
IRDM ‘15/16

Jilles Vreeken

Chapter 7-2:
Discrete Sequential Data

26 Nov 2015

IRDM ‘15/16

IRDM Chapter 7, overview

 Time Series
1. Basic Ideas
2. Prediction
3. Motif Discovery

 Discrete Sequences
4. Basic Ideas
5. Pattern Discovery
6. Hidden Markov Models

You’ll find this covered in
Aggarwal Ch. 3.4, 14, 15

VII-1: 2

IRDM ‘15/16

IRDM Chapter 7, today

 Time Series
1. Basic Ideas
2. Prediction
3. Motif Discovery

 Discrete Sequences
4. Basic Ideas
5. Pattern Discovery
6. Hidden Markov Models

You’ll find this covered in
Aggarwal Ch. 3.4, 14, 15

VII-1: 3

IRDM ‘15/16

Chapter 7.3, ctd:
Motif Discovery

Aggarwal Ch. 14.4, 3.4

VII-1: 4

IRDM ‘15/16

Dynamic Time Warping
DTW stretches the time axis of one series to enable better matches

(Aggarwal Ch. 3.4)
VII-1: 5

IRDM ‘15/16

DTW, formally
Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between the first 𝑖 and first 𝑗
elements of time series 𝑋 of length 𝑛 and 𝑌 of length 𝑚

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither

We initialise as follows
 𝐷𝐷𝐷 0,0 = 0
 𝐷𝐷𝐷 0, 𝑗 = ∞ for all 𝑗 ∈ {1, … ,𝑛}
 𝐷𝐷𝐷 𝑖, 0 = ∞ for all 𝑖 ∈ {1, … ,𝑚}

We can then simply iterate by increasing 𝑖 and 𝑗

(Aggarwal Ch. 3.4)
VII-1: 6

IRDM ‘15/16

Computing DTW (1)
Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between the first 𝑖 and first 𝑗
elements of time series 𝑋 of length 𝑛 and 𝑌 of length 𝑚

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither

From the initialised values, can simply iterate by increasing 𝑖 and 𝑗:
for 𝑖 = 1 to 𝑚
 for 𝑗 = 1 to 𝑛
 compute 𝐷𝐷𝐷(𝑖, 𝑗)

We can also compute it recursively, by dynamic programming.
Both naïve strategies cost 𝑂 𝑛𝑛 , however.

(Aggarwal Ch. 3.4)
VII-1: 7

IRDM ‘15/16

Computing DTW (2)

Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between
the first 𝑖 elements of time series 𝑋 of length 𝑛 and
the first 𝑗 elements of time series 𝑌 of length 𝑚

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖 ,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither

We can speed up computation by imposing constraints.
 e.g. a window constraint to compute 𝐷𝐷𝐷(𝑖, 𝑗) only when 𝑖 − 𝑗 ≤ 𝑤
 we then only need max 0, i − w − min {𝑛, 𝑖 + 𝑤} inner loops

(Aggarwal Ch. 3.4)
VII-1: 8

IRDM ‘15/16

Lower bounds on DTW

Even smarter is to speed up DTW using a lower bound.

𝐿𝐿_𝐾𝐾𝐾𝐾𝐾(𝑋,𝑌) = ��
𝑌𝑖 − 𝑈𝑖 2

𝑌𝑖 − 𝐿𝑖 2

0

if 𝑋𝑖 > 𝑈𝑖
if 𝑋𝑖 < 𝐿𝑖
otherwise

𝑛

𝑖=1

𝑈𝑖 = max {𝑋𝑖−𝑟:𝑋𝑖+𝑟}
𝐿𝑖 = min {𝑋𝑖−𝑟:𝑋𝑖+𝑟}

where 𝑟 is the reach,
the allowed range
of warping

VII-1: 9

X

Y

L

U

IRDM ‘15/16

Discrete Sequences

VII-
2: 10

IRDM ‘15/16

Chapter 7.4:
Basic Ideas

Aggarwal Ch. 14.1-14.2

VII-2: 11

IRDM ‘15/16

Trouble in Time Series Paradise

Continuous real-valued time series have their downsides
 mining results rely on either a distance function or assumptions
 indexing, pattern mining, summarisation, clustering, classification,

and outlier detection results hence rely on arbitrary choices

Discrete sequences are often easier to deal with
 mining results rely mostly on counting

