3:
Counting Distinct Items

Aggarwal Ch. 12.2.2.2

X: 24

IRDM ‘15/16

The number of distinct items

How to estimate the number of distinct items 𝑚,
if there are too many of them to keep in memory?

Naive solution
 store all elements
 requires 𝑂(𝑚) space for 𝑚 distinct elements

Can we do better using approximations?
 what can we do with only 𝑂 log𝑛 space?

 𝑛 is an upper bound for 𝑚

X: 25

IRDM ‘15/16

The number of distinct items

How to estimate the number of distinct items 𝑚,
if there are too many of them to keep in memory?

Observation:
If ℎ(⋅) is a hash function: every 𝑋𝑖 → [0,1] (u.a.r if ℎ(⋅) does its job well)

then by maintaining min{ℎ 𝑋1 ,ℎ 𝑋2 , … ,ℎ 𝑋𝑛 }, we have
𝐸 min ℎ 𝑋1 ,ℎ 𝑋2 , … ,ℎ 𝑋𝑛 = 1/(1 + 𝑚)

In other words:
the minimal hash gives an estimate of the number of distinct items!

This is called the min-hash algorithm. To decrease its variance, we
average over (many) (independent) hash functions.

(Flajolet-Martin’85, Alon-Matias-Szegedy’96)
X: 26

IRDM ‘15/16

Example: min-hash
For example, for the following stream of data

we get the above stream of hash values

The minimum observed hash value, minℎ 𝑋𝑖 = ℎ = .13

by which we can estimate 𝑚: 1
1+𝑚

= 0.13, 𝑚 = 1
0.13

− 1

Averaging over independent trials makes the result more accurate

X: 27

.13 .25 .17 .85 .33 .52 .13 .25 .17 .85 .33 .52 .33 .52 .13

IRDM ‘15/16

Distinct elements – even less space

We can store 𝑚𝑖𝑛𝑚𝑚𝑚ℎ approximately
 store the minimal count of trailing zeroes

 needs only 𝑂(log log 𝑛) bits in worst case
 log log𝑛 is an upper bound on 𝑚

Algorithm DISTINCT
 initialisation

 𝑚𝑖𝑛𝑚 = 0
 hash function ℎ ∶ 𝑈 → [0,1]

 item enters at time 𝑡
 if ℎ < 1/2𝑚𝑖𝑛𝑚, then 𝑚𝑖𝑛𝑚 = 𝑧𝑒𝑟𝑧𝑒𝑚(ℎ)

 when the distinct element count is needed, return 2𝑚𝑖𝑛𝑚

 (Flajolet-Martin’85, Alon-Matias-Szegedy’96)
X: 28

𝑥 = 0.0000001100101

𝑧𝑒𝑟𝑧𝑒𝑚(𝑥)

IRDM ‘15/16

Chapter 10.4:
Mining Frequent Items

Aggarwal Ch. 12

X: 29

IRDM ‘15/16

Identifying frequent items

Counting every item is impossible
 e.g. all pairs of people that phone each other

Beforehand we do not know the frequent combinations

Example:

30 items: (8) (6) (5)
all others have support 3

For min-freq 𝜎 =20%, and need to be reported

(here 𝜎 is a minimal frequency threshold, as absolute support is useless in an infinite stream)
 X: 30

IRDM ‘15/16

Superset of the frequent items

We consider an algorithm that finds a superset of
the 𝜎-frequent items:

 initialisation: no item has a counter
 item enters at time 𝑡

 if has a counter, then 𝑐𝑧𝑐𝑛𝑡𝑒𝑟 + +
 else

 𝑐𝑧𝑐𝑛𝑡𝑒𝑟 = 1
 𝑚𝑡𝑚𝑟𝑡 = 𝑡

 for all other counters do
 if 𝑐𝑐𝑐𝑛𝑡𝑐𝑟

𝑡−𝑠𝑡𝑠𝑟𝑡 +1
< 𝜎 then

 delete 𝑐𝑧𝑐𝑛𝑡𝑒𝑟 , 𝑚𝑡𝑚𝑟𝑡

 when the frequent items are needed, return all items with a counter

(here 𝜎 is a minimal frequency threshold, as absolute support is useless in an infinite stream)

X: 31

IRDM ‘15/16

Example – frequent items in a stream

𝜎 = 20%

X: 32

1 1 (100%)
start # (freq)

IRDM ‘15/16

Example – frequent items in a stream

𝜎 = 20%

X: 33

1 1 (50%)
2 1 (100%)

(100%)
start # (freq)

IRDM ‘15/16

(100%)
(50%)

Example – frequent items in a stream

𝜎 = 20%

X: 34

start # (freq)
1 1 (20%)
2 1 (25%)
3 2 (66%)
4 1 (50%)

