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Chapter 3: Basics from Probability Theory

and Statistics

3-39

3.1 Probability Theory

Events, Probabilities, Bayes‘ Theorem,

Random Variables, Distributions, Moments,  Tail Bounds, 

Central Limit Theorem, Entropy Measures

3.2 Statistical Inference

Sampling, Parameter Estimation, Maximum Likelihood,

Confidence Intervals, Hypothesis Testing, p-Values, 

Chi-Square Test, Linear and Logistic Regression

mostly following L. Wasserman Chapters 6, 9, 10, 13



IRDM  WS 2015

3.2 Statistical Inference

A statistical model is a set of distributions (or regression functions),

e.g., all unimodal, smooth distributions.

A parametric model is a set that is completely described by

a finite number of parameters,

(e.g., the family of Normal distributions).

Statistical inference: given a sample X1, ..., Xn how do we

infer the distribution or its parameters within a given model.

For multivariate models with one specific „outcome (response)“ 

variable Y, this is called prediction or regression, 

for discrete outcome variable also classification.

r(x) = E[Y | X=x] is called the regression function.
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Example for classification: biomedical markers  cancer or not

Example for regression:      business indicators  stock price
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Sampling Illustrated
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Distribution X

(population of interest) Samples 

X1, X2, …, Xn

Statistical Inference:

What can we say about X

based on X1, X2, …, Xn?

Example: estimate the average salary in Germany?

Approach 1: ask your 10 neighbors

Approach 2: ask 100 random people you spot on the Internet

Approach 2: ask all 1000 living Germans in Wikipedia

Approach 4: ask 1000 random people from all age groups, jobs, … 
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Basic Types of Statistical Inference
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Given: independent and identically distributed (iid) samples

X1, X2, …, Xn from (unknown) distribution X

• Parameter estimation:

• Confidence intervals:

• Hypothesis testing:

• Regression (for parameter fitting)

What is the parameter p of a Bernoulli coin?

What are the values of  and  of a Normal distribution?

What are 1, 2, 1, 2 of a Poisson mixture?

What is the interval [mean  tolerance] s.t. the expectation

of my observations or measurements falls into the interval

with high confidence?

H0: p=1/2 (fair coin) vs. H1: p 1/2 

H0: p1 = p2 (methods have same precision) vs. H1: p1  p2
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3.2.1 Statistical Parameter Estimation

A point estimator for a parameter  of a prob. distribution is a

random variable X derived from a random sample X1, ..., Xn.

Examples:
Sample mean:

Sample variance:
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An estimator T for parameter  is unbiased

if ; 

otherwise the estimator has bias .

An estimator on a sample of size n is consistent

if

]T[E

01   eachfor]T[Plimn

]T[E

Sample mean and sample variance   
are unbiased, consistent estimators with minimal variance.
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Estimation Error

Let     = T() be an estimator for parameter  over sample X1, ..., Xn. 

The distribution of       is called the sampling distribution.

The standard error for      is:

n̂

n̂

n̂

The mean squared error (MSE) for       is:     n̂

2
n

ˆ ˆMSE( ) E[( ) ]   

2
n n

ˆ ˆbias ( ) Var[ ]  

If bias  0 and se  0 then the estimator is consistent.

The estimator      is asymptotically Normal if

converges in distribution to standard Normal N(0,1) 
n̂

n
ˆ( ) / se 
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𝑠𝑒  𝜃 = 𝑉𝑎𝑟(  𝜃𝑛)
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Nonparametric Estimation

The empirical distribution function is the cdf that

puts prob. mass 1/n at each data point Xi:

where indicator function I(𝑋𝑖 ≤ 𝑥)

is 1 if 𝑋𝑖 ≤ 𝑥 and 0 otherwise

nF̂
n

n ii 1

1
F̂ ( x ) I( X x )

n 
 

A statistical functional T(F) is any function of F,

e.g., mean, variance, skewness, median, quantiles, correlation

The plug-in estimator of  = T(F) is: n n
ˆ ˆT( F ) 
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Nonparametric Estimation: Histograms

Instead of the full empirical distribution, often compact data synopses

may be used, such as histograms where X1, ..., Xn are grouped into

m cells (buckets or bins) c1, ..., cm with

bucket boundaries lb(ci) and ub(ci) s.t.

