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Revision 1, November 20th  
typo’s fixed: dendrogram 

 
Revision 2, December 10th  

clarified: we do consider a point 𝑥 as a 
member of its own 𝜖-neighborhood 
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November 19th 2015 
The First Midterm Test 

 Where:  Günter-Hotz Hörsaal (E2.2)  
 

 Material:  the first four lectures, the first two homeworks 
 

  You are allowed to bring one (1) sheet of A4 paper with  
handwritten or printed notes on both sides .  

 
No other material (notes, books, course materials) or  

devices (calculator, notebook, cell phone, toothbrush, etc) allowed. 
 

Bring an ID; either your UdS card, or passport. 
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Preliminary dates: February 15th and 16th 2016 
The Final Exam 

Oral exam. 
 

Can only be taken when you passed two out of three mid-term tests. 
 

More details later. 
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IRDM Chapter 5, overview 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Validation 
5. Hierarchical clustering 
6. Density-based clustering 
7. Clustering high-dimensional data 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15 
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IRDM Chapter 5, today 
1. Basic idea 
2. Representative-based clustering 
3. Probabilistic clustering 
4. Validation 
5. Hierarchical clustering 
6. Density-based clustering 
7. Clustering high-dimensional data 

 
 

You’ll find this covered in  
Aggarwal Ch. 6, 7 
Zaki & Meira, Ch. 13—15  
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Chapter 5.5:  
Hierarchical Clustering 

Aggarwal Ch. 6.4 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 

V-2: 7 
k = 6 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 

V-2: 8 
k = 5 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 

V-2: 10 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 

V-2: 11 
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The basic idea 

Create clustering for each number of clusters 𝑘 = 1,2, … ,𝑛 

 
The clusterings must be hierarchical 
 every cluster of 𝑘-clustering is a union of some clusters in an 𝑙-

clustering for all 𝑘 < 𝑙 
 i.e. for all 𝑙, and for all 𝑘 > 𝑙, every cluster in an 𝑙-clustering is a 

subset of some cluster in the 𝑘-clustering 
 
Example: 

V-2: 12 
k = 1 
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Dendrograms 

The difference in height between the tree and its 
subtrees shows the distance between the two branches 

V-2: 13 

Distance is ≈0.7 
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Dendrograms and clusters 
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Dendrograms, revisited 

Dendrograms show the hierarchy of the clustering 
 
Number of clusters can be deduced from a dendrogram 
 higher branches 

 
Outliers can be detected from a dendrogram 
 single points that are far from others 

V-2: 15 
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Agglomerative and Divisive 

Agglomerative: bottom-up 
 start with 𝑛 clusters 
 combine two closest clusters into a cluster of one bigger cluster 

 
 

Divisive: top-down 
 start with 1 cluster 
 divide the cluster into two 

 divide the largest (per diameter) cluster into smaller clusters 

V-2: 16 
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Cluster distances 
The distance between two points 𝑥 and 𝑦 is 𝑑(𝑥,𝑦) 
 
What is the distance between two clusters? 
 
Many intuitive definitions – no universal truth 
 different cluster distances yield different clusterings 
 the selection of cluster distance depends on application 

 
Some distances between clusters 𝐵 and 𝐶: 
 minimum distance 𝑑(𝐵,𝐶)  =  min {𝑑(𝑥,𝑦) ∶  𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶} 
 maximum distance 𝑑(𝐵,𝐶)  =  max {𝑑(𝑥,𝑦) ∶  𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶} 
 average distance 𝑑(𝐵,𝐶)  =  𝑎𝑎𝑎{𝑑(𝑥,𝑦) ∶  𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶} 
 distance of centroids 𝑑(𝐵,𝐶)  =  𝑑(𝜇𝐵 ,𝜇𝐶),  

where 𝜇𝐵 is the centroid of 𝐵 and 𝜇𝐶 is the centroid of 𝐶 

V-2: 17 
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Single link 

The distance between two clusters is the distance 
between the closest points 
 𝑑(𝐵,𝐶)  =  min {𝑑(𝑥,𝑦) ∶ 𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶} 
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Strength of single-link 

