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Recall the Question of the week 

How can we mine 
interesting patterns  

and useful rules 
from data? 
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IRDM Chapter 4, today 

1. Definitions 
2. Algorithms for Frequent Itemset Mining 
3. Association Rules and Interestingness 
4. Summarising Collections of Itemsets 

 
 
 

You’ll find this covered in  
Aggarwal Chapter 4, 5.2 
Zaki & Meira, Ch. 10, 11 
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Chapter 4.3:  
Association Rules 

IV-2: 4 
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IRDM Chapter 4.3 

1. Generating Association Rules 
2. Measures of Interestingness 
3. Properties of Measures 
4. Simpson’s Paradox 

 
 

You’ll find this covered in  
Aggarwal, Chapter 4 
Zaki & Meira, Ch. 10 
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Generating Association Rules 

We can generate association rules from frequent itemsets 
 if 𝑍 is a frequent itemset and 𝑋 ⊂ 𝑍 is its proper subset,  

we have rule 𝑋 → 𝑌, where 𝑌 = 𝑍 ∖ 𝑋 
 

These rules are frequent because  
𝑠𝑠𝑠𝑠 𝑋 → 𝑌 = 𝑠𝑠𝑠𝑠 𝑋 ∪ 𝑌 = 𝑠𝑠𝑠𝑠(𝑍) 

 we still need to compute the confidence as 𝑠𝑠𝑠𝑠 𝑍
𝑠𝑠𝑠𝑠 𝑋

 
 

Which means, if rule 𝑋 → 𝑍 ∖ 𝑋 is not confident,  
no rule of type 𝑊 → 𝑍 ∖𝑊, with 𝑊 ⊆ 𝑋, is confident 
 we can use this to prune the search space 
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Pseudo-code 

(Algorithm 8.6 in Zaki & Meira) 
IV-2: 7 
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Measures of interestingness 

Consider the following example: 
 
 
 
 
 
Rule Tea → {Coffee} has 15% support and 75% confidence 
 reasonably good numbers 

 

Is this a good rule? 
 the overall fraction of coffee drinkers is 80%,  

drinking tea reduces the probability of drinking coffee! 

IV-2: 8 

Coffee Not Coffee ∑ 

Tea 150 50 200 

Not Tea 650 150 800 

∑ 800 200 1000 
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Problems with confidence 
The support-confidence framework does not take  
the support of the consequent into account 
 rules with relatively small support for the antecedent and high support for the 

consequent often have high confidence 
 

To fix this, many other measures have been proposed 
 
Most measures are  
easy to express using  
contingency tables 
 
We’ll use 𝑠𝑖𝑖 as shorthand for support:  
s11 = 𝑠𝑠𝑠𝑠 𝐴𝐴 , 𝑠01 = 𝑠𝑠𝑠𝑠(¬𝐴𝐴), … 
 
Analogue, we’ll say 𝑓𝑖𝑖 for frequency: 
𝑓11 = 𝑓𝑓𝑓𝑓 𝐴𝐴 ,𝑓01 = 𝑓𝑓𝑓𝑓(¬𝐴𝐴), … 
 

 (revised on Nov 9th, now using 𝑠𝑖𝑖 notation to more clearly indicate support) 
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B ¬B ∑ 

A s11 s10 s1+ 

¬A s01 s00 s0+ 

∑ s+1 s+0 N 
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Statistical Coefficient of Correlation 

A natural statistical measure between a pair of items  
is the Pearson correlation coefficient 
 

𝜌 =
𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

𝜎 𝑋 𝜎 𝑌

=
𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

𝐸 𝑋2 − 𝐸 𝑋 2 𝐸 𝑌2 − 𝐸 𝑌 2
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Pearson of Correlation of Items 

For items 𝐴 and 𝐵 it reduces to 

𝜌𝐴𝐴 =
𝑓11 − 𝑓1+𝑓+1

𝑓1+𝑓+1(1 − 𝑓1+)(1 − 𝑓+1)
 

 
It is +1 when the data is perfectly positively 
correlated, -1 when perfectly negatively correlated, 
and 0 when uncorrelated.  
 
