Chapter 3: Basics from Probability Theory and Statistics

3.1 Probability Theory

Events, Probabilities, Bayes' Theorem,

Random Variables, Distributions, Moments, Tail Bounds,

Central Limit Theorem, Entropy Measures

3.2 Statistical Inference

Sampling, Parameter Estimation, Maximum Likelihood, Confidence Intervals, Hypothesis Testing, p-Values,

Chi-Square Test, Linear and Logistic Regression

mostly following L. Wasserman Chapters 6, 9, 10, 13

3.2 Statistical Inference

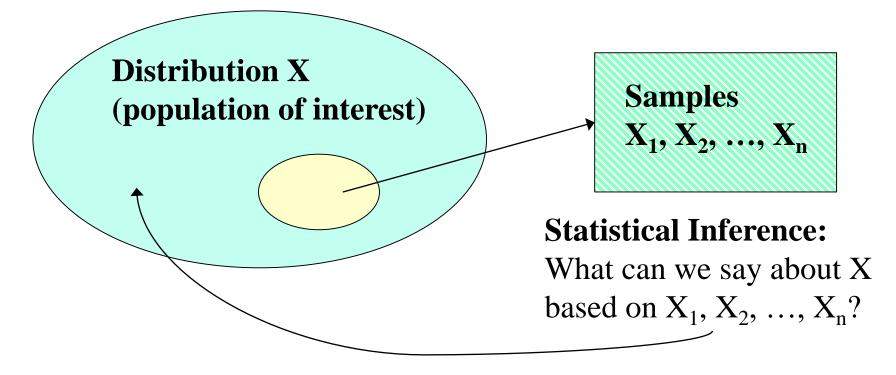
A *statistical model* is a set of distributions (or regression functions), e.g., all unimodal, smooth distributions. A *parametric model* is a set that is completely described by a finite number of parameters, (e.g., the family of Normal distributions).

Statistical inference: given a sample $X_1, ..., X_n$ how do we infer the distribution or its parameters within a given model.

For multivariate models with one specific *"outcome (response)" variable Y*, this is called *prediction* or *regression,* for discrete outcome variable also *classification*. r(x) = E[Y | X=x] is called the *regression function*.

Example for classification: biomedical markers \rightarrow cancer or not Example for regression: business indicators \rightarrow stock price

Sampling Illustrated



Example: estimate the average salary in Germany?

Approach 1: ask your 10 neighbors Approach 2: ask 100 random people you spot on the Internet Approach 2: ask all 1000 living Germans in Wikipedia Approach 4: ask 1000 random people from all age groups, jobs, ...

Basic Types of Statistical Inference

Given: independent and identically distributed (iid) samples $X_1, X_2, ..., X_n$ from (unknown) distribution X

• Parameter estimation:

What is the parameter p of a Bernoulli coin? What are the values of μ and σ of a Normal distribution? What are α_1 , α_2 , λ_1 , λ_2 of a Poisson mixture?

Confidence intervals:

What is the interval [mean \pm tolerance] s.t. the expectation of my observations or measurements falls into the interval with high confidence?

• Hypothesis testing:

 H_0 : p=1/2 (fair coin) vs. H_1 : p ≠1/2 H0: p1 = p2 (methods have same precision) vs. H1: p1 ≠ p2

• Regression (for parameter fitting)

IRDM WS 2015

3.2.1 Statistical Parameter Estimation

A *point* estimator for a parameter θ of a prob. distribution is a random variable X derived from a random sample $X_1, ..., X_n$. <u>Examples:</u> 1 *n*

Sample mean:

$$\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample variance:

$$S^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

An estimator T for parameter θ is *unbiased* if $E[T] = \theta$;

otherwise the estimator has *bias* $E[T] - \theta$.

An estimator on a sample of size n is *consistent*

if
$$\lim_{n \to \infty} P[|T - \theta| < \varepsilon] = 1$$
 for each $\varepsilon > 0$

Sample mean and sample variance are unbiased, consistent estimators with minimal variance.

IRDM WS 2015

Estimation Error

Let $\hat{\theta}_n = T(\theta)$ be an estimator for parameter θ over sample $X_1, ..., X_n$. The distribution of $\hat{\theta}_n$ is called the sampling distribution. The *standard error* for $\hat{\theta}_n$ is: $se(\hat{\theta}) = \sqrt{Var(\hat{\theta}_n)}$

The *mean squared error* (*MSE*) for $\hat{\theta}_n$ is:

$$MSE(\hat{\theta}) = E[(\hat{\theta}_n - \theta)^2]$$
$$= bias^2(\hat{\theta}_n) + Var[\hat{\theta}_n]$$

If bias $\rightarrow 0$ and se $\rightarrow 0$ then the estimator is consistent.

The estimator $\hat{\theta}_n$ is *asymptotically Normal* if $(\hat{\theta}_n - \theta) / se$ converges in distribution to standard Normal N(0,1)

Nonparametric Estimation

The *empirical distribution function* \hat{F}_n is the cdf that puts prob. mass 1/n at each data point X_i : $\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$ where indicator function $I(X_i \le x)$ is 1 if $X_i \le x$ and 0 otherwise

A *statistical functional* T(F) is any function of F, e.g., mean, variance, skewness, median, quantiles, correlation The *plug-in estimator* of $\theta = T(F)$ is: $\hat{\theta}_n = T(\hat{F}_n)$