lb(c1) = , ub(cm) = , ub(ci) = lb(ci+1) for 1i<m, and

freq(ci) = n
n i i1

1
F̂ ( x ) I( lb( c ) X ub( c ))

n
 

  

Histograms provide a (discontinuous) density estimator.
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Example:
X1 = X2 = 1

X3 = X4 = X5 = 2

X6 = … X10 = 3

X11 = … X14 = 4

X15 = … X17 = 5

X18 = X19 = 6

X20 = 7
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Sources:

en.wikipedia.org

de.wikipedia.org

Different Kinds of Histograms

equidistant buckets

non-equidistant buckets
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Method of Moments

Method-of-moments estimators are usually consistent and

asympotically Normal, but may be biased

3-48

• Suppose parameter θ = (θ1, …, θk) has k components

• Compute j-th moment for 1 ≤ j ≤ k:

• Compute j-th sample moment for 1 ≤ j ≤ k:

• Method-of-moments estimate of θ is obtained by solving 

a system of k equations in k unknowns:
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Example: Method of Moments

Let X1, …, Xn ~ Normal(,2)
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𝛼1 = 𝐸𝜃 𝑋 = 𝜇

𝛼2 = 𝐸𝜃 𝑋
2 = 𝑉𝑎𝑟 𝑋 + 𝐸 𝑋 2 = 𝜎2 + 𝜇2

Solve the equation system:

𝜇 = 𝛼1 =  𝛼1 =
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 𝜎2 + 𝜇2 = 𝛼2 =  𝛼2 =
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖
2

Solution:  𝜇 =
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 =  𝑋  𝜎2 =
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 −  𝑋
2
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Parametric Inference:
Maximum Likelihood Estimators (MLE)

Estimate parameter  of a postulated distribution f(,x) such that

the probability that the data of the sample are generated by

this distribution is maximized.

 Maximum likelihood estimation:

Maximize L(x1,...,xn, ) = P[x1, ..., xn originate from f(,x)]

often written as

 𝜽𝑴𝑳𝑬 = 𝒂𝒓𝒈𝒎𝒂𝒙𝜽 L( , x1,...,xn)

= 𝒂𝒓𝒈𝒎𝒂𝒙𝜽  𝒊=𝟏
𝒏 𝒇(𝒙𝒊, , 𝜽)

or maximize log L

if analytically untractable  use numerical iteration methods
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MLE Properties

Maximum Likelihood Estimators are

consistent, asymptotically Normal, and

asymptotically optimal in the following sense:

Consider two estimators U and T which are asymptotically Normal.

Let u2 and t2 denote the variances of the two Normal distributions

to which U and T converge in probability.

The asymptotic relative efficiency of U to T is ARE(U,T) = t2/u2 .

Theorem: For an MLE       and any other estimator

the following inequality holds:  
n̂ n

n n
ˆARE( , ) 1  
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Simple Example for
Maximum Likelihood Estimator

given: 

• coin with Bernoulli distribution with 

unknown parameter p für head, 1-p for tail

• sample (data): k times head with n coin tosses

needed: maximum likelihood estimation of p

Let L(k, n, p) = P[sample is generated from distr. with param. p]

knk pp
k

n 




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
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Maximize log-likelihood function log L (k, n, p):

n
log L log k log p (n k) log (1 p)

k

 
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 

n
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
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
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Advanced Example for 
Maximum Likelihood Estimator

given: 

• Poisson distribution with parameter  (expectation) 

• sample (data): numbers x1, ..., xn N0

needed: maximum likelihood estimation of 
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Let r be the largest among these numbers, 

and let f0, ..., fr be the absolute frequencies of numbers 0, ..., r.

3-53



IRDM  WS 2015

Sophisticated Example for 
Maximum Likelihood Estimator

given: 

• discrete uniform distribution over [1,]  N0 and density f(x) = 1/ 

• sample (data): numbers x1, ..., xn N0

MLE for  is max{x1, ..., xn } (see Wasserman p. 124)
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MLE for Parameters 
of Normal Distributions
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Analytically Non-tractable MLE for parameters
of Multivariate Normal Mixture
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consider samples from a mixture of multivariate Normal distributions

with the density (e.g. height and weight of males and females):
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Expectation-Maximization Method (EM)

When L(, X1, ..., Xn) is analytically intractable then

• introduce latent (non-observable) random variable(s) Z such that:

joint distribution J(X1, ..., Xn, Z, ) of „complete“ data is tractable

• iteratively compute:

• Expectation (E Step): 

compute expected complete data likelihood

EZ [log J(X1, …, Xn, Z | (t))] given a previous estimate of 

• Maximization (M Step): 

estimate (t+1) that maximizes EZ [log J(X1, …, Xn, Z | (t))] 

2-57

details depend on distribution at hand (often mixture models)

convergence guaranteed, but problem is non-convex  numerical methods
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Bayesian Viewpoint of Parameter Estimation

• assume prior distribution g() of parameter 

• choose statistical model (generative model) f (x | )

that reflects our beliefs about RV X

• given RVs X1, ..., Xn for observed data, 

the posterior distribution is h ( | x1, ..., xn)

for X1=x1, ..., Xn=xn the likelihood is

which implies

(posterior is proportional to

likelihood times prior)

MAP estimator (maximum a posteriori):

compute  that maximizes h ( | x1, …, xn) given a prior for 
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3.2.2 Confidence Intervals
Estimator T for an interval for parameter  such that

For the distribution of random variable X a value 

x (0<  <1) with

is called a  quantile; the 0.5 quantile is called the median.

For the normal distribution N(0,1) the  quantile is denoted  .

   1]xX[P]xX[P

  1]aTaT[P

[T-a, T+a] is the confidence interval and 1- is the confidence level.

3-59

area:

(a)=

a=
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Confidence Intervals for Expectations (1)
Let x1, ..., xn be a sample from a distribution with unknown

expectation  and known variance 2. 

For sufficiently large n the sample mean       is N(,2/n) distributed

and                     is N(0,1) distributed:

X
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Normal Distribution Table

3-61
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Confidence Intervals for Expectations (2)
Let x1, ..., xn be a sample from a distribution with unknown

expectation  and unknown variance 2 and sample variance S2 .

For sufficiently large n the random variable

S
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Student‘s t Distribution Table

3-63

William Gosset

(1876-1937)

A. Student:

The Probable Error of a Mean, 

Biometrika 6(1), 1908



for interval [  𝑋 − 𝑎,  𝑋 + 𝑎]:

then look up (z)

to determine 1/2
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Example: Confidence Interval for Expectation

3-64

X: time for student to solve exercise

n=16 samples,  𝑋 = 2.5, 𝑆2 = 0.25

A) Assume 𝜎2 is known: 𝜎2=0.25 

A1) Estimate 0.2

A2) Estimate  with 1=0.9 confidence

B) Assume 𝜎2 is unknown

B1) Estimate 0.2

B2) Estimate  with 1=0.9 confidence
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
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3.2.3 Hypothesis Testing

Hypothesis testing: 

• aims to falsify some hypothesis by lack of statistical evidence

• design of test RV (test statistic) and its (approx. / limit) distribution

3-65

• Toss a coin n times and judge if the coin is fair

X1, …, Xn ~ Bernoulli(p), coin is fair if p = 0.5

• Let the null hypothesis H0 be “the coin is fair”

• The alternative hypothesis H1 is then “the coin is not fair”

• Intuitively, if                  is large, we should reject H0

Example:

H0 is default, interest is in H1:  aim to reject H0

(e.g. suspecting that the coin is unfair)
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Hypothesis Testing Terminology (1)
A hypothesis test determines a probability 1-

(test level , significance level) that a sample X1, ..., Xn

from some unknown probability distribution has a certain property.

Examples:
1) The sample originates from a normal distribution.

2) Under the assumption of a normal distribution

the sample originates from a N(, 2) distribution.

3) Two random variables are independent.

4) Two random variables are identically distributed.
5) Parameter  of a Poisson distribution from which the sample stems has value 5.

General form:

null hypothesis H0 vs. alternative hypothesis H1

needs test variable (test statistic) X (derived from X1, ..., Xn, H0, H1) 
and test region R with
XR for rejecting H0 and
XR for retaining H0

Retain H0 Reject H0

H0 true  type I error

H1 true type II error 

3-66

H0 is default,

interest is in H1
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Hypothesis Testing Terminology (2)