 

(revised on November 12th; typo fixed, as 𝑓11 should be inside the nominator)  
IV-2: 11 
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Chi-square 
𝒳2 is another natural statistical measure of significance for itemsets.  
For a set of 𝑘 items, it compares the observed frequencies against 
the expected frequencies of all 2𝑘 possible states. 
 

𝒳2(𝑋) = �
𝑓𝑓𝑓𝑓(𝑌) − 𝐸𝑋 𝑓𝑓𝑓𝑓(𝑌) 2

𝐸𝑋 𝑓𝑓𝑓𝑓(𝑌)
𝑌∈𝒫(𝑋)

 

 
where 𝒫(𝑋) is the powerset of 𝑋 and 𝐸𝑋[𝑓𝑓𝑓𝑓 𝑌 ] is the  
expected frequency of state 𝑌 over itemset 𝑋 
 
For example, for 𝑋 = {beer, diapers}, it considers states beer, diapers , 
¬beer, diapers , beer, ¬diapers  and ¬beer, ¬diapers . 

 
 

(Brin et al. 1998, 1.6k+ cites) 
 (revised on Nov 9th, now using 𝐸𝑋[𝑓𝑓𝑓𝑓 𝑌 ] to more clearly indicate the expectation is of state 𝑌 over itemset 𝑋)  
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Chi-square (2) 
To compute 𝒳2(𝑋) we need to define 𝐸𝑋 𝑓𝑓𝑓𝑓 𝑌 .  
 
The standard way is to assume independence between the items of 𝑌. That is, 
the probability of a state 𝑌 is the multiplication of its individual item frequencies.  
 

𝐸𝑋 𝑓𝑓𝑓𝑓 𝑌 = �𝑓𝑓𝑓𝑓(𝐴)
𝐴∈𝑌

� (1 − 𝑓𝑓𝑓𝑓 𝐴 )
𝐴∈𝑋∖𝑌

 

 
The first product is over the items that are present in 𝑌 (the 1s). For these their 
empirical probability is simply 𝑓𝑓𝑓𝑓(⋅).  
 
The second product considers the 0s in 𝑌, or in other words, the 1s of 𝑋 not in 𝑌. 
The empirical probability of not seeing an item A is (1 − 𝑓𝑓𝑓𝑓 𝐴 ). 
  
Note! Independence between items is a very strong assumption, and hence  
we will find that many itemsets will be ‘significantly’ correlated. 

 (revised on Nov 9th, now using 𝐸𝑋[𝑓𝑓𝑓𝑓 𝑌 ] notation, added more explanation) 
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Chi-square (3) 
 

𝒳2(𝑋) = �
𝑓𝑓𝑓𝑓(𝑌) − 𝐸𝑋 𝑓𝑓𝑓𝑓(𝑌) 2

𝐸𝑋 𝑓𝑓𝑓𝑓(𝑌)
𝑌∈𝒫(𝑋)

 

 
Chi-square scores close to 0 indicate statistical independence,  
while larger values indicate stronger dependencies.  
 no differentiation to positive or negative correlation  
 it is computationally costly at 𝑂(2 𝑋 ) 
 but as it is upward closed, we can mine interesting sets efficiently 

 
Always be thoughtful of how you define your expected frequency! 

 (revised on Nov 9th, now using 𝐸𝑋[𝑓𝑓𝑓𝑓 𝑌 ] notation, added more explanation) 
IV-2: 14 
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Interest Ratio 
The interest ratio 𝐼 of rule 𝐴 → 𝐵 is 
 

𝐼 𝐴,𝐵 =
𝑁 × 𝑠𝑠𝑠𝑠 𝐴𝐴

𝑠𝑠𝑠𝑠 𝐴 × 𝑠𝑠𝑠𝑠(𝐵) =
𝑁𝑠11
𝑠1+𝑠+1

 
 

 it is equivalent to lift =  𝑐𝑐𝑐𝑐 𝐴→𝐵
𝑠𝑠𝑠𝑠 𝐵

 
 
Interest ratio compares the frequencies against the 
assumption that 𝐴 and 𝐵 are independent 
 if 𝐴 and 𝐵 are independent, 𝑠11 = 𝑠1+𝑠+1

𝑁
 

 
Interpreting interest ratios 
 𝐼 𝐴,𝐵 = 1 if 𝐴 and 𝐵 are independent 
 𝐼 𝐴,𝐵 > 1 if 𝐴 and 𝐵 are positively correlated 
 𝐼 𝐴,𝐵 < 1 if 𝐴 and 𝐵 are negatively correlated 