Can handle non-spherical clusters of unequal size 
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Weaknesses of single-link 

Sensitive to noise and outliers 
Produces elongated clusters 

V-2: 20 
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Complete link 

The distance between two clusters is the distance 
between the furthest points 
 𝑑(𝐵,𝐶)  = max {𝑑(𝑥,𝑦) ∶ 𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶} 
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Strengths of complete link 

Less susceptible to noise and outliers 

V-2: 22 
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Weaknesses of complete-link 

Breaks largest clusters 
Biased towards spherical clusters 
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Group average and Mean distance 

Group average is the average of pairwise distances 
 𝑑 𝐵,𝐶 = avg 𝑑 𝑥,𝑦 : 𝑥 ∈ 𝐵 𝑎𝑎𝑎 𝑦 ∈ 𝐶 = ∑ 𝑑 𝑥,𝑦

𝐵 𝐶𝑥∈𝐵,𝑦∈𝐶  

Mean distance is the distance of the cluster centroids 
 𝑑 𝐵,𝐶 = 𝑑(𝜇𝐵, 𝜇𝐶) 
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Properties of group average 

A compromise between single and complete link 
 
Less susceptible to noise and outliers 
 similar to complete link 

 
Biased towards spherical clusters 
 similar to complete link 
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Ward’s method 
Ward’s distance between clusters 𝐴 and 𝐵 is the increase in sum of 
squared errors (SSE) when the two clusters are merged  
 SSE for cluster 𝐴 is 𝑆𝑆𝐸𝐴 = ∑ 𝑥 − 𝜇𝐴 2

𝑥∈𝐴  
 difference for merging clusters 𝐴 and 𝐵 into cluster 𝐶 is then 

𝑑(𝐴,𝐵)  = Δ𝑆𝑆𝐸𝐶  =  𝑆𝑆𝐸𝐶  –  𝑆𝑆𝐸𝐴 –  𝑆𝑆𝐸𝐵  
 or, equivalently, weighted mean distance  

 𝑑 𝐴,𝐵 = 𝐴 𝐵
𝐴 +|𝐵|

𝜇A − 𝜇𝐵 2 
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Discussion on Ward’s method 

Less susceptible to noise and outliers 
 
Biases towards spherical clusters 
 
Hierarchical analogue of 𝑘-means 
 hence many shared pro’s and con’s  
 can be used to initialise 𝑘-means 
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Comparison 
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Comparison 
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Comparison 
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Comparison 
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Lance-Williams formula 

After merging clusters 𝐴 and 𝐵 into cluster 𝐶 we need to 
compute 𝐶’s distance to another cluster 𝑍. The Lance-
Williams formula provides a general equation for this: 
 

𝑑 𝐶,𝑍 = 𝛼𝐴𝑑 𝐴,𝑍 + 𝛼𝐵𝑑 𝐵,𝑍 + 𝛽𝛽 𝐴,𝐵 + 𝛾|𝑑 𝐴,𝑍 − 𝑑 𝐵,𝑍 | 

V-2: 32 

𝛼𝐴 𝛼𝐵 𝛽 𝛾 

Single link 1/2 1/2 0 – 1/2 

Complete link 1/2 1/2 0 1/2 

Group average |𝐴|/(|𝐴|  +  |𝐵|) |𝐵|/(|𝐴|  + |𝐵|) 0 0 

Mean distance |𝐴|/(|𝐴|  +  |𝐵|) |𝐵|/(|𝐴|  + |𝐵|) – |𝐴||𝐵|/(|𝐴| + |𝐵|)2 0 

Ward’s method (|𝐴| + |𝑍|)/(|𝐴| + |𝐵| + |𝑍|) (|𝐵| + |𝑍|)/(|𝐴| + |𝐵| + |𝑍|) – |𝑍|/(|𝐴| + |𝐵| + |𝑍|) 0 
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Computational complexity 