IRDM ‘15/16

(17%)

Example – frequent items in a stream

𝜎 = 20%

X: 35

start # (freq)
1 1 (17%)
2 1 (20%)
3 2 (50%)
4 1 (33%)
6 1 (100%)

(20%)
(25%)
(66%)
(50%)

IRDM ‘15/16

Example – frequent items in a stream

𝜎 = 20%

X: 36

start # (freq)
2 2 (25%)
3 2 (29%)
6 1 (25%)
8 2 (100%)

IRDM ‘15/16

Example – frequent items in a stream

𝜎 = 20%

X: 37

start # (freq)
16 3 (20%)
17 4 (29%)
27 1 (25%)
8 6 (26%)
19 3 (25%)

Truly frequent

False positives

IRDM ‘15/16

If is not recorded, is not frequent in the stream

Imagine marking when was recorded:
 if occurs, recording starts
 only stopped if becomes infrequent since start of recording

Whole stream can be partitioned into parts in which is
not frequent → is not frequent in the whole stream

Algorithm is called lossy counting

Why does it work

(Manku & Motwani, 2002)
X: 38

infrequent infrequent

no no
recorded recorded

IRDM ‘15/16

Space requirements

What is the space complexity of lossy counting?
 it reports a superset of all frequent items, how large can it be?

Let 𝑛 be the length of the stream,
𝜎 the minimal frequency threshold, and 𝑘 = 1/𝜎

When is item in the summary?
 if it appears once among the last 𝑘 items
 if it appears twice among the last 2𝑘items
 … if it appears 𝑥 times among the last 𝑥𝑘 items
 … if it appears 𝜎𝑛 times among last 𝑛 items

X: 39

IRDM ‘15/16

Space requirements (2)

Divide stream in blocks of size 𝑘 = 1/𝜎

Constellation with maximum number of candidates:

X: 40

𝑘/4 different
each appears

4 times

𝑘/3 different;
each appears

3 times

𝑘/2 different;
each appears

2 times

𝑘 different
each appears

1 time

𝑘 candidates;
each requires
4 occurrences

𝑘 candidates;
each requires
3 occurrences

𝑘 candidates;
each requires
2 occurrences

𝑘 candidates;
each requires
1 occurrence

IRDM ‘15/16

Space requirement (3)

Hence, the total space requirement is

�
𝑘
𝑖

𝑛/𝑘

𝑖=1

 ≈ 𝑘 log
𝑛
𝑘

Recall that 𝑘 = 1/𝜎
 so, the worst case space requirement is 1

𝜎
log(𝑛𝜎)

X: 41

IRDM ‘15/16

Guarantees?

Suppose we want to know the frequency up to a factor 𝜖
 same algorithm, yet use 𝜖 as minimal frequency threshold
 report all items with count ≥ 𝜎 − 𝜖 𝑛

Guaranteed: true frequency in the interval
𝑐𝑧𝑐𝑛𝑡
𝑛

,
𝑐𝑧𝑐𝑛𝑡
𝑛

+ 𝜖

X: 42

no no
recorded recorded recorded

Fewer than 𝜖𝑛 occurrences of

IRDM ‘15/16

Summarising Lossy Counting

Worst case space consumption
 only 1/𝜖 log(𝑛𝜖)

Comes with guarantees
 with 100% certainty, the relative error for all 𝜎-frequent itemsets is 𝜖

Performs very well in practice
 and, can be optimised further

 e.g. only check if item is frequent every 1
𝜖
 steps

X: 43

IRDM ‘15/16

Chapter 10.4:
Mining Frequent Itemsets

Aggarwal Ch. 12.3

X: 44

IRDM ‘15/16

What about frequent itemsets?

Mining frequent items is nice, but what about patterns?
 that is, what if we want to discover more than just frequent elements?

Solution 1: Sampling
 use reservoir sampling to maintain a reservoir of transactions
 mine frequent patterns on the sample whenever needed
 can deal with concept drift

Solution 2: Lossy Counting
 mine frequent patterns on as many segments as memory permits
 consider these patterns as elements, lossy-count their frequency
 without tricks will result in many false positives
 cannot deal with concept drift

X: 45

IRDM ‘15/16

Stream of Conclusions

Stream mining is exciting
 computing even trivial things becomes challenging

Surprisingly many things can be done
 especially by smart sampling and hashing

Relatively under-used in data mining
 tricky to get meaningful, sufficiently tight guarantees

Lots of potential if you get it right

X: 46

IRDM ‘15/16

Jilles Vreeken

Wrapping It Up

15 Dec 2015

IRDM ‘15/16

What did we do?