 (𝑓𝑖𝑖 changed into 𝑠𝑖𝑖 in revision 1) 
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The cosine measure 
The cosine, or 𝐼𝐼, measure of rule 𝐴 → 𝐵 is defined as 

𝑐𝑐𝑐𝑐𝑐𝑐 𝐴,𝐵 = 𝐼 𝐴,𝐵 × 𝑠𝑠𝑠𝑠(𝐴𝐴)/𝑁 =
𝑠11

𝑠1+ × 𝑠+1
 

 
which is regular cosine if we think of 𝐴 and 𝐵 as binary vectors 
 
It also is the geometric mean between  
the confidences of 𝐴 → 𝐵 and 𝐵 → 𝐴 as 
 

𝑐𝑐𝑐𝑐𝑐𝑐 𝐴,𝐵 =
𝑠𝑠𝑠𝑠 𝐴𝐴
𝑠𝑠𝑠𝑠 𝐴

×
𝑠𝑠𝑠𝑠 𝐴𝐴
𝑠𝑠𝑠𝑠 𝐵

= 𝑐𝑐𝑐𝑐 𝐴 → 𝐵 × 𝑐𝑐𝑐𝑐(𝐵 → 𝐴) 

(𝑓𝑖𝑖 changed into 𝑠𝑖𝑖 in revision 1) 
IV-2: 16 
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Examples (1) 

The interest ratio of Tea → {Coffee} is 1000×150
800×200

= 0.9375 
 almost 1, so not very interesting;  

below 1, so (slight) negative correlation 
 

The 𝑐𝑐𝑐𝑐𝑐𝑐 of this rule, however, is 0.375 
 quite far from 0, so, it is interesting.  

IV-2: 17 

Coffee Not Coffee ∑ 

Tea 150 50 200 

Not Tea 650 150 800 

∑ 800 200 1000 
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Examples (2) 

𝐼 𝑝, 𝑞 = 1.02 and 𝐼 𝑟, 𝑡 = 4.08 
 𝑝 and 𝑞 are close to independent 
 𝑟 and 𝑡 have highest interest factor 

 
 
 

Now 𝑐𝑐𝑐𝑐 𝑝 → 𝑞 = 0.946 and 𝑐𝑐𝑐𝑐 𝑟 → 𝑡 = 0.286 
 (revised on Nov 9th, now using 𝑡 instead of 𝑠 to avoid confusion with support-notation) 
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p ¬p ∑ 

q 880 50 930 

¬q 50 20 70 

∑ 930 70 1000 

r ¬r ∑ 

t 20 50 70 

¬t 50 880 930 

∑ 70 930 1000 

But 𝑝 and 𝑞 appear 
together in 88% of cases 
But 𝑟 and 𝑡 appear 
together only seldom 
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Examples (2) 

𝐼 𝑝, 𝑞 = 1.02 and 𝐼 𝑟, 𝑠 = 4.08 
 𝑝 and 𝑞 are close to independent 
 𝑟 and 𝑠 have highest interest factor 

 
 
 

Now 𝑐𝑐𝑐𝑐 𝑝 → 𝑞 = 0.946 and 𝑐𝑐𝑐𝑐 𝑟 → 𝑠 = 0.286 
IV-2: 19 

p ¬p ∑ 

q 880 50 930 

¬q 50 20 70 

∑ 930 70 1000 

r ¬r ∑ 

s 20 50 70 

¬s 50 880 930 

∑ 70 930 1000 

But 𝑝 and 𝑞 appear 
together in 88% of cases 
But 𝑟 and 𝑠 appear 
together only seldom 

Bottom line: Lunch is not free. 
There is no single measure that  

works well all the time. 