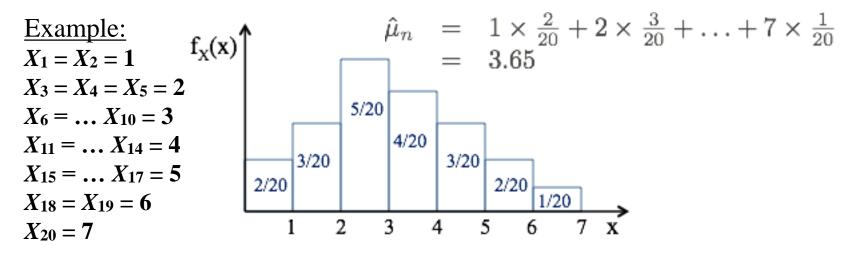
Nonparametric Estimation: Histograms

Instead of the full empirical distribution, often compact data synopses may be used, such as *histograms* where $X_1, ..., X_n$ are grouped into m cells (buckets or bins) $c_1, ..., c_m$ with

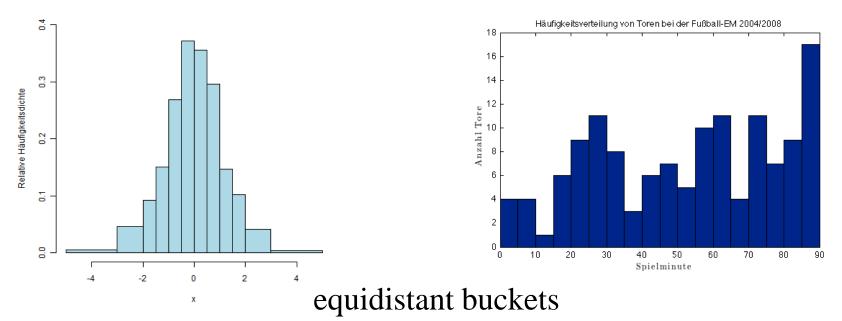
bucket boundaries $lb(c_i)$ and $ub(c_i)$ s.t.

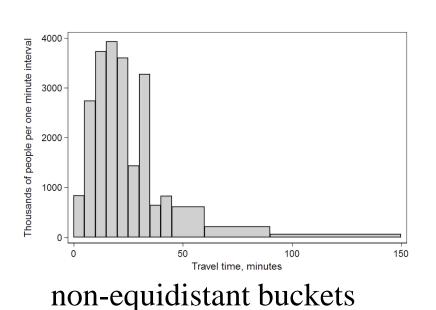
$$lb(c_{1}) = -\infty, ub(c_{m}) = \infty, ub(c_{i}) = lb(c_{i+1}) \text{ for } 1 \le i < m, \text{ and} \\ freq(c_{i}) = \hat{F}_{n}(x) = \frac{1}{n} \sum_{\nu=1}^{n} I(lb(c_{i}) \le X_{\nu} < ub(c_{i}))$$

Histograms provide a (discontinuous) *density estimator*.



Different Kinds of Histograms





Sources: en.wikipedia.org de.wikipedia.org

Method of Moments

- Suppose parameter $\theta = (\theta_1, ..., \theta_k)$ has *k* components
- Compute *j*-th moment for $1 \le j \le k$:

$$\alpha_j = \alpha_j(\theta) = E_{\theta}[X^j] = \int_{-\infty}^{+\infty} x^j f_X(x) \, dx$$

• Compute *j*-th sample moment for $1 \le j \le k$: $\hat{\alpha}_j = \frac{1}{n} \sum_{i=1} X_i^j$

• Method-of-moments estimate of θ is obtained by solving a system of k equations in k unknowns: $\alpha_1(\hat{\theta}_n) = \hat{\alpha}_1$

:
$$\alpha_k(\hat{\theta}_n) = \hat{\alpha}_k$$

Method-of-moments estimators are usually consistent and asympotically Normal, but may be biased

IRDM WS 2015

Example: Method of Moments

Let
$$X_1, \dots, X_n \sim \text{Normal}(\mu, \sigma^2)$$

 $\alpha_1 = E_{\theta}[X] = \mu$
 $\alpha_2 = E_{\theta}[X^2] = Var[X] + E[X]^2 = \sigma^2 + \mu^2$

Solve the equation system:

$$\mu = \alpha_1 = \widehat{\alpha_1} = \frac{1}{n} \sum_{i=1}^n X_i \qquad \sigma^2 + \mu^2 = \alpha_2 = \widehat{\alpha_2} = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Solution: $\widehat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} \qquad \widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

Parametric Inference: Maximum Likelihood Estimators (MLE)

Estimate parameter θ of a postulated distribution $f(\theta,x)$ such that the probability that the data of the sample are generated by this distribution is maximized.

→ Maximum likelihood estimation:

Maximize $L(x_1,...,x_n, \theta) = P[x_1, ..., x_n \text{ originate from } f(\theta,x)]$ often written as $\widehat{\theta}_{MLE} = argmax_{\theta} \ L(\theta, x_1,...,x_n)$ $= argmax_{\theta} \ \prod_{i=1}^n f(x_i,,\theta)$ or maximize log L

if analytically untractable \rightarrow use numerical iteration methods

MLE Properties

Maximum Likelihood Estimators are consistent, asymptotically Normal, and asymptotically optimal in the following sense:

Consider two estimators U and T which are asymptotically Normal. Let u^2 and t^2 denote the variances of the two Normal distributions to which U and T converge in probability. The asymptotic relative efficiency of U to T is ARE(U,T) = t^2/u^2 .

