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Question of the week 

How can we discover 
groups of objects 

that are highly similar 
to each other? 
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Clustering, where? 

Biology 
 creation of phylogenies (relations between organisms) 
 inferring population structures from clusterings of DNA data 
 analysis of genes and cellular processes (co-clustering) 
 

Business 
 grouping of consumers into market segments 

 

Computer science 
 pre-processing to reduce computation (representative-based methods) 
 automatic discovery of similar items 
 

V-1: 3 



IRDM ‘15/16 

Motivational Example 

(Wessmann, ‘Mixture Model Clustering in the analysis of complex diseases’, 2012) 
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Even more motivation 

(Heikinheimo et al., ‘Clustering of European Mammals’, 2007) 
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IRDM Chapter 5, overview 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Hierarchical clustering 
5. Density-based clustering 
6. Clustering high-dimensional data 
7. Validation 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15 

V-1: 6 



IRDM ‘15/16 

IRDM Chapter 5, today 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Hierarchical clustering 
5. Density-based clustering 
6. Clustering high-dimensional data 
7. Validation 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15  
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Chapter 5.1: Basics 
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Example 
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low inter-cluster similarity 

high intra-cluster similarity 

an outlier? 
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The clustering problem 

Given a set 𝑈 of objects and a distance 𝑑:𝑈2 → 𝑅+ between 
objects, group the objects of 𝑈 into clusters such that  
the distance between points in the same cluster is low and 
the distance between the points in different clusters is large 

 
 small and large are not well defined 
 a clustering of 𝑈 can be  

 exclusive (each point belongs to exactly one cluster) 
 probabilistic (each point has a probability of belonging to a cluster) 
 fuzzy (each point can belong to multiple clusters) 

 the number of clusters can be pre-defined, or not  
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On distances 
A function 𝑑:𝑈2 → 𝑅+ is a metric if: 
 𝑑 𝑢, 𝑣 = 0 if and only if 𝑢 = 𝑣 
 𝑑 𝑢, 𝑣 = 𝑑(𝑣,𝑢) for all 𝑢, 𝑣 ∈ 𝑈 
 𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢,𝑤 + 𝑑(𝑤, 𝑣) for all 𝑢, 𝑣,𝑤 ∈ 𝑈 

 
A metric is a distance; if 𝑑:𝑈2 → [0,𝛼] for some positive 𝛼 
then 𝑎 − 𝑑(𝑢, 𝑣) is a similarity score 
 
Common metrics include 
 𝐿𝑝: ∑ 𝑢𝑖 − 𝑣𝑖 𝑝𝑑

𝑖=1

1
𝑝  for 𝑑-dimensional space 

 𝐿1 = Hamming = city-block; 𝐿2 = Euclidean distance 
 Correlation distance: 1 − 𝜙 
 Jaccard distance: 1 − |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵| 
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symmetry 
triangle-inequality 

self-similarity 
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More distantly 

For all-numerical data, the sum of squared errors (SSE)  
is the most common distance measure: ∑ 𝑢𝑖 − 𝑣𝑖 2𝑑

𝑖=1  
 

For all-binary data, either Hamming or Jaccard is typically used 
 

For categorical data, we either 
 first convert the data to binary by adding one binary variable per category 

label and then use Hamming distance; or 
 count the agreements and disagreements of category labels with Jaccard 

 

For mixed data, some combination must be used. 
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The distance matrix 

0 𝑑1,2 𝑑1,3
𝑑1,2 0 𝑑2,3
𝑑1,3 𝑑2,3 0

⋯
𝑑1,𝑛
𝑑2,𝑛
𝑑3,𝑛

⋮ ⋱ ⋮
𝑑1,𝑛 𝑑2,𝑛 𝑑3,𝑛 ⋯ 0

 

 
 
A distance (or dissimilarity) matrix is 
 𝑛-by-𝑛 for 𝑛 objects 
 non-negative (𝑑𝑖,𝑗 ≥ 0) 
 symmetric (𝑑𝑖,𝑗 = 𝑑𝑗,𝑖) 
 Zero on diagonal (𝑑𝑖,𝑖 = 0)  
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Chapter 5.2:  
Representative-based Clustering 

Aggarwal Ch. 6.3 
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Partitions and Prototypes 

Exclusive representative-based clustering 
 the set of objects 𝑈 is partitioned  into 𝑘 clusters 𝐶1,𝐶2, … ,𝐶𝑘 