IRDM ‘15/16 

Measures for pairs of itemsets 

 (revised on Nov 9th, now using 𝑠𝑖𝑖 notation to more clearly indicate support) (after Tan, Steinbach, Kumar, Table 6.12) 
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Measure (symbol) Definition 

Correlation (𝜙) 𝑁𝑠11 − 𝑠1+𝑠+1
𝑠1+𝑠+1𝑠0+𝑠+0

 

Odds ratio (𝛼) (𝑠11𝑠00)/(𝑠10𝑠01) 

Kappa (𝜅) 𝑁𝑠11 + 𝑁𝑠00 − 𝑠1+𝑠+1 − 𝑠0+𝑠+0
𝑁2 − 𝑠1+𝑠+1 − 𝑠0+𝑠+0

 

Interest (𝐼) (𝑁𝑠11)/(𝑠1+𝑠+1) 

Cosine (𝑐𝑐𝑐𝑐𝑐𝑐) (𝑠11)/( 𝑠1+𝑠+1) 

Pieatetsk-Shapiro (𝑃𝑃) 𝑠11
𝑁 −

𝑠1+𝑠+1
𝑁2  

Collective Strength (𝑆) 𝑠11 + 𝑠00
𝑠1+𝑠+1 + 𝑠0+𝑠+0

×
𝑁 − 𝑠1+𝑠+1 − 𝑠0+𝑠+0

𝑁 − 𝑠11 − 𝑠00
 

Jaccard (𝐽) 𝑠11/(𝑠1+ + 𝑠+1 − 𝑠11) 

All-confidence (ℎ) min
𝑠11
𝑠1+

,
𝑠11
𝑠+1
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Measures for association rules 

 (revised on Nov 9th, now using 𝑠𝑖𝑖 notation to more clearly indicate support) (after Tan, Steinbach, Kumar, Table 6.12) 
IV-2: 21 

Measure (symbol) Definition 

Goodman-Kruskal (𝜆) �max
𝑘

𝑠𝑗𝑗 − max
𝑘

𝑠+𝑘
𝑗

/(𝑁 − max
𝑘

𝑠+𝑘 

Mutual Information (𝑀) 
��

𝑠𝑖𝑖
𝑁 log

𝑁𝑠𝑖𝑖
𝑠𝑖+𝑠+𝑗𝑗𝑖

/ −�
𝑠𝑖+
𝑁 log

𝑠𝑖+
𝑁

𝑖

 

J-Measure (𝐽) 𝑠11
𝑁 log

𝑁𝑠11
𝑠1+𝑠+1

+
𝑠10
𝑁 log

𝑁𝑠10
𝑠1+𝑠+0

 

Gini index (𝐺) 𝑠1+
𝑁 ×

𝑠11
𝑠1+

2

+
𝑠10
𝑠1+

2

−
𝑠+1
𝑁

2
+
𝑠0+
𝑁 ×

𝑠01
𝑠0+

2

+
𝑠00
𝑠0+

2

−
𝑠+0
𝑁

2
 

Laplace (𝐿) (𝑠11 + 1)/(𝑠1+ + 2) 

Conviction (𝑉) (𝑠1+𝑠+0)/(𝑁𝑠10) 

Certainty factor (𝐹) 𝑠11
𝑠1+

−
𝑠+1
𝑁 / 1 −

𝑠+1
𝑁  

Added Value (𝐴𝐴) 𝑠11
𝑠1+

−
𝑠+1
𝑁  
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Properties of Measures 

Most measures do not agree on  
how they rank itemset pairs or rules 
 
To understand how they behave,  
we need to study their properties 
 measures that share some properties behave  

similarly under that property’s conditions 

IV-2: 22 
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Three properties 
A measure has the inversion property if its value stays the 
same if we exchange 𝑠11 with 𝑠00 and 𝑠01 with 𝑠10 
 the measure is invariant for flipping bits – it is bit symmetric 
 
A measure has the null addition property if is not affected by 
increasing 𝑠00 if other values stay constant 
 the measure is invariant on adding new transactions that have an 

empty intersection with the itemset 
 
A measure has the scaling invariance property if it is not 
affected by replacing the values 𝑠11, 𝑠10, 𝑠01 and 𝑠00 with 
values 𝑘1𝑘3𝑠11, 𝑘2𝑘3𝑠10, 𝑘1𝑘4𝑠01, and 𝑘2𝑘4𝑠00 
 where all 𝑘𝑖 are positive constants 

 (revised on Nov 9th, now using 𝑠𝑖𝑖 notation to more clearly indicate support) 
 IV-2: 23 
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Which properties hold? 