<u>Theorem</u>: For an MLE $\hat{\theta}_n$ and any other estimator $\tilde{\theta}_n$ the following inequality holds: $ARE(\tilde{\theta}_n, \hat{\theta}_n) \le 1$

Simple Example for Maximum Likelihood Estimator

given:

- coin with Bernoulli distribution with unknown parameter p für head, 1-p for tail
- sample (data): k times head with n coin tosses needed: maximum likelihood estimation of p

Let L(k, n, p) = P[sample is generated from distr. with param. p] = $\binom{n}{k} p^k (1-p)^{n-k}$

Maximize log-likelihood function log L (k, n, p): log L = log $\binom{n}{k}$ + k log p + (n-k) log (1-p) $\frac{\partial \log L}{\partial p} = \frac{k}{p} - \frac{n-k}{1-p} = 0 \qquad \Rightarrow p = \frac{k}{n}$

Advanced Example for Maximum Likelihood Estimator

given:

- Poisson distribution with parameter λ (expectation)
- sample (data): numbers $x_1, ..., x_n \in N_0$ needed: maximum likelihood estimation of λ

Let r be the largest among these numbers, and let f_0 , ..., f_r be the absolute frequencies of numbers 0, ..., r.

$$L(x_1, \dots, x_n, \lambda) = \prod_{i=0}^r \left(e^{-\lambda} \frac{\lambda^i}{i!} \right)^{f_i}$$

$$\Rightarrow \frac{\partial \ln L}{\partial \lambda} = \sum_{i=0}^{r} f_i \left(\frac{i}{\lambda} - 1\right) = 0 \qquad \Rightarrow \hat{\lambda} = \frac{\sum_{i=0}^{r} i f_i}{\sum_{i=0}^{r} f_i} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

Sophisticated Example for Maximum Likelihood Estimator

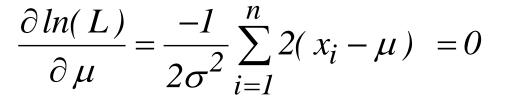
given:

- discrete uniform distribution over $[1,\theta] \subseteq N_0$ and density $f(x) = 1/\theta$
- sample (data): numbers $x_1, ..., x_n \in N_0$

MLE for θ is max{x₁, ..., x_n} (see Wasserman p. 124)

MLE for Parameters of Normal Distributions

$$L(x_1, \dots, x_n, \mu, \sigma^2) = \left(\frac{1}{\sqrt{2\pi\sigma}}\right)^n \prod_{i=1}^n e^{-\frac{(x_i - \mu)^2}{2\sigma^2}}$$



$$\frac{\partial \ln(L)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Rightarrow \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

Analytically Non-tractable MLE for parameters of Multivariate Normal Mixture

consider samples from a mixture of multivariate Normal distributions with the density (e.g. height and weight of males and females):

$$f(\vec{x}, \pi_{1}, ..., \pi_{k}, \vec{\mu}_{1}, ..., \vec{\mu}_{k}, \Sigma_{1}, ..., \Sigma_{k})$$

$$= \sum_{j=1}^{k} \pi_{j} n(\vec{x}, \vec{\mu}_{j}, \Sigma_{j}) = \sum_{j=1}^{k} \pi_{j} \frac{1}{\sqrt{(2\pi)^{m} |\Sigma_{j}|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{j})^{T} \sum_{j=1}^{-1} (\vec{x} - \vec{\mu}_{j})}$$
with expectation values $\vec{\mu}_{i}$

with expectation values μ_j and invertible, positive definite, symmetric m×m covariance matrices Σ_j

 \rightarrow maximize log-likelihood function:

$$\log L(\vec{x}_{1},...,\vec{x}_{n},\theta) \coloneqq \log \prod_{i=1}^{n} P[\vec{x}_{i} \mid \theta] = \sum_{i=1}^{n} \left(\log \sum_{j=1}^{k} \pi_{j} n(\vec{x}_{i},\vec{\mu}_{j},\Sigma_{j})\right)^{3.56}$$

0.2

0.1

-2

-3 -3

Expectation-Maximization Method (EM)

- When $L(\theta, X_1, ..., X_n)$ is analytically intractable then
- introduce *latent (non-observable) random variable(s)* Z such that: *joint distribution J(X₁, ..., X_n, Z, θ) of "complete" data* is tractable
- iteratively compute:
 - Expectation (E Step):

compute expected complete data likelihood $E_{Z}[\log J(X_{1}, ..., X_{n}, Z | \theta^{(t)})]$ given a previous estimate of θ

• Maximization (M Step):

estimate $\theta^{(t+1)}$ that maximizes $E_Z[\log J(X_1, ..., X_n, Z \mid \theta^{(t)})]$

details depend on distribution at hand (often mixture models) convergence guaranteed, but problem is non-convex \rightarrow numerical methods

Bayesian Viewpoint of Parameter Estimation

- assume prior distribution $g(\theta)$ of parameter θ
- choose statistical model (generative model) $f(x | \theta)$ that reflects our beliefs about RV X
- given RVs X_1 , ..., X_n for observed data, the posterior distribution is $h(\theta | x_1, ..., x_n)$

for $X_1 = x_1, ..., X_n = x_n$ the likelihood is $L(x_1...x_n, \theta) = \prod_{i=1}^n f(x_i/\theta) = \prod_{i=1}^n \frac{h(\theta/x_i) \cdot \sum_{\theta'} f(x_i/\theta')g(\theta')}{g(\theta)}$ which implies $h(\theta/x_1...x_n) \sim L(x_1...x_n, \theta) \cdot g(\theta)$ (posterior is proportional to likelihood times prior)

MAP estimator (maximum a posteriori):

compute θ that maximizes $h(\theta | x_1, ..., x_n)$ given a prior for θ

3.2.2 Confidence Intervals

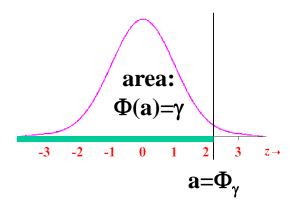
3-59

Estimator T for an interval for parameter θ such that

 $P[T-a \le \theta \le T+a] = 1-\alpha$

[T-a, T+a] is the **confidence interval** and 1- α is the **confidence level.**

For the distribution of random variable X a value $x_{\gamma} (0 < \gamma < 1)$ with $P[X \le x_{\gamma}] \ge \gamma \land P[X \ge x_{\gamma}] \ge 1 - \gamma$ is called a γ quantile; the 0.5 quantile is called the median. For the normal distribution N(0,1) the γ quantile is denoted Φ_{γ} .