3-67

• θ = θ0 is called a simple hypothesis

• θ > θ0 or θ < θ0 is called a composite hypothesis

• H0 : θ = θ0 vs. H1 : θ ⧧ θ0 is called a two-sided test

• H0 : θ ≤ θ0 vs. H1 : θ > θ0 and H0 : θ ≥ θ0 vs. H1 : θ < θ0

are called a one-sided test

• Rejection region R : if X ∈ R, reject H0 otherwise retain H0

• The rejection region is typically defined using a test statistic T

and a critical value c:
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p-Value

Suppose that for every level   (0,1) there is a test

with rejection region R. Then the p-value is the smallest level

at which we can reject H0:                                                             }­ 1 np value inf{ |T( X ,...,X ) R 

small p-value means strong evidence against H0

3-68

p-value: prob. of test statistic (sample)

as extreme as the observed data under H0

Caution: p-value  P[H0|data]

typical interpretation of p-values:
• < 0.01 very strong evidence against H0

• 0.01 – 0.05: strong evidence against H0

• 0.05 – 0.10: weak evidence against H0

• > 0.1: little or no evidence against H0
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Hypothesis Testing Example

Null hypothesis for n coin tosses: coin is fair or has

head probability p = p0; alternative hypothesis: p  p0

Test variable: X, the #heads, is

N(pn, p(1-p)n) distributed (by the Central Limit Theorem),

thus is N(0, 1) distributed

)p1(p

n)pn/X(
:Z






Rejection of null hypothesis at test level  (e.g. 0.05) if

221 // ZZ   

3-69

/2 1/2

rejection

region
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Wald Test

for testing H0:  = 0 vs. H1:   0 use the test variable 0
ˆ

W
ˆse( )

 






with sample estimate     and standard error̂

W converges in probability to N(0,1)

 reject H0 at level  when W > 1/2 or W < /2

ˆ ˆse( ) Var[ ] 

generalization (for unknown variance): 

t-test (based on Student‘s t distribution)

3-70

the p-value for the Wald test is 2( |w|)

where w is the value of the test variable W 
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Example: Wald Test

3-71

n=20 coin tosses X1, …, Xn with 15 times heads

H0: p=0.5 (coin is fair) vs. H1: p0.5

sample mean:  𝑝 = 0.75, variance Var[  𝑝] = 𝑛  𝑝 1 −  𝑝 / 𝑛2 = 
3

320

Test statistic W = 
 𝑝−𝑝

𝑠𝑒 𝑝

0.25

1/100
 2.5

Test level =0.1: 

W > 1/2= 0.95 or W < /2= 0.05

Test: 2.5 > 1.65    reject H0

Test level =0.01: 

W > 1/2= 0.995 or W < /2= 0.005

Test: 2.5 < 2.58    retain H0

p-value in between

not variance, but

sample variance
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t-Test

for testing H0:  = 0 vs. H1:   0 use the test variable 𝑇 =
 𝜃−𝜃0

𝑠𝑒( 𝜃)

with sample estimate and standard error̂

T converges in probability to a t-distribution with n-1 degrees

 reject H0 at level  when T > 𝑡𝑛−1,1−𝛼/2 or T < 𝑡𝑛−1,𝛼/2

Extensions for

• two-sample tests – comparing two independent samples

• paired two-sample tests – for testing differences (ordering) of RVs

3-72

𝑠𝑒  𝜃 = 𝑆2(  𝜃)

Given: n samples for  with sample mean  𝜃
and 𝒔𝒂𝒎𝒑𝒍𝒆 𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 𝑺( 𝜽)

t-test is most widely used test for statistical significance of experimental data
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Paired t-Test Tools

3-73

https://www.usablestats.com/calcs/2samplet

use software like

Matlab, R, etc.

https://www.usablestats.com/calcs/2samplet
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Chi-Square Distribution

Let X1, ..., Xn be independent, N(0,1) distributed random variables.

Then the random variable

is chi-square distributed with n degrees of freedom:

22
1

2
nn X...X: 

otherwise,xfor

n

ex
)x(f

n

xn

n
00

2
2 2

22

2

2 


















Let n be a natural number, let X  be N(0,1) distributed and

Y 2 distributed with n degrees of freedom.