(Tan, Steinbach, Kumar, Table 6.17) 
IV-2: 24 
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Simpson’s Paradox 

Consider this data on sales of HDTVs and exercise machines 
 
 
 
 
 
HDTV → {Exerc. mach. } has confidence 0.55 
¬HDTV → {Exerc. mach. } has confidence 0.45 

 
Customers who buy HDTVs are more likely to also buy an 
exercise machines than those who don’t buy HDTVs 

IV-2: 25 

Exercise 
Machine 

No Exercise 
Machine ∑ 

HDTV 99 81 180 

No HDTV 54 66 120 

∑ 153 147 300 
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Deeper Analysis 

For college students 
 𝑐𝑐𝑐𝑐 𝐻𝐻𝐻𝐻 → 𝐸𝐸𝐸𝐸𝐸.𝑚𝑚𝑚𝑚. = 0.10 
 𝑐𝑐𝑐𝑐 −𝐻𝐻𝐻𝐻 → 𝐸𝐸𝐸𝐸𝐸.𝑚𝑚𝑚𝑚. = 0.118 
 
For working adults 
 𝑐𝑐𝑐𝑐 𝐻𝐻𝐻𝐻 → 𝐸𝐸𝐸𝐸𝐸.𝑚𝑚𝑚𝑚. = 0.577 
 𝑐𝑐𝑐𝑐 −𝐻𝐻𝐻𝐻 → 𝐸𝐸𝐸𝐸𝐸.𝑚𝑚𝑚𝑚. = 0.581 
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Exerc. mach. 
Group HDTV Yes No ∑ 

College 
Yes 1 9 10 
No 4 30 34 

Working 
Yes 98 72 170 
No 50 36 86 

HDTV is not made 
more likely by 
exercise machine! 
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The paradox, and why it happens 
In the combined data, HDTVs and exercise machines correlate 
positively.  In the stratified data, they correlate negatively. 
 this is Simpson’s paradox 
 
The explanation 
 most customers were working adults 

 they also bought most HDTVs and exercise machines 
 in the combined data this increased the correlation between HDTVs 

and exercise machines 
 
Moral of the story: 
Stratify your data properly! 

IV-2: 27 
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Chapter 4.4:  
Summarising  

Collections of Itemsets 

IV-2: 28 
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IRDM Chapter 4.4 

1. The Pattern Explosion 
2. Maximal and closed frequent itemsets 
3. Non-derivable frequent itemsets 

 
 

 
You’ll find this covered in  
Aggarwal, Chapter 5.2 
Zaki & Meira, Ch. 11 (non-derivable only here) 
 

IV-2: 29 
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The Pattern Flood 
Consider the following table: 

IV-2: 30 

tid A B C D E F G H 

1 ✔ ✔ ✔ ✔ ✔ 

2 ✔ ✔ ✔ ✔ ✔ ✔ 

3 ✔ ✔ ✔ ✔ ✔ ✔ 

4 ✔ ✔ ✔ ✔ ✔ ✔ 

5 ✔ ✔ ✔ ✔ ✔ 

6 ✔ ✔ ✔ ✔ ✔ 

7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

How many itemsets with 
minimum frequency of 1/7? 
 255 (!) 
 
How many with minimum 
frequency of 1/2? 
 31 (!) 

 
“The goal of data mining is … 

to summarize the data” 
 Hardly a summary! 
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The Pattern Explosion 

This phenomenon is called the pattern explosion 
 
For high thresholds you find only few patterns 
 that only describe common knowledge 
 
For lower thresholds you find enormously many patterns 
 all potentially interesting 
 many represent noise, and many will be highly redundant 
 orders of magnitude more patterns than there are rows in the data 
 

IV-2: 31 
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Curbing the Explosion 

There exist two main approaches 
 
 frequent pattern summarisation 

 summarise the complete set of frequent patterns 
 impose a stricter local criterion for individual patterns that removes 

locally redundant patterns, e.g. closed frequent, maximal frequent 
 mine all patterns that satisfy this criterion 

 
 pattern set mining 

 improves by imposing a global criterion for the complete result, 
e.g. shortest description of the data, minimal overlap, maximal entropy 

 mine that set of patterns that is optimal with regard to this criterion 
 this way we can globally control noise and redundancy 
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Maximally frequent itemsets 