 ⋃ 𝐶𝑖𝑖 = 𝑈 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗 
 every cluster is represented by a prototype (aka centroid or mean) 𝜇𝑖 
 clustering quality is based on sum of squared errors between objects in a 

cluster and the cluster prototype 
 

� � 𝑥𝑗 − 𝜇𝑖 2
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

= � � � 𝑥𝑗𝑗 − 𝜇𝑖𝑗
2

𝑑

𝑗=1𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1
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Partitions and Prototypes 

Exclusive representative-based clustering 
 the set of objects 𝑈 is partitioned  into 𝑘 clusters 𝐶1,𝐶2, … ,𝐶𝑘 

 ⋃ 𝐶𝑖𝑖 = 𝑈 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗 
 every cluster is represented by a prototype (aka centroid or mean) 𝜇𝑖 
 clustering quality is based on sum of squared errors between objects in a 

cluster and the cluster prototype 
 

� � 𝑥𝑗 − 𝜇𝑖 2
2

𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1

= � � � 𝑥𝑗𝑗 − 𝜇𝑖𝑗
2

𝑑

𝑗=1𝑥𝑗∈𝐶𝑖

𝑘

𝑖=1
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over all dimensions 
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The Naïve algorithm 

The naïve algorithm goes like this 
 one by one generate all possible clusterings 
 compute the squared error 
 select the best 

 
Sadly, this is infeasible 
 there are too many possible clusterings to try 

 𝑘𝑛 different clusterings to 𝑘 clusters (some possibly empty) 
 the number of ways to cluster 𝑛 points in 𝑘 non-empty clusters is the 

Stirling number of the second kind, 𝑆(𝑛, 𝑘), 

𝑆 𝑛, 𝑘 = 𝑛
𝑘 =

1
𝑘!� −1 𝑗 𝑘

𝑗 𝑘 − 𝑗 𝑛
𝑘

𝑗=0
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An iterative 𝑘-means algorithm 

1. select 𝑘 random cluster centroids 
2. assign each point to its closest centroid 
3. compute the error 
4. do 

1. for each cluster 𝐶𝑖 
1. compute new centroid as 𝜇𝑖 = 1

𝐶𝑖
∑ 𝑥𝑗𝑥𝑗∈𝐶𝑖  

2. for each element 𝑥𝑗 ∈ 𝑈 
1. assign 𝑥𝑗 to its closest cluster centroid 

5. while error decreases 
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k-means Example 
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Some observations 

Always converges, eventually 
 on each step the error decreases 
 only finite number of possible clusterings 
 convergence to local optimum 

 
At some point a cluster can become empty 
 all points are closer to some other centroid 
 some options include 

 split the biggest cluster 
 take the furthest point as a singleton cluster 

 
Outliers can yield bad clusterings 
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Computational complexity 

How long does iterative 𝑘-means take? 
 computing the centroid takes 𝑂 𝑛𝑑  time 

 averages over total of 𝑛 points in 𝑑-dimensional space 
 computing the cluster assignment takes 𝑂(𝑛𝑘𝑑) time 

 for each 𝑛 points we have to compute the distances to  
all 𝑘 clusters in 𝑑-dimensional space 

 if the algorithm takes 𝑡 iterations, the total running  
time is 𝑂(𝑡𝑛𝑘𝑑) 

 how many iterations will we need? 
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How many iterations? 
In practice the algorithm usually doesn’t need many 
 some hundred iterations is usually enough 

 
Worst-case upper bound is 𝑂(𝑛𝑑𝑘) 
 
Worst-case lower bound is superpolynomial: 2Ω 𝑛  
 
The discrepancy between practice and worst-case analysis can 
be (somewhat) explained with some smoothed analysis 
 if the data is sampled from independent 𝑑-dimensional normal 

distributions with same variance, iterative 𝑘-means will terminate in 
𝑂(𝑛𝑘) time with high probability 

(Arthur & Vassilvitskii, 2006) 
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On the importance of starting well 
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On the importance of starting well 
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On the importance of starting well 
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The 𝑘-means algorithm converges to a local 
optimum, which can be arbitrarily bad 

compared to the global optimum  
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The 𝑘-means++ algorithm 
The Key Idea: Careful initial seeding  
 choose first centroid u.a.r. from data points 
 let 𝐷(𝑥) be the shortest distance from 𝑥 to any already-selected centroid 

 choose next centroid to be 𝑥𝑥 with probability 𝐷 𝑥′ 2

∑ 𝐷 𝑥 2
𝑥∈𝑋

 
 points that are further away are more probable to be selected 

 repeat until 𝑘 centroids have been selected and  
continue as normal iterative 𝑘-means algorithm 