Then the random variable

is t distributed with n degrees of freedom.
Y

X
n:Tn 
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Chi-Square Goodness-of-Fit-Test
Given: 

n sample values X1, ..., Xn of random variable X

with absolute frequencies H1, ..., Hk for k value classes vi

(e.g. value intervals) of random variable X

Null hypothesis: 

the values Xi are f distributed (e.g. uniformly distributed),

where f has expectation  and variance 2

Approach:                                             and                                               



k

i

iik nvEHY
1

/))((: 

Rejection of null hypothesis at test level  (e.g. 0.05) if
2

11   ,kkZ







k

i i

ii
k

vE

vEH
Z

1

2

)(

)((
:

are both approximately 2 distributed with k-1 degrees of freedom

with E(vi) := n P[X is in class vi according to f ] 
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Chi-Square Independence Test
Given: 

n samples of two random variables X, Y or, equivalently,

a twodimensional random variable

with absolute frequencies H11, ..., Hrc for 𝑟 × 𝑐 value classes,

where X has r and Y has c distinct classes.

(This is called a contingency table.)  

Null hypothesis:

X und Y are independent; then the

expectations for the absolute frequencies of the value classes would be

n

CR
E

ji
ij  with 




c

j

iji HR
1

: and 


r

i
ijj H:C

1
2r c

ij ij

iji 1 j 1

( H E )
Z :

E 


  Approach:                                      is approximately 2 distributed 

with (r-1)(c-1) degrees of freedom

Rejection of null hypothesis at test level  (e.g. 0.05) if
2

111   ),c)(r(Z
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Example: Chi-Square Independence Test

3-77

women and men seem to prefer different study subjects

 we compiled enrollment data in a contingency table

Hypothesis H0: Gender and Subject are independent

Gender Male Female Total

Subject

CS 80 20 100

Math 40 20 60

Bioinf 20 20 40

Total 140 60 200

Test statistic 𝑍 =  𝑖=1
𝑟  𝑗=1

𝑐 𝐻𝑖𝑗−𝐸𝑖𝑗
2

𝐸𝑖𝑗
~ 2((r−1)(c−1)) ~ 2 (2)

𝑍 =
102

70
+
−10 2

30
+ 
(−2)2

42
+
22

18
+ 
(−8)2

28
+
82

12
 12.6

Test level 1=0.95   2
2,0.95  5.99  reject H0
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Chi-Square Distribution Table
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Chi-Square Distribution Table
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3.2.4 Regression for Parameter Fitting

Estimate r(x) = E[Y | X1=x1  ... Xm=xm] using a linear model
m

0 i ii 1
Y r( x ) x   


     with error  with E[]=0

given n sample points (x1
(i) , ..., xm

(i), y(i)), i=1..n, the

least-squares estimator (LSE) minimizes the quadratic error:

2

( i ) ( i )
k 0 mk

i 1..n k 0..m

x y : E( ,..., )  
 

  
     

  
  (with xo

(i)=1)

Solve linear equation system:
k

E
0







for k=0, ..., m

equivalent to MLE T 1 T( X X ) X Y 

with Y = (y(1) ... y(n))T   and 

( 1 ) ( 1 ) ( 1 )
m1 2

( 2 ) ( 2 ) ( 2 )
m1 2

( n ) ( n ) ( n )
m1 2

1 x x ... x

1 x x ... x
X

...

1 x x ... x

 
 
 

  
 
 
 
  2-80

Linear Regression
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Logistic Regression

Estimate r(x) = E[Y | X=x] for Bernoulli Y using a logistic model

m
0 i ii 1

m
0 i ii 1

x

x

e
Y r( x )

1 e

 

 
 

 

 




   



with error  with E[]=0

 solution for MLE for i values

based on numerical gradient-descent methods

loglinear
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Summary of Section 3.2

• Samples and Estimators are RVs

• Estimators should be unbiased

• MLE is canonical estimator for parameters

• Confidence intervals based on Normal and t distributions

• Hypothesis testing: reject or retain H0 at level 

• p-value: smallest level  for rejecting H0

• Wald test and t-test for (in)equality of parameters

• Chi-Square test for independence or goodness-of-fit

• Linear regression for predicting continuous variables
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Additional Literature for Section 3.2

• A. Allen: Probability, Statistics, and Queueing Theory

With Computer Science Applications, Wiley 1978

• G. Casella, R. Berger: Statistical Inference, Duxbury 2002

• M. Greiner, G. Tinhofer: Stochastik für Studienanfänger 

der Informatik, Carl Hanser Verlag, 1996

• G. Hübner: Stochastik: Eine Anwendungsorientierte Einführung für 

Informatiker, Ingenieure und Mathematiker, Vieweg & Teubner 2009
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