Let ℱ be the collection of all frequent itemsets for data 𝑫 
 
Itemset 𝑋 ∈ ℱ is maximal if it has no frequent supersets 
 i.e. for all 𝑌 ⊃ 𝑋, 𝑓𝑓𝑓𝑓 𝑌 < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 
With the set of all maximal frequent itemsets  
we can reconstruct all elements of ℱ 
 𝑋 is frequent if and only if there exists a  

maximal frequent itemset 𝑀 such that 𝑋 ⊆ 𝑀 
 this is a lossy representation:  

it does not tell us what the frequency of 𝑋 is 

(Bayardo, 1998, 1.7k cites) 
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Example of maximal frequent itemsets 

IV-2: 34 

Not maximal because of {𝑎, 𝑐, 𝑒} 
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Closed frequent itemsets 

Let ℱ be the collection of all frequent itemsets for data 𝑫 
 
Itemset 𝑋 ∈ ℱ is closed is all its supersets are less frequent 
 i.e. for all 𝑌 ⊃ 𝑋, 𝑓𝑓𝑓𝑓 𝑌 < 𝑓𝑓𝑓𝑓(𝑋) 
 all maximal itemsets are also closed itemsets 
 
Given the set of all frequent closed itemsets, we can 
reconstruct all elements of ℱ including their frequency 
 𝑋 is frequent if it is a subset of a frequent closed itemset 
 𝑠𝑠𝑠𝑠 𝑋 = max {𝑠𝑠𝑠𝑠 𝑍 ∶ 𝑋 ⊆ 𝑍,𝑍 is frequent and closed} 

(Pasquier et al. 1999, 1.5k cites) 
IV-2: 35 
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Why “closed”? 
Consider the following functions 
 𝑡(𝑋) returns all transactions that contain itemset 𝑋 
 𝑖(𝑇) returns all items that are contained in all transactions in 𝑇 

 
The closure function 𝑐(𝑋) maps itemsets to itemsets by 

𝑐 𝑋 = 𝑖 ∘ 𝑡 𝑋 = 𝑖(𝑡 𝑋 ) 
 
The closure function satisfies the following properties 
 extensive: 𝑋 ⊂ 𝑐(𝑋) 
 monotonic: if 𝑋 ⊆ 𝑌, then 𝑐 𝑋 ⊆ 𝑐(𝑌) 
 Idempotent: 𝑐 𝑐 𝑋 = 𝑐 𝑋  

 
Itemset 𝑋 is closed if and only if 𝑋 = 𝑐(𝑋) 
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Example of closed frequent itemsets 
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Itemset a, b   
is contained  
in transactions 
1 and 2 

Closed and maximal 

Closed, but not maximal 
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Itemset taxonomy 
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Mining maximal and closed itemsets 

Frequent maximal and closed itemsets can be found 
by post-processing the set of frequent itemsets 

 
To find maximal itemsets: 
 start with an empty set of candidate maximal itemsets ℳ 
 for each frequent itemset 𝑋 ∈ ℱ 

 if a superset of 𝑋 is in ℳ , continue 
 else insert 𝑋 in ℳ and remove all subsets of 𝑋 from ℳ 

 return set ℳ 
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Mining maximal and closed itemsets 

Closed itemsets can be found from the frequent 
itemsets by computing their closure 
 this can be very time consuming 

 
The Charm algorithm avoids testing all frequent 
itemsets by using the following properties 
 if 𝑡 𝑋 = 𝑡(𝑌), then 𝑐 𝑋 = 𝑐 𝑌 = 𝑐(𝑋 ∪ 𝑌) 

 we can replace 𝑋 with 𝑋 ∪ 𝑌 and prune 𝑌 
 if 𝑡 𝑋 ⊂ 𝑡(𝑌), then 𝑐 𝑋 ≠ 𝑐(𝑌), but 𝑐 𝑋 = 𝑐 𝑋 ∪ 𝑌  

 we can replace 𝑋 with 𝑋 ∪ 𝑌, but not prune 𝑌 
 if 𝑡 𝑋 ≠ 𝑡(𝑌), 𝑐 𝑋 ≠ 𝑐 𝑌 ≠ 𝑐(𝑋 ∪ 𝑌) 

 we cannot prune anything 
 

(Zaki et al, 1999, 194 cites) 
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Non-derivable frequent itemsets 

Let ℱ be the set of all frequent itemsets.  
 