Takes 𝑂(𝑛3) time in most cases 
 𝑛 steps 
 in each step, 𝑛2 distance matrix must be updated and searched 
 
𝑂(𝑛2 log (𝑛)) time for some approaches that use 
appropriate data structures  
 e.g. keep distances in a heap 
 each step takes 𝑂(𝑛 log 𝑛) time 
 
𝑂(𝑛2) space complexity 
 have to store the distance matrix 
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Chapter 5.6:  
Grid and Density-based 

Aggarwal Ch. 6.6 

V-2: 34 
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The idea 

Representation-based 
clustering can find only 
convex clusters 
 data may contain interesting  

non-convex clusters 

V-2: 35 

In density-based clustering a cluster is a ‘dense area of points’ 
 how to define ‘dense area’? 
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Grid-based Clustering 
Algorithm GENERICGRID(data 𝑫, num-ranges 𝑝, min-density 𝜏) : 
 discretise each dimension of 𝑫 into 𝑝 ranges 
 determine those cells with density ≥ 𝜏 
 create a graph 𝐺 with a node per dense cell,  

add an edge if the two cells are adjacent 
 determine the connected components 
return points in each component as a cluster 
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Discussing Grid-based clustering 
The Good 
 we don’t have to specify 𝑘 
 we can find arbitrarily shaped clusters 

 
The Bad 
 we have to specify a global minimal density 𝜏 
 only points in dense cells are part of clusters, all points in 

neighbouring sparse cells are ignored 
 

The Ugly 
 we consider only a single, global, rectangular-shaped grid 
 number of grid cells increases exponentially with dimensionality 
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Some definitions 
An 𝝐-neighbourhood of point 𝒙 of data 𝑫 is  
the set of points of 𝑫 that are within 𝜖 distance from 𝒙  
 𝑁𝜖 𝒙 =  𝒚 ∈ 𝑫:𝑑 𝒙,𝒚 ≤ 𝜖  -- note, we count x aswell! 
 parameter 𝜖  is set by the user 

 
Point 𝒙 ∈ 𝑫 is a core point if 𝑁𝜖 𝒙 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚 
 minpts (aka 𝜏) is a user supplied parameter 
 
Point 𝒙 ∈ 𝑫 is a border point if it is not a core point, 
but 𝒙 ∈ 𝑁𝜖(𝒛) for some core point 𝒛  
 
A point 𝒙 ∈ 𝑫 that is neither a core point nor a border point is 
called a noise point  

 
 
 (be aware: some definitions do count a point as a member of its own 𝜖-neighborhood, some do not. Here we do.) 
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Example 

(minpts was 5, now 6 to make clear we count x as an epsilon-neighbor of itself) 
V-2: 39 

x 
z 

y 

minpts = 6 

Core point 

Noise point 

Border point 
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Density reachability 

Point 𝒙 ∈ 𝑫 is directly density reachable from point 𝒚 ∈ 𝑫 if 
 𝒚 is a core point 
 𝒙 ∈ 𝑁𝜖(𝒚) 
 
Point 𝒙 ∈ 𝑫 is density reachable from point 𝒚 ∈ 𝑫 if there is a 
chain of points 𝒙0,𝒙1, … ,𝒙𝑙 s.t. 𝒙 = 𝒙0,𝒚 = 𝒙𝑙, and 𝒙𝑖−𝟏 is 
directly density reachable from 𝒙𝑖 for all 𝑖 = 1, … , 𝑙 
 not a symmetric relationship (!) 
 