How to transform a time series into an event sequence?
 discretisation

VII-2: 12

IRDM ‘15/16

Approximating a Time Series

(Lin et al. 2002, 2007)
VII-2: 13

IRDM ‘15/16

SAX

Symbolic Aggregate Approximation (SAX)
 most well-known approach to discretise a time series
 type of piece-wise aggregated approximation (PAA)

How to do SAX
 divide the data into 𝑤 frames
 compute the mean per frame
 perform equal-height binning

over the means, to obtain an
alphabet of 𝑎 characters

(Lin et al. 2002, 2007)

 VII-2: 14

IRDM ‘15/16

Definitions

A discrete sequence 𝑋1 …𝑋𝑛 of length 𝑛 and
dimensionality 𝑑, contains 𝑑 discrete feature values at
each of 𝑛 different timestamps 𝑡1 … 𝑡𝑛.

Each of the 𝑛 components 𝑋𝑖 contains 𝑑 discrete
behavioral attributes (𝑥𝑖1 … 𝑥𝑖𝑑) collected at the 𝑖th
timestamp.

The actual time stamps are usually ignored – they only
induce an order on the components, or events.

VII-2: 15

IRDM ‘15/16

Types of discrete sequences

In many applications, the dimensionality is 1
 e.g. strings, such as text or genomes.
 for AATCGTAC over an alphabet Σ = {A, C, G, T}, each 𝑋𝑖 ∈ Σ

In some applications, each 𝑋𝑖 is not a vector, but a set
 e.g. a supermarket transaction, 𝑋𝑖 ⊆ Σ
 there is no order within 𝑋𝑖

We will consider the set-setting, as it is most general

VII-2: 16

IRDM ‘15/16

Chapter 7.5:
Frequent Patterns

Aggarwal Ch. 15.2

VII-2: 17

IRDM ‘15/16

Sequential patterns

A sequential pattern is a sequence.
 to occur in the data, it has to be a subsequence of the data.

Definition: Given two sequences 𝒳 = 𝑋1 …𝑋𝑛 and 𝒵 = 𝑍1 …𝑍𝑘 where
all elements 𝑋𝑖 and 𝑍𝑖 in the sequences are sets. Then, the sequence
𝒵 is a subsequence of 𝒳, if 𝑘 elements 𝑋𝑖1 …𝑋𝑖𝑘 can be found in 𝒳,
such that 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 and 𝑍𝑗 ⊆ 𝑋𝑖𝑗 for each 𝑗 ∈ {1 …𝑘}

VII-2: 18

a a a b d c d b a b c a a b a b a b

a b 𝒵 =

𝒳 =

IRDM ‘15/16

Support

Depending on whether we have a database 𝑫 of sequences,
or a single long sequence, we have to define the support of a
sequential pattern differently.

Standard, or ‘per sequence’ support counting
 given a database 𝑫 = {𝒳1, … ,𝒳𝑁}, the support of a subsequence
𝒵 is the number of sequences in 𝑫 that contain 𝒵.

Window-based support counting
 given a single sequence 𝒳, the support of a subsequence 𝒵 is the

number of windows over 𝒳 that contain 𝒵.

(we can define frequency analogue as relative support)
VII-2: 19

IRDM ‘15/16

Windows

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data

VII-2: 20

a a a b d c d b a b c a b d a a b c

a b 𝒵 =

𝒳 =

IRDM ‘15/16

Windows

VII-2: 21

a a a b d c d b a b c a b d a a b c

a b : 1

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data

𝒵 =

𝒳 =

IRDM ‘15/16

Windows

VII-2: 22

a a a b d c d b a b c a b d a a b c

a b : 1

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data

𝒵 =

𝒳 =

IRDM ‘15/16

Windows

VII-2: 23

a a a b d c d b a b c a b d a a b c

a b : 1 : 2

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data

𝒵 =

𝒳 =

IRDM ‘15/16

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data

Windows

VII-2: 24

a a a b d c d b a b c a b d a a b c

a b : 2 : 3 𝒵 =

𝒳 =

IRDM ‘15/16

Windows

VII-2: 25

a a a b d c d b a b c a b d a a b c

a b : 3 : 4

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s

Window-based support counting
 we can choose a window length 𝑤, and sweep over the data
 support is now dependent on 𝑤, what happens with longer 𝑤?