Itemset 𝑋 ∈ ℱ is non-derivable if we cannot derive its 
support from its subsets 
 we can derive the support of 𝑋 if, by knowing the supports of 

all of the subsets of 𝑋, we can compute the support of 𝑋 
 

If 𝑋 is derivable, it does not add any new information 
 knowing just the non-derivable frequent itemsets, we can 

reconstruct every frequent itemset, including its frequency 
 we only return itemsets that add new information on top of 

what we already knew 

(Calders & Goethals, 2004, 121 citations) 
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Support of a generalised itemset 

A generalised itemset is an itemset of form 𝑋𝑌� 
 all items in 𝑋 and none of the items in 𝑌 

 
The support  of a generalised itemset 𝑋𝑌� is the number of 
transactions that contain all items in 𝑋 but no items in 𝑌 
 
To compute the support of a generalised itemset 𝐴𝐵𝐵 we 
 take the support of 𝐴 
 remove the supports of 𝐴𝐵 and 𝐴𝐶 
 add the support of 𝐴𝐵𝐵 that was removed twice 
 𝑠𝑠𝑠𝑠 𝐴𝐵𝐵 = 𝑠𝑠𝑠𝑠 𝐴 − 𝑠𝑠𝑠𝑠 𝐴𝐴 − 𝑠𝑠𝑠𝑠 𝐴𝐴 + 𝑠𝑠𝑠𝑠(𝐴𝐴𝐴) 
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Generalised Itemsets 

IV-2: 43 

𝐴 𝐵 

𝐶 𝐴𝐵𝐵 

𝐴𝐵𝐵 

𝐴𝐵𝐵 𝐴𝐵𝐶̅ 𝐴̅𝐵𝐶̅ 

𝐴̅𝐵𝐵 𝐴𝐵�𝐶 

𝐴𝐵𝐶 
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The Inclusion-Exclusion Principle 

Let 𝑋𝑌� be a generalised itemset and 𝐼 = 𝑋 ∪ Y 
 
Now, 𝑠𝑠𝑠𝑠(𝑋𝑌�) can be expressed as a combination of 
supports of supersets 𝐽 ⊇ 𝑋 such that 𝐽 ⊆ 𝐼 using the 
inclusion-exclusion principle 

𝑠𝑠𝑠𝑠 𝑋𝑌� = � −1 𝐽∖𝑋 𝑠𝑠𝑠𝑠(𝐽)
𝑋⊆𝐽⊆𝐼

 

 
For example, 𝑠𝑠𝑠𝑠 𝐴𝐴𝐴 = 𝑠𝑠𝑠𝑠 ∅ − 𝑠𝑠𝑠𝑠 𝐴 − 𝑠𝑠𝑠𝑠 𝐵 − 𝑠𝑠𝑠𝑠 𝐶  

+𝑠𝑠𝑠𝑠 𝐴𝐴 + 𝑠𝑠𝑠𝑠 𝐴𝐴 + 𝑠𝑠𝑠𝑠 𝐵𝐵  
−𝑠𝑠𝑠𝑠(𝐴𝐴𝐴) 
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Support Bounds 

The inclusion-exclusion formula gives us bounds for the 
support of itemsets in 𝑋 ∪  𝑌 that are supersets of 𝑋 
 all supports are non-negative! 
 𝑠𝑠𝑠𝑠 𝐴𝐴𝐴 = 𝑠𝑠𝑠𝑠 𝐴 − 𝑠𝑠𝑠𝑠 𝐴𝐴 − 𝑠𝑠𝑠𝑠 𝐴𝐴 + 𝑠𝑠𝑠𝑠 𝐴𝐴𝐴 ≥ 0  

implies 𝑠𝑠𝑠𝑠 𝐴𝐴𝐴 ≥ −𝑠𝑠𝑠𝑠 𝐴 + 𝑠𝑠𝑠𝑠 𝐴𝐴 + 𝑠𝑠𝑠𝑠 𝐴𝐴  
 this is a lower bound, but we can also get upper bounds 