Points 𝒙,𝒚 ∈ 𝑫 are density connected if there exists a core 
point 𝒛 s.t. both 𝒙 and 𝒚 are density reachable from 𝒛 
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Density-based clusters 

A density-based cluster  is a maximal set of  
density connected points 

(image from Wikipedia) 
V-2: 41 
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The DBSCAN algorithm 
 for each unvisited point 𝒙 in the data 

 compute 𝑁𝜖(𝒙) 
 if 𝑁𝜖 𝒙 ≥ 𝐦𝐦𝐦𝐦𝐦𝐦 

 EXPANDCLUSTER(𝑥, ++clusterID) 
 

 EXPANDCLUSTER(𝒙, ID) 
 assign 𝒙 to cluster ID and set N ← 𝑁𝜖(𝒙) 
 for each 𝒚 ∈ 𝑁 

 if 𝒚 is not visited and 𝑁𝜖 𝒚 ≥ 𝐦𝐦𝐦𝐦𝐦𝐦  
 𝑁 ← 𝑁 ∪ 𝑁𝜖(𝒚) 

 if 𝒚 does not belong to any cluster 
 assign 𝒚 to cluster ID 
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More on DBSCAN 

DBSCAN can return either overlapping or  
non-overlapping clusters 
 ties are broken arbitrarily 

 
The main time complexity comes from  
computing the neighborhoods 
 total 𝑂(𝑛 log𝑛) with spatial index structures 

 won't work with high dimensions, worst case is 𝑂(𝑛2) 
 
With the neighborhoods known, DBSCAN 
only needs a single pass over the data 
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The parameters 

DBSCAN requires two parameters, 𝜖 and 𝐦𝐦𝐦𝐦𝐦𝐦 
 
𝐦𝐦𝐦𝐦𝐦𝐦 controls the minimum size of a cluster 
 𝐦𝐦𝐦𝐦𝐦𝐦 = 1 allows singleton clusters 
 𝐦𝐦𝐦𝐦𝐦𝐦 = 2 makes DBSCAN essentially a single-link clustering 
 higher values avoid the long-and-narrow clusters of single link 

 
𝜖 controls the required density 
 a single 𝜖 is not enough if the clusters are of very different density 
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Chapter 5.7:  
More Clustering Models 

Aggarwal Ch. 6.7-6.8 
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More clustering models 
So far we’ve seen 
 representative-based clustering 
 model-based clustering 
 hierarchical clustering 
 density-based clustering 
 
There are many more types of clustering, including 
 co-clustering 
 graph clustering (Aggarwal Ch. 6.8) 
 non-negative matrix factorisation (NMF) (Aggarwal Ch. 6.9) 

 
But we’re not going to discuss these in IRDM. 
 phew! 
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Chapter 5.8:  
Clustering High-Dimensional Data 

Aggarwal Ch. 7.4—7.4.2 
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Clustering High Dimensional Data 

If we compute similarity over many dimensions,  
all points will be roughly equi-distant.  
 
There exist no clusters over many dimensions. 
 or, are there? 
 
Of course there are! 
 data can have a much lower intrinsic dimensionality (SVD) 

i.e. many dimensions are noisy, irrelevant, or copies 
 data can have clusters embedded in subsets of its dimensions 
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Spaces 

The full space of data 𝑫 is its set of attributes 𝒜 
 
A subspace 𝑆 of 𝑫 is a subset of 𝒜, i.e. 𝑆 ⊆ 𝒜 
 there exist 2 𝒜 − 1 non-empty subspaces 
 
A subspace cluster is a cluster 𝐶 over a subspace 𝑆 
 a group of points that is highly similar over subspace 𝑆 
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High-dimensional Grids 

In full-dimensional grid-based methods, the grid cells are 
determined on the intersection of the discretization 
ranges 𝑝 across all dimensions.  
 