Confidence Intervals for Expectations (1)

Let $x_1, ..., x_n$ be a sample from a distribution with unknown expectation μ and known variance σ^2 .

For sufficiently large n the sample mean \overline{X} is N(μ , σ^2/n) distributed and $(\overline{X} - \mu)\sqrt{n}$ is N(0,1) distributed:

$$P[-z \leq \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \leq z] = \Phi(z) - \Phi(-z) = \Phi(z) - (1 - \Phi(z)) = 2\Phi(z) - 1$$
$$= P[\overline{X} - \frac{z\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{z\sigma}{\sqrt{n}}]$$
$$\Rightarrow P[\overline{X} - \frac{\Phi_{1-\alpha/2}\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{\Phi_{1-\alpha/2}\sigma}{\sqrt{n}}] = 1 - \alpha$$

For required confidence interval [$\overline{X} - a, \overline{X} + a$] or confidence level 1- α set

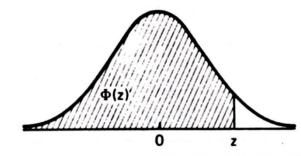
$$z := \frac{a\sqrt{n}}{\sigma}$$
 or
$$z := (1 - \frac{\alpha}{2}) \text{ quantile of } N(0,1)$$

then look up $\Phi(z)$ then set $a := \frac{z\sigma}{\sqrt{n}}$ to determine $1 - \alpha/2$ to determine interval

IRDM WS 2015

Normal Distribution Table

The Normal Distribution Functions $\Phi(z) = \int_{-\infty}^{z} \frac{e^{-t^{2}/2}}{\sqrt{2\pi}} dt$



Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926		.58706			.59871				.61409
0.3	.61791	.62172		.62930		. \$3683		.64431		.65173
0.4	.65542	.65910		.66640		.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	. 69847	.70194		.70884	.71226			.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730					.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234		.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381		.82894				.83891
1.0	.84134	.84375	.84614			.85314		.85769		.86214
1.1	.86433	.86650	.86864			.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.98877		.89251	.89435	.89617	.89796		.90147
1.3	.90320		.90658	.90824	.90988	.91149	.91308	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364		.92647	.92785	.92922		
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179		.94408
1.6	.94520	.94630	.94738	.94845	the second second	.95053	.95154		.95352	-
1.7	.95543	.95637	.95728	.95818	.95907		.96080	.96164		.96327
1.8	.96407	,96485	.96562			.96784			.96995	.97062
1.9	.97128	.97193	.97257		.97381	.97441		.97558		
	.97725		.97831	.97882	.97932	.97982		.98077	.98124	.98169
2.1	.98214	.98257	.98300	.99341	.98382	,98422		.98500	. 28537	.98574
2.2	.98610	.98645	.98679		.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	,98956	,98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158

I

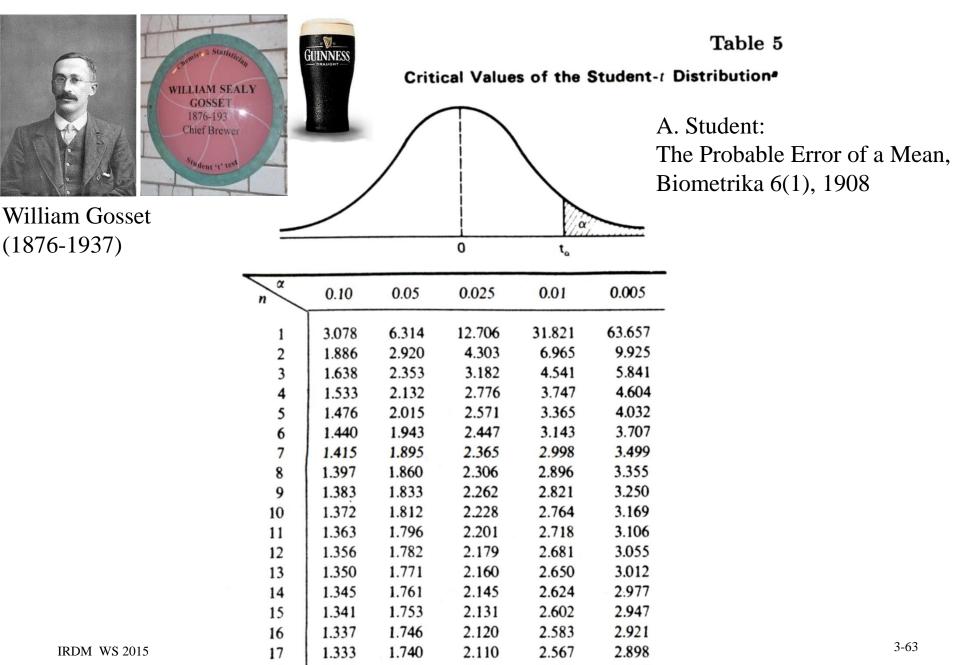
3-61

Confidence Intervals for Expectations (2)

Let $x_1, ..., x_n$ be a sample from a distribution with unknown expectation μ and *unknown variance* σ^2 and sample variance S^2 . For sufficiently large n the random variable

 $T := \frac{(\overline{X} - \mu)\sqrt{n}}{S}$ has a t distribution (Student distribution) with n-1 degrees of freedom: $f_{T,n}(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n\pi}\left(1 + \frac{t^2}{n}\right)^{\frac{n+1}{2}}}$ with the Gamma function: $\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt$ für x > 0(with the properties $\Gamma(1)=1$ and $\Gamma(x+1)=x\Gamma(x)$) $\Rightarrow P[\overline{X} - \frac{t_{n-1,1-\alpha/2}}{\sqrt{n}} \le \mu \le \overline{X} + \frac{t_{n-1,1-\alpha/2}}{\sqrt{n}}] = 1 - \alpha$