 
In general, the bounds for itemset 𝐼 w.r.t. 𝑋 ⊆ 𝐼 
 if 𝐼 ∖ 𝑋  is odd: 𝑠𝑠𝑠𝑠 𝐼 ≤ ∑ −1 𝐼∖𝐽 +1𝑠𝑠𝑠𝑠(𝐽)𝑋⊆𝐽⊂𝐼  

 if 𝐼 ∖ 𝑋  is even: 𝑠𝑠𝑠𝑠 𝐼 ≥ ∑ −1 𝐼∖𝐽 +1𝑠𝑠𝑠𝑠(𝐽)𝑋⊆𝐽⊂𝐼  
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Deriving the Support 

Given the formula for the bounds, we can define 
 the least upper bound 𝑙𝑙𝑙(𝐼) and 
 the greatest lower bound 𝑔𝑔𝑔(𝐼) for itemset 𝐼 
 
We know that 𝑠𝑠𝑠𝑠 𝐼 ∈ [𝑔𝑔𝑔 𝐼 , 𝑙𝑙𝑙 𝐼 ] 
 
If 𝑔𝑔𝑔 𝐼 = 𝑙𝑙𝑙(𝐼), then we can compute 𝑠𝑠𝑠𝑠(𝐼)   
just knowing the support of subsets of 𝐼 
 we say 𝐼 is derivable 
 otherwise, 𝐼 is non-derivable 
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Example deriving support – blackboard  

Question: is itemset 𝐴𝐴𝐴 derivable? 
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tid A B C D E 

1 1 1 0 1 1 

2 0 1 1 0 1 

3 1 1 0 1 1 

4 1 1 1 0 1 

5 1 1 1 1 1 

6 0 1 1 1 0 
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Example deriving support – blackboard  

𝑠𝑠𝑠𝑠(𝐴𝐴𝐴) ≥ 0 
≥ 𝑠𝐴𝐴 + 𝑠𝐴𝐴 − 𝑠𝐴 = 4 + 2 − 4 = 2 
≥ 𝑠𝐴𝐴 + 𝑠𝐵𝐵 − 𝑠𝐵 = 2 + 4 − 4 = 2 
≥ 𝑠𝐴𝐴 + 𝑠𝐵𝐵 − 𝑠𝐵 = 4 + 4 − 6 = 2 
 
𝑙𝑙 𝐴𝐴𝐴 = 2,2,2,0  
𝑔𝑔𝑔 𝐴𝐴𝐴 = max 𝑙𝑙 𝐴𝐴𝐴 = 2 
 
𝑠𝑠𝑠𝑠 𝐴𝐴𝐴 ≤ 𝑠𝐴𝐴 = 4 
≤ 𝑠𝐴𝐴 = 2 
≤ 𝑠𝐵𝐵 = 4 
≤ 𝑠𝐴𝐴 + 𝑠𝐴𝐴 + 𝑠𝐵𝐵 − 𝑠𝐴 − 𝑠𝐵 − 𝑠𝐶 + 𝑠∅ = 4 + 2 + 4 − 4 − 6 − 4 + 6 = 2 
 
𝑢𝑢 𝐴𝐴𝐴 = 4,2,4,2  
𝑙𝑙𝑙 𝐴𝐴𝐴 = min𝑢𝑢 𝐴𝐴𝐴 = 2 
 
𝑔𝑔𝑔 𝐴𝐴𝐴 = 𝑙𝑙𝑙 𝐴𝐴𝐴 = 2 
and hence ABC is derivable. 
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Conclusions 
Association rules tell us which items we will probably 
see given that we’ve seen some other items  
 many business and scientific applications 
 
Frequent itemsets tell which items appear together 
 mining these is the first step for mining many other things 

 many different algorithms exist for efficient frequent itemset mining 
 

The number of frequent itemsets is usually too large 
 exponential output space 
 maximal, closed, and non-derivable itemsets provide  

a summarisation of a collection of frequent itemsets 
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Thank you! 
Association rules tell us which items we will probably 
see given that we’ve seen some other items  
 many business and scientific applications 
 
Frequent itemsets tell which items appear together 
 mining these is the first step for mining many other things 

 many different algorithms exist for efficient frequent itemset mining 
 

The number of frequent itemsets is usually too large 
 exponential output space 
 maximal, closed, and non-derivable itemsets provide 

a summarisation of a collection of frequent itemsets 
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