What happens for high-dimensional data? 
 many many grid cells will be empty 
 
CLIQUE is a generalisation of grid-based clustering to 
subspaces. In CLIQUE the ranges are determined over  
only a subset of dimensions with density greater than 𝜏. 
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CLustering In QUEst 

CLIQUE is the first subspace clustering algorithm. 
 
 partition each dimension into 𝑝 ranges  
 for each subspace we now have grid  

cells of the same volume 
 subspace clusters are connected 

dense cells in the grid 
 

(Agrawal et al. 1998) 
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Finding dense cells 
CLIQUE uses anti-monotonicity to find dense grid cells in 
subspaces: the higher the dimensionality, the sparser the cells 
 
 
 
 
 
 
 
Main Idea: 
 every subspace we consider is a ‘transaction database’, every cell is then a 

‘transaction’. If a cell is 𝜏-dense, the subspace ‘itemset’ has been ‘bought’.  
 we now mine frequent itemsets with minsup=1 
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Example 

 
A-priori for subspace clusters: 
 
For every level 𝑙 in the subspace lattice,  
we check, for all subspaces 𝑆 ∈ 𝒜 𝑙  
whether 𝑆 contains dense cells;   
but only if all subspaces 𝑆′ ⊂ 𝑆 contain  
dense cells. 
 
If 𝑆 contains dense cells, we report each  
group of adjacent dense cells as a  
cluster 𝐶 over subspace 𝑆 
 
 V-2: 53 
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Dense cluster in 
subspace A 
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Example 

 
A-priori for subspace clusters: 
 
For every level 𝑙 in the subspace lattice,  
we check, for all subspaces 𝑆 ∈ 𝒜 𝑙  
whether 𝑆 contains dense cells;   
but only if all subspaces 𝑆′ ⊂ 𝑆 contain  
dense cells. 
 
If 𝑆 contains dense cells, we report each  
group of adjacent dense cells as a  
cluster 𝐶 over subspace 𝑆 
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subspace B 
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Example 

 
A-priori for subspace clusters: 
 
For every level 𝑙 in the subspace lattice,  
we check, for all subspaces 𝑆 ∈ 𝒜 𝑙  
whether 𝑆 contains dense cells;   
but only if all subspaces 𝑆′ ⊂ 𝑆 contain  
dense cells. 
 
If 𝑆 contains dense cells, we report each  
group of adjacent dense cells as a  
cluster 𝐶 over subspace 𝑆 
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AB 

Dense cluster in 
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Dense cluster in 
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Example 

 
A-priori for subspace clusters: 
 
For every level 𝑙 in the subspace lattice,  
we check, for all subspaces 𝑆 ∈ 𝒜 𝑙  
whether 𝑆 contains dense cells;   
but only if all subspaces 𝑆′ ⊂ 𝑆 contain  
dense cells. 
 
If 𝑆 contains dense cells, we report each  
group of adjacent dense cells as a  
cluster 𝐶 over subspace 𝑆 
 
 V-2: 56 

A B 

To find dense clusters in a subspace, 
we only have to consider grid cells that 

are dense in all super-spaces 
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Discussion of CLIQUE 

CLIQUE was the first subspace clustering algorithm.  
 and it shows 
 
It produces an enormous amount of clusters 
 just like frequent itemset mining 
 nothing like ‘a summary of your data‘ 
 

This, however, is general problem of subspace clustering 
 there are exponentially many subspaces 
 and for each subspace there are exponentially many clusters 
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Conclusions 

Clustering is one of the most important and  
most used data analysis methods 
 

There exist many different types of clustering 
 we’ve seen representative, hierarchical, probabilistic, and density-based  
 

Analysis of clustering methods is often difficult 
 
Always think what you’re doing if you use clustering 
 in fact, just always think what you’re doing  
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Thank you! 
Clustering is one of the most important and  
most used data analysis methods 
 

There exist many different types of clustering 
 we’ve seen representative, hierarchical, probabilistic, and density-based  
 

Analysis of clustering methods is often difficult 
 
Always think what you’re doing if you use clustering 
 in fact, just always think what you’re doing  
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