 
The 𝑘-means++ algorithm achieves 𝑂(log 𝑘) approximation  
ratio on expectation 
 𝐸[𝑐𝑐𝑐𝑡]  =  8(ln 𝑘 +  2)OPT 
 
The 𝑘-means++ algorithm converges fast in practice 

(Arthur & Vassilvitskii ’07) 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
The clusters have to be of roughly equal density 
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Limitations of 𝑘-means clusterings 

The clusters have to be of roughly equal size 
The clusters have to be of roughly equal density 
The clusters have to be of roughly spherical shape 
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Chapter 5.3:  
Probabilistic Model-based 

Aggarwal Ch. 6.5 
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The EM clustering algorithm 
Probabilistic clustering 
 i.e. not exclusive 
 every object has a certain probability (affinity) to every cluster 

 
Representative, in a way 
 each cluster is represented by some parameters, Θ 
 the parameter may include (or specify) a cluster centroid 

 
Requires us to assume a distribution of a cluster 
 for now, each cluster is independent Gaussian 

 
We use the expectation-maximization (EM) approach 

V-1: 31 



IRDM ‘15/16 

The basics 

We aim at finding model Θ, i.e. parameters 𝝁𝑖 and 𝚺𝑖 for each 𝑑-
dimensional Gaussian cluster, plus 𝑘 mixture parameters 𝑃(𝐶𝑖) 
 pdf of an object 𝒙 in cluster 𝐶𝑖 is 

𝑓𝑖 𝒙 = 𝑓 𝒙 𝝁𝑖 ,𝚺𝑖 = 2𝜋 −𝑑2 𝚺𝑖
−12 exp −

𝒙 − 𝝁𝑖 𝑇𝚺i−1 𝒙 − 𝝁𝑖
2

 

 total pdf of 𝑥 is a mixture model of the 𝑘 cluster Gaussians 

𝑓 𝒙 = �𝑓𝑖 𝒙 𝑃 𝐶𝑖 = �𝑓(𝒙 ∣ 𝝁𝑖 ,𝚺𝑖

𝑘

𝑖

𝑘

𝑖

)𝑃(𝐶𝑖) 

 the log-likelihood of the data D given parameters Θ then is 

log (𝑃 𝑫 Θ = � log (�𝑓 𝒙𝑗 𝝁𝑖 ,𝚺𝑖

𝑘

𝑖

𝑛

𝑗=1

𝑃(𝐶𝑖) 
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The general EM clustering algorithm 
Initialisation 
 initialise parameters Θ randomly 
 
Expectation (𝐸) step 
 compute the posterior probability 𝑃(𝐶𝑖 ∣ 𝒙𝑗) per Bayes’ theorem 

𝑃 𝐶𝑖 𝒙𝑗 =
𝑃 𝒙𝑗 𝐶𝑖 𝑃 𝐶𝑖

∑ 𝑃 𝒙𝑗 𝐶𝑎 𝑃 𝐶𝑎𝑘
𝑎

 

 
Maximisation (𝑀) step 
 re-estimate Θ given 𝑃(𝐶𝑖 ∣ 𝒙𝑗) 

 
Repeate 𝐸 and 𝑀 steps until convergence 
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EM with 1d Gaussians 

Pdf is:  𝑓 𝑥 𝜇𝑖 ,𝜎𝑖2 = 1
2𝜋𝜎𝑖

exp − 𝑥−𝜇𝑖 2

2𝜎𝑖
2  

 
Initialisation step 
 mean 𝜇 is sampled u.a.r. from possible values, 𝜎2 = 1, and  

𝑃 𝐶𝑖 = 1
𝑘
 (every cluster is equiprobable) 

 
Expectation step 

𝑤𝑖𝑗 = 𝑃 𝐶𝑖 𝑥𝑗 =
𝑓 𝑥𝑗 𝜇𝑖 ,𝜎𝑖2 𝑃 𝐶𝑖

∑ 𝑓 𝑥𝑗 𝜇𝑎,𝜎𝑎2 𝑃 𝐶𝑎𝑘
𝑎

 

Maximisation step 

𝜇𝑖 =
∑ 𝑤𝑖𝑗𝑥𝑗𝑛
𝑗
∑ 𝑤𝑖𝑗
𝑛
𝑗

 𝜎𝑖2 =
∑ 𝑤𝑖𝑗 𝑥𝑗−𝜇𝑖

2𝑛
𝑗

∑ 𝑤𝑖𝑗
𝑛
𝑗

 𝑃 𝐶𝑖 =
∑ 𝑤𝑖𝑗
𝑛
𝑗

𝑛
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Weighted mean Weighted variance Fraction of weight in cluster 𝑖 
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ExaMple 
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Initialisation 

Iteration 1 

Iteration 2 
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EM in 𝑑 dimensions 
If we generalise to 𝑑-dimensional Gaussians, we need to model the 
interactions between all dimensions – we need the covariance matrix.  
 