Student's t Distribution Table



Example: Confidence Interval for Expectation

X: time for student to solve exercise n=16 samples, $\overline{X} = 2.5$, $S^2 = 0.25$

$$\begin{split} P[-z \leq \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \leq z] &= \Phi(z) - \Phi(-z) = \Phi(z) - (1 - \Phi(z)) = 2\Phi(z) - 1\\ &= P[\overline{X} - \frac{z\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{z\sigma}{\sqrt{n}}]\\ \Rightarrow P[\overline{X} - \frac{\Phi_{1 - \alpha/2}\sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{\Phi_{1 - \alpha/2}\sigma}{\sqrt{n}}] = 1 - \alpha \end{split}$$

A) Assume σ^2 is known: $\sigma^2=0.25$ A1) Estimate $\mu\pm0.2$ A2) Estimate μ with 1- $\alpha=0.9$ confidence

B) Assume σ^2 is unknown B1) Estimate $\mu \pm 0.2$ B2) Estimate μ with 1- α =0.9 confidence for interval $[\overline{X} - a, \overline{X} + a]$: $z := \frac{a\sqrt{n}}{\sigma}$ then look up $\Phi(z)$ to determine $1-\alpha/2$

for confidence $1-\alpha$: $z := (1-\frac{\alpha}{2})$ quantile of N(0,1)then set $a := \frac{z\sigma}{\sqrt{n}}$ to determine interval $_{3-64}$

3.2.3 Hypothesis Testing

Hypothesis testing:

- aims to falsify some hypothesis by lack of statistical evidence
- design of test RV (test statistic) and its (approx. / limit) distribution

Example:

- Toss a coin n times and judge if the coin is fair $X_1, ..., X_n \sim \text{Bernoulli}(p)$, coin is fair if p = 0.5
- Let the **null hypothesis** H₀ be "the coin is fair"
- The alternative hypothesis H₁ is then "the coin is not fair"
- Intuitively, if $|\bar{X} 0.5|$ is large, we should reject H₀

 H_0 is default, interest is in H_1 : aim to reject H_0 (e.g. suspecting that the coin is unfair)

IRDM WS 2015

Hypothesis Testing Terminology (1)

A hypothesis test determines a probability $1-\alpha$

(*test level* α , *significance level*) that a sample X₁, ..., X_n

from some unknown probability distribution has a certain property. Examples:

- 1) The sample originates from a normal distribution.
- 2) Under the assumption of a normal distribution the sample originates from a N(μ , σ^2) distribution.
- 3) Two random variables are independent.
- 4) Two random variables are identically distributed.
- 5) Parameter λ of a Poisson distribution from which the sample stems has value 5.

General form:

null hypothesis H_0 vs. alternative hypothesis H_1

H₀ is default, interest is in H₁

needs *test variable (test statistic)* X (derived from $X_1, ..., X_n, H_0, H_1$) and *test region* R with $X \in R$ for rejecting H_0 and $X \notin R$ for retaining H_0 H_0 true \checkmark type I error H_1 true type II error \checkmark

Hypothesis Testing Terminology (2)

- $\theta = \theta_0$ is called a **simple hypothesis**
- $\theta > \theta_0$ or $\theta < \theta_0$ is called a **composite hypothesis**
- $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ is called a **two-sided test**
- $H_0: \theta \le \theta_0$ vs. $H_1: \theta > \theta_0$ and $H_0: \theta \ge \theta_0$ vs. $H_1: \theta < \theta_0$ are called a **one-sided test**
- **Rejection region** R : if $X \in R$, reject H₀ otherwise retain H₀
- The rejection region is typically defined using a test statistic *T* and a critical value *c*: $R = \{X : T(X) > c\}$

p-Value

Suppose that for every level $\alpha \in (0,1)$ there is a test with rejection region R_{α} . Then the *p-value* is the smallest level at which we can reject H_0 : *p-value* = *inf*{ $\alpha/T(X_1,...,X_n) \in R_{\alpha}$ }

small p-value means strong evidence against H_0

typical interpretation of p-values:

• < 0.01 very stro	ng evidence against H ₀
• $0.01 - 0.05$: strong ev	vidence against H ₀
• 0.05 – 0.10: weak evid	dence against H ₀
• > 0.1: little or n	o evidence against H_0

p-value: prob. of test statistic (sample) as extreme as the observed data under H_0 Caution: *p*-value $\neq P[H_0/data]$

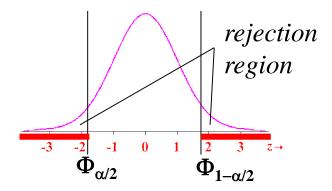
Hypothesis Testing Example

Null hypothesis for n coin tosses: coin is fair or has head probability $p = p_0$; *alternative hypothesis*: $p \neq p_0$ *Test variable*: X, the #heads, is

> N(pn, p(1-p)n) distributed (by the Central Limit Theorem), thus $Z := \frac{(X/n-p)\sqrt{n}}{\sqrt{p(1-p)}}$ is N(0, 1) distributed

Rejection of null hypothesis at test level α (e.g. 0.05) if

$$Z > \Phi_{1-\alpha/2} \lor Z < \Phi_{\alpha/2}$$



Wald Test

for testing H₀: $\theta = \theta_0$ vs. H₁: $\theta \neq \theta_0$ use the test variable $W = \frac{\hat{\theta} - \theta_0}{se(\hat{\theta})}$ with sample estimate $\hat{\theta}$ and standard error $se(\hat{\theta}) = \sqrt{Var[\hat{\theta}]}$

W converges in probability to N(0,1)

 \rightarrow reject H₀ at level α when W > $\Phi_{1-\alpha/2}$ or W < $\Phi_{\alpha/2}$

the p-value for the Wald test is $2\Phi(-|w|)$ where w is the value of the test variable W

generalization (for unknown variance):
t-test (based on Student's t distribution)