X: 48

 Data Preprocessing

Association Patterns

Clustering

Sequences

Graphs

Classification

IRDM ‘15/16

Take Home: overall

Overview of the core topics in data mining

somewhat biased sample – by interest and available time

I wanted to give a general picture of
what data mining is, what makes it special,

and why it’s so important to know

X: 49

IRDM ‘15/16

Key Take-Home Message

Data mining is descriptive not predictive

the goal is to give you insight into your data,
to offer (parts of) candidate hypotheses,

what you do with those is up to you.

X: 50

IRDM ‘15/16

Take Home: Pre-processing

It’s a dirty job,

and you have to do it,
and do it well, or else no

meaningful results can be discovered.

X: 51

IRDM ‘15/16

Take Home: Patterns

Pattern mining aims

to provide a simple descriptions
of the structures that your data

exhibits locally.

X: 52

IRDM ‘15/16

Take Home: Clusters

Clustering aims to group

similar data points together;
infinitely many ways to define similar,

 you have to choose carefully
for your domain.

X: 53

IRDM ‘15/16

Take Home: Classification

Classification aims to predict

the label of a data point.

As insight is our first class citizen,
we prefer methods that are

easy to inspect over accuracy.

X: 54

IRDM ‘15/16

Take Home: Structured Data

Structure in data,

such as for sequences or graphs,
make many tasks much more difficult

e.g. counting support, distance, prediction.

Lots of potential for new mining methods.

X: 55

Structure in data,

such as for sequences or graphs,
make many tasks much more interesting

e.g. counting support, distance, prediction.

Lots of potential for new mining methods.

IRDM ‘15/16

Take Home: Streams

Many instances where you simply cannot
store or process all the data all the time.

Smart synopses give accurate results

with probabilistic guarantees

Lots of potential for new mining methods

 X: 56

IRDM ‘15/16

Take Home: Exploratory

Exploratory data analysis
wandering around your data,
looking for interesting things,
without being asked questions
you cannot know the answer of.

Questions like:

What distribution should we assume?
How many clusters/factors/patterns do you want?

Please parameterize this Bayesian network?

X: 57

IRDM ‘15/16

Things to do

Master thesis projects
 in principle: yes!
 in practice: depending background, motivation, interests,

 and grades – plus, on whether I have time
 interested? mail me

Student Research Assistant positions
 in principle: maybe…
 in practice: depends on background, grades, and in

 particular your motivation and interests
 interested? mail me, include CV and grades

X: 58

IRDM ‘15/16

Teach us More!
Well, ok… let me advertise

Topics in Algorithmic Data Analysis
together with Pauli Miettinen

Advanced Lecture
6 ECTS

In addition, Hoang Vu Nguyen and me will
likely teach a seminar next semester

Options include:

Causal Inference (seminar+lectures)
Information Theory and Data Mining (seminar+lectures)

 X: 59

IRDM ‘15/16

Question
 Time!

X: 60

IRDM ‘15/16

Conclusions

This concludes

the DM part of IRDM’15.
I hope you enjoyed the ride so far.

Happy Holidays!

X: 61

IRDM ‘15/16

Thank you!

This concludes
the DM part of IRDM’15.

I hope you enjoyed the ride so far.

Happy Holidays!

X: 62

	Slide Number 1
	IRDM Chapter 10, overview
	Slide Number 3
	Motivation
	Stream Mining
	Stream Mining
	Approximations
	Slide Number 8
	Maintaining a uniform sample
	Reservoir Sampling
	Example: reservoir sampling
	Min-Wise Algorithm
	Concept Drift
	Synopses for Massive-Domains
	Slide Number 15
	Bloom filters
	Example: Bloom filters
	Example: Bloom filters
	Example: Bloom filters
	Example: Bloom filters
	Example: Bloom filters
	Example: Bloom filters
	Bloom filters, analysis
	Slide Number 24
	The number of distinct items
	The number of distinct items
	Example: min-hash
	Distinct elements – even less space
	Slide Number 29
	Identifying frequent items
	Superset of the frequent items
	Example – frequent items in a stream
	Example – frequent items in a stream
	Example – frequent items in a stream
	Example – frequent items in a stream
	Example – frequent items in a stream
	Example – frequent items in a stream
	Why does it work
	Space requirements
	Space requirements (2)
	Space requirement (3)
	Guarantees?
	Summarising Lossy Counting
	Slide Number 44
	What about frequent itemsets?
	Stream of Conclusions
	Slide Number 47
	What did we do?
	Take Home: overall
	Key Take-Home Message
	Take Home: Pre-processing
	Take Home: Patterns
	Take Home: Clusters
	Take Home: Classification
	Take Home: Structured Data
	Take Home: Streams
	Take Home: Exploratory
	Things to do
	Teach us More!
	Question � Time!
	Conclusions
	Thank you!