In practice we need to estimate only the upper triangular matrix,  
which means estimating 𝑑 𝑑+1

2
 parameters. That’s a lot of parameters.  

 hence, in practice often dimensions are assumed to be independent, yielding 𝑑 parameters 
 
The expectation step is as in 1-D 
 
The mean and prior 𝑃(𝐶𝑖) are estimated as in 1-D 
 
The variance of cluster 𝐶𝑖 in dimension 𝑎 is 

𝜎𝑎𝑎𝑖
2 =

∑ 𝑤𝑖𝑗 𝒙𝑗𝑎 − 𝝁𝑖𝑎
2𝑛

𝑗

∑ 𝑤𝑖𝑗𝑛
𝑗
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Example – initialisation 
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Example – iteration 1 
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Example – iteration 36 
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𝑘-means as EM 

Iterative 𝑘-means can be seen as a special case of EM, 
i.e. with a different cluster density function 
 𝑃 𝑥𝑗 𝐶𝑖 = 1 iff centroid 𝑖 is the closest to point 𝑥𝑗 

 
The posterior probability is then 
 𝑃 𝐶𝑖 𝑥𝑗 = 1 iff point 𝑥𝑗 belongs to cluster 𝑖 

 
The parameters are the centroids and 𝑃(𝐶𝑖) 
 the co-variance matrix can be ignored 
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Chapter 5.4:  
Validation 

Aggarwal Ch. 6.9 
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How to select 𝑘 

Both 𝑘-means and EM require user to define 𝑘 before 
the algorithm is run 
 what if we don’t know the number of clusters beforehand? 

 
The larger the value of 𝑘,  
 the smaller the error 
 the more complex the model 
 the higher the risk for over-fitting 
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Cross-validation 

As with regression: 
 hold out some random points (test set) 
 run clustering on the remaining points (training set) 
 compute the error with test set included 
 re-iterate with different values of 𝑘 and select the one with least 

overall error 
 
Normally 𝑁-fold cross validation 
 typically 𝑁 = 10 
 data is divided in 𝑁 even sized sets 
 cross-validation is run 𝑁 times, each time keeping one set as the 

test set and rest 𝑁– 1 sets together as the training set 
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AIC and BIC 
Let 𝑃Θ (𝐷 ∣ 𝐶) be the maximized likelihood of clustering 𝐶 
(obtained e.g. via EM algorithm) 
 
Let 𝑙(𝐶) be the number of parameters in Θ we need for C 
 for Gaussian with independent dimensions, 𝑞 𝐶 =  𝑘 × 𝑑 + 2  

 𝑘 clusters, and per cluster 1 mixture parameter 𝑃(𝐶𝑖), 𝑑 variances, and  
1 mean (although 𝑑-dimensional, it only counts as one parameter) 
 

Main idea: we pay for every parameter in the model 
 in Akaike’s Information Criterion (AIC) we select the 𝑘 that minimizes 
𝐴𝐴𝐶 = − log𝑃Θ(𝐷 ∣ 𝐶) + 𝑙(𝐶)  

 in Bayesian Information Criterion (BIC) we select the 𝑘 that minimizes 
𝐵𝐴𝐶 = − log𝑃Θ (𝐷 ∣ 𝐶) + 𝑗(𝐶)

2
log𝑛 

 

(Akaike, 1974; Schwarz, 1978) 
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Today’s Conclusions 

Clustering is one of the most important and most  
used data analysis methods 
 

There exist many different types of clustering 
 so far we’ve seen representative and probabilistic clustering 
 every type of clustering has its strengths and weaknesses 

 

Choosing the number of clusters is often difficult 
 cross-validation is a standard method 
 AIC and BIC are principled general ways for model selection 
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Thank you! 
Clustering is one of the most important and most  
used data analysis methods 
 

There exist many different types of clustering 
 so far we’ve seen representative and probabilistic clustering 
 every type of clustering has its strengths and weaknesses 

 

Choosing the number of clusters is often difficult 
 cross-validation is a standard method 
 AIC and BIC are principled general ways for model selection 
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