Example: Wald Test

n=20 coin tosses $X_1, ..., X_n$ with 15 times heads not variance, but H_0 : p=0.5 (coin is fair) vs. _{H1}: p≠0.5 sample variance sample mean: $\hat{p} = 0.75$, variance Var $[\hat{p}] = n \hat{p} (1 - \hat{p}) / n^2 = \frac{3}{320}$ The Normal Distribution Functions $\Phi(z) = \int_{-\infty}^{z} \frac{e^{-t^{2}/2}}{\sqrt{2\pi}} dt$ Test statistic W = $\frac{\hat{p} - p}{se(p)} \approx \frac{0.25}{\sqrt{1/100}} \approx 2.5$ (z) 0.03 0.04 0.05 0.06 0.07 0.09 0.00 0.01 0.0 .50399 .54380 .57142 Test level $\alpha = 0.1$: .59095 .60257 \$3683 . 67724 .65910 .70194 $W > \Phi_{1-\alpha/2} = \Phi_{0.95}$ or $W < \Phi_{\alpha/2} = \Phi_{0.05}$.77935 .79103 .81859 .85314 .87900 .89796 Test: $2.5 > 1.65 \rightarrow$ reject H0 .96164 Test level $\alpha = 0.01$: .97441 9788: 9908/ $W > \Phi_{1-\alpha/2} = \Phi_{0.995}$ or $W < \Phi_{\alpha/2} = \Phi_{0.005}$.99702 .99721 Test: $2.5 < 2.58 \rightarrow$ retain H0 9994/ p-value in between 9979:

t-Test

Given: n samples for θ with sample mean $\hat{\theta}$ and *sample standard deviation S*($\hat{\theta}$)

for testing H₀: $\theta = \theta_0$ vs. H₁: $\theta \neq \theta_0$ use the test variable $T = \frac{\hat{\theta} - \theta_0}{se(\hat{\theta})}$ with sample estimate $\hat{\theta}$ and standard error $se(\hat{\theta}) = \sqrt{S^2(\hat{\theta})}$

T converges in probability to a *t*-distribution with *n*-1 degrees \rightarrow reject H₀ at level α when T > $t_{n-1,1-\alpha/2}$ or T < $t_{n-1,\alpha/2}$

Extensions for

- two-sample tests comparing two independent samples
- paired two-sample tests for testing differences (ordering) of RVs

t-test is most widely used test for statistical significance of experimental data

IRDM WS 2015

Paired t-Test Tools

https://www.usablestats.com/calcs/2samplet

because statistics shouldn't be greek

Usable∑ Stats

Data

Home Products Tutorials Calculators

2 Sample t-test Calculator View all Calculators

Test the mean difference between two samples of continuous data using the 2-sample t-test. The calculator uses the probabilities from the student t distribution. For all t-tests see the <u>easyT Excel Calculator</u> : : <u>Sample data is available</u>.

Descriptive Statistics

Fore more information on 2-Sample t-tests View the Comparing Two Means: 2 Sample t-test tutorial

use software like Matlab, R, etc.

		•					
Enter Sum	marized Data		N	Mean	StDev	SE Mean	
Sample 1 10	Sample 2 7	Sample	1 10	10.4	2.7968	0.884	<u>2 Sample t Tutorial</u>
12 15	6 11	Sample 2	2 10	8.6	2.4585	0.777	
5 12 13 8 9 10 10	13 8 8 5 8 9 11	Standard I DF : 17 95% Conf T-Value 1. Population Population Population <u>Equal Yan</u> Pooled Sta Pooled DF	Deviation Varian dence 5285 1 ≠ Po 1 > Po 1 < Po riance: indard : 18	on of Diff Interval 1 opulation opulation opulation <u>s</u> Deviatior	for the Dif 2: P-Value 2: P-Value 2: P-Value 1: P-Value	ference (-0. e = 0.1448 e = 0.9276 e = 0.0724	.6845 , 4.2845)
		T-Value 1. Population Population	5286 1≠Pc 1 > Pc	opulation opulation	2: P-Value 2: P-Value	e = 0.1438 e = 0.9281 e = 0.0719	U/4,4.2/4)
						Calculator	

Chi-Square Distribution

Let $X_1, ..., X_n$ be independent, N(0,1) distributed random variables. Then the random variable $\chi_n^2 := X_1^2 + ... + X_n^2$

is chi-square distributed with n degrees of freedom:

$$f_{\chi_n^2}(x) = \frac{x^{\frac{n-2}{2}}e^{-\frac{x}{2}}}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} \text{ for } x > 0, \ 0 \text{ otherwise}$$

Let n be a natural number, let X be N(0,1) distributed and Y χ^2 distributed with n degrees of freedom. Then the random variable $T_n := \sqrt{n} \frac{X}{\sqrt{Y}}$ is t distributed with n degrees of freedom.

Chi-Square Goodness-of-Fit-Test

Given:

- n sample values X_1 , ..., X_n of random variable X
- with absolute frequencies H_1 , ..., H_k for k value classes v_i
- (e.g. value intervals) of random variable X

Null hypothesis:

the values X_i are f distributed (e.g. uniformly distributed), where f has expectation μ and variance σ^2

Approach:
$$Y_k := \sum_{i=1}^k (H_i - E(v_i)) \sqrt{n} / \sigma$$
 and $Z_k := \sum_{i=1}^k \frac{(H_i - E(v_i)^2)}{E(v_i)}$
with $E(v_i) := n P[X \text{ is in class } v_i \text{ according to } f]$

are both approximately $\chi 2$ distributed with k-1 degrees of freedom

Rejection of null hypothesis at test level α (e.g. 0.05) if $Z_k > \chi^2_{k-1,1-\alpha}$

Chi-Square Independence Test

Given:

n samples of two random variables X, Y or, equivalently,

a twodimensional random variable

with absolute frequencies H_{11} , ..., H_{rc} for $r \times c$ value classes,

where X has r and Y has c distinct classes.

(This is called a *contingency table*.)

Null hypothesis:

X und Y are independent; then the expectations for the absolute frequencies of the value classes would be

$$E_{ij} = \frac{R_i C_j}{n} \quad \text{with } R_i := \sum_{j=1}^c H_{ij} \text{ and } C_j := \sum_{i=1}^r H_{ij}$$
Approach: $Z := \sum_{i=1}^r \sum_{j=1}^c \frac{(H_{ij} - E_{ij})^2}{E_{ij}} \quad \text{is approximately } \chi^2 \text{ distributed}$
Rejection of null hypothesis at test level α (e.g. 0.05) if
$$Z > \chi^2_{(r-1)(c-1), 1-\alpha}$$

Example: Chi-Square Independence Test

women and men seem to prefer different study subjects \rightarrow we compiled enrollment data in a **contingency table**

Gender	Male	Female	Total
Subject			
CS	80	20	100
Math	40	20	60
Bioinf	20	20	40
Total	140	60	200

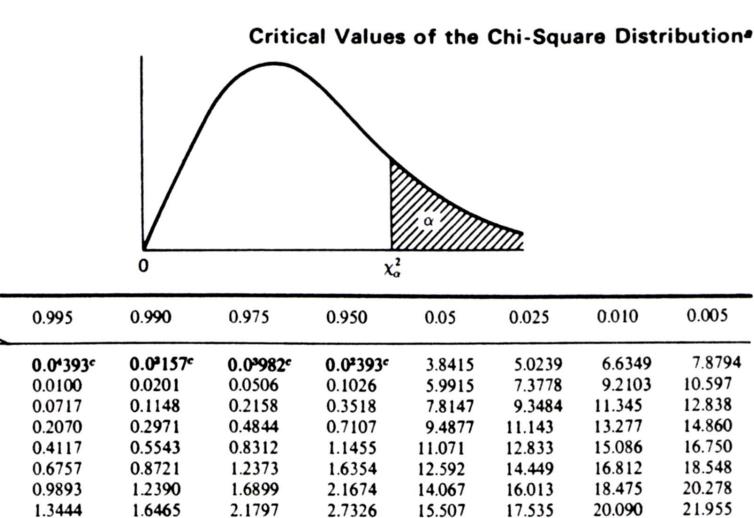
Hypothesis H₀: Gender and Subject are independent

Test statistic
$$Z = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(H_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2((r-1)(c-1)) \sim \chi^2(2)$$

$$Z = \frac{10^2}{70} + \frac{(-10)^2}{30} + \frac{(-2)^2}{42} + \frac{2^2}{18} + \frac{(-8)^2}{28} + \frac{8^2}{12} \approx 12.6$$
Test level $1 - \alpha = 0.95 \rightarrow \chi^2_{2.0.95} \approx 5.99 \rightarrow \text{reject H}_0$

Chi-Square Distribution Table

Table 4



3.3251

3.9403

4.5748

5.2260

5 8010

16.920

18.307

19.675

21.026

22 362

19.023

20.483

21.920

23.337

24 736

21.666 23.209

24.725

26.217

27 688

α

2

3

5

6

7

8

9

10

11

12

13

1.7350

2.1559

2.6032

3.0738

3 5650

2.0879

2.5582

3.0535

3.5706

4 1069

2.7004

3.2470

3.8158

4.4038

5 0087

3-78

23.589

25.188

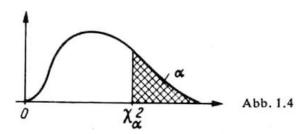
26.757

28.300

29.819

Chi-Square Distribution Table

1.1.2.10. Obere 100 α -prozentige Werte χ^2_{α} der χ^2 -Verteilung (s. 5.2.3.)



Anzahl der Freiheits-	Wahrscheinlichkeit $p = \alpha$															
grade m	0,99	0,98	0,95	0,90	0,80	0,70	0,50	0,30	0,20	0,10	0,05	0,02	0,01	0,005	0,002	0,001
1	0,00016	0,0006	0,0039	0,016	0,064	0,148	0,455	1,07	1,64	2,7	3,8	5,4	6,6	7,9	9,5	10,83
2	0,020	0,040	0,103	0,211	0,446	0,713	1,386	2,41	3,22	4,6	6,0	7,8	9,2	10,6	12,4	13,8
3	0,115	0,185	0,352	0,584	1,005	1,424	2,366	3,67	4,64	6,3	7,8	9,8	11,3	12,8	14,8	16,3
4	0,30	0,43	0,71	1,06	1,65	2,19	3,36	4,9	6,0	7,8	9,5	11,7	13,3	14,9	16,9	18,5
5	0,55	0,75	1,14	1,61	2,34	3,00	4,35	6,1	7,3	9,2	11,1	13,4	15,1	16,8	18,9	20,5
6	0,87	1,13	1,63	2,20	3,07	3,83	5,35	7,2	8,6	10,6	12,6	15,0	16,8	18,5	20,7	22,5
7	1,24	1,56	2,17	2,83	3,82	4,67	6,35	8,4	9,8	12,0	14,1	16,6	18,5	20,3	22,6	24,3
8	1,65	2,03	2,73	3,49	4,59	5,53	7,34	9,5	11,0	13,4	15,5	18,2	20,1	22,0	24,3	26,1
9	2,09	2,53	3,32	4,17	5,38	6,39	8,34	10,7	12,2	14,7	16,9	19,7	21,7	23,6	26,1	27,9
10	2,56	3,06	3,94	4,86	6,18	7,27	9,34	11,8	13,4	16,0	18,3	21,2	23,2	25,2	27,7	29,6
11	3,1	3,6	4,6	5,6	7,0	8,1	10,3	12,9	14,6	17,3	19,7	22,6	24,7	26,8	29,4	31,3
12	3,6	4,2	5,2	6,3	7,8	9,0	11,3	14.0	15,8	18,5	21,0	24,1	26,2	28,3	30,9	32,9
13	4,1	4,8	5,9	7,0	8,6	9,9	12,3	15,1	17,0	19,8	22,4	25,5	27,7	29,8	32,5	34,5
14	4,7	5,4	6,6	7,8	9,5	10,8	13,3	16,2	18,2	21,1	23,7	26,9	29,1	31,3	34,0	36,1
15	5,2	6,0	7,3	8,5	10,3	11,7	14,3	17,3	19,3	22,3	25,0	28,3	30,6	32,8	35,6	37,7
16	5,8	6,6	8,0	9,3	11,2	12,6	15,3	18,4	20,5	23,5	26,3	29,6	32,0	34,3	37,1	39,3
17	6,4	7,3	8.7	10,1	12,0	13,5	16,3	19,5	21,6	24,8	27,6	31,0	33,4	35,7	38,6	40,8
18	7,0	7,9	9,4	10,9	12,9	14,4	17,3	20,6	22,8	26,0	28,9	32,3	34,8	37,2	40,1	42,3
19	7,6	8,6	10,1	11,7	13,7	15,4	18,3	21,7	23,9	27,2	30,1	33,7	36,2	38,6	41,6	43,8
20	8,3	9,2	10,9	12,4	14,6	16,3	19,3	22,8	25,0	28,4	31,4	35,0	37,6	40,0	43,0	45,3
21	8,9	9,9	11,6	13,2	15,4	17,2	20,3	23,9	26,2	29,6	32,7	36,3	38,9	41,4	44,5	46,8
22	9,5	10,6	12,3	14,0	16,3	18,1	21,3	24,9	27,3	30,8	33,9	37,7	40,3	42,8	45,9	48,3
23	10,2	11,3	13,1	14,8	17,2	19,0	22,3	26,0	28,4	32,0	35,2	39,0	41,6	44,2	47,3	49,7
24	10,9	12,0	13,8	15,7	18,1	19,9	23,3	27,1	29,6	33,2	36,4	40,3	43,0	45,6	48,7	51,2
25	11,5	12,7	14,6	16,5	18,9	20,9	24,3	28,2	30,7	34,4	37,7	41,6	44,3	46,9	50,1	52,6
26	12,2	13,4	15,4	17,3	19,8	21,8	25,3	29,2	31,8	35,6	38,9	42,9	45,6	48,3	51,6	54,1.
27	12,9	14,1	16,2	18,1	20,7	22,7	26,3	30,3	32,9	36,7	40,1	44,1	47,0	49,6		795,5
28	13.6	14.8	16.9	18.9	21.6	23.6	27.3	31.4	34.0	37,9	41,3	45,4	48,3	51,0	54,4	56,9

3.2.4 Regression for Parameter Fitting Linear Regression

Estimate $r(x) = E[Y | X_1 = x_1 \land ... \land X_m = x_m]$ using a linear model $Y = r(x) + \varepsilon = \beta_0 + \sum_{i=1}^m \beta_i x_i + \varepsilon$ with error ε with $E[\varepsilon] = 0$

given n sample points $(x_1^{(i)}, ..., x_m^{(i)}, y^{(i)})$, i=1..n, the least-squares estimator (LSE) minimizes the quadratic error:

$$\sum_{i=1..n} \left(\left(\sum_{k=0..m} \beta_k x_k^{(i)} \right) - y^{(i)} \right)^2 =: E(\beta_0, ..., \beta_m) \quad (\text{with } x_0^{(i)} = 1)$$

Solve linear equation system: $\frac{\partial E}{\partial \beta_k} = 0 \quad \text{for } k=0, \dots, m$ equivalent to MLE $\vec{\beta} = (X^T X)^{-1} X^T Y$ with $Y = (y^{(1)} \dots y^{(n)})^T$ and $X = \begin{cases} 1 x_1^{(1)} x_2^{(1)} \dots x_m^{(1)} \\ 1 x_1^{(2)} x_2^{(2)} \dots x_m^{(2)} \\ \dots \\ 1 x_1^{(n)} x_2^{(n)} \dots x_m^{(n)} \end{cases}$

Logistic Regression

Estimate r(x) = E[Y | X=x] for Bernoulli Y using a logistic model

$$Y = r(x) + \varepsilon = \frac{e^{\beta_0 + \sum_{i=1}^m \beta_i x_i}}{1 + e^{\beta_0 + \sum_{i=1}^m \beta_i x_i}} + \varepsilon \qquad \text{loglinear}$$

with error ε with $E[\varepsilon]=0$

 \rightarrow solution for MLE for β_i values based on numerical gradient-descent methods

Summary of Section 3.2

- Samples and Estimators are RVs
- Estimators should be **unbiased**
- **MLE** is canonical estimator for parameters
- Confidence intervals based on Normal and t distributions
- Hypothesis testing: reject or retain H_0 at level α
- **p-value**: smallest level α for rejecting H₀
- Wald test and t-test for (in)equality of parameters
- Chi-Square test for independence or goodness-of-fit
- Linear regression for predicting continuous variables

Additional Literature for Section 3.2

- A. Allen: Probability, Statistics, and Queueing Theory With Computer Science Applications, Wiley 1978
- G. Casella, R. Berger: Statistical Inference, Duxbury 2002
- M. Greiner, G. Tinhofer: Stochastik für Studienanfänger der Informatik, Carl Hanser Verlag, 1996
- G. Hübner: Stochastik: Eine Anwendungsorientierte Einführung für Informatiker, Ingenieure und Mathematiker, Vieweg & Teubner 2009