𝒵 =

𝒳 =

IRDM ‘15/16

Minimal windows

Fixed window lengths lead to double counting
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒]

We can avoid this by counting only minimal windows
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but

no other proper sub-windows of w contain 𝒵.
 for efficiency or fun, we may want to set a maximal window size

VII-2: 26

a a a b d c d b a b c a b d a a b c

a b 𝒵 =

𝒳 =

IRDM ‘15/16

Minimal windows

Fixed window lengths lead to double counting
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒]

We can avoid this by counting only minimal windows
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but

no other proper sub-windows of w contain 𝒵.
 for efficiency or fun, we may want to set a maximal window size

VII-2: 27

a a a b d c d b a b c a b d a a b c

a b 𝒵 =

𝒳 =

IRDM ‘15/16

Minimal windows

Fixed window lengths lead to double counting
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒]

We can avoid this by counting only minimal windows
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but

no other proper sub-windows of w contain 𝒵.
 for efficiency or fun, we may want to set a maximal window size

VII-2: 28

a a a b d c d b a b c a b d a a b c

a b 𝒵 =

𝒳 =

: 5

IRDM ‘15/16

Mining Frequent Sequential Patterns

Like for itemsets, the per-sequence and per-window
definitions of support are also monotone
 we can employ level-wise search!

We can modify
 APRIORI to get to GSP (Agrawal & Srikant, 1995; Mannila, Toivonen, Verkamo, 1995)

 ECLAT to get SPADE (Zaki, 2000)

 FP-GROWTH to get PREFIXSPAN (Pei et al., 2001)

VII-2: 29

IRDM ‘15/16

Generalised Sequential Pattern Mining

Algorithm GSP(sequence database 𝑫, minimal support 𝜎)
begin
 𝑘 ← 1;
 ℱ𝑘 ← {all frequent 1 − item elements}
 while ℱ𝑘 is not empty do
 Generate 𝒞𝑘+1 by joining pairs of sequences in ℱ𝑘 ,
 such that removing an item from the first element of one sequence
 matches the sequence obtained by removing an item from the
 last element of the other
 Prune sequences from 𝒞𝑘+1 that violate downward closure
 Determine ℱ𝑘+1 by support counting on (𝒞𝑘+1,𝑫) and retaining
 sequences from 𝒞𝑘+1 with support at least 𝜎
 𝑘 ← 𝑘 + 1
 end
 return ⋃ ℱ𝑖𝑘

𝑖=1
end
 (Agrawal & Srikant, 1995; Mannila, Toivonen & Verkamo, 1995)

VII-2: 30

a b
c b

a c b
+

∈ ℱ𝑘

∈ ℱ𝑘

∈ 𝒞𝑘+1

IRDM ‘15/16

Episodes

There are many types of sequential patterns

The most well-known are
 𝑛-grams, 𝑘-mers, or strict subsequences,

where we do not allow gaps
 serial episodes, or subsequences,

where we do allow gaps

 VII-2: 31

a c b a c b
a a a b c c d b d b e c b d a a b c 𝒳 =

IRDM ‘15/16

Episodes

There are many types of sequential patterns

The most well-known are
 𝑛-grams, 𝑘-mers, or strict subsequences,

where we do not allow gaps
 serial episodes, or subsequences,

where we do allow gaps

Each element can contain one or more items

VII-2: 32

a b a c

b

d

c

d

a a c d d c d b e f e d b d a a b c
𝒳 = a b c a d b c a a

IRDM ‘15/16

Parallel episodes

Serial episodes are still restrictive
 not everything always happens exactly in sequential order

Parallel episodes acknowledge this
 a parallel episode defines a partial order, for a match it requires all

parallel events to happen, but does not specify their exact order.
 e.g. first ,, then in any order and , and then

We can also combine the two into generalised episodes

 VII-2: 33

b

d

c a

c b

d

a
a

and c
b

d

a b d c

IRDM ‘15/16

Chapter 7.6:
Hidden Markov Models

Aggarwal Ch. 15.5

VII-2: 34

IRDM ‘15/16

Informal definition
Hidden Markov Models are probabilistic, generative models for
discrete sequences. It is a graphical model in which nodes
correspond to system states, and edges to state changes.

In a HMM the states of the system are hidden; not directly visible to
the user. We only observe a sequence over symbols Σ that the
system generates when it switches between states.

VII-2: 35

IRDM ‘15/16

Example HMM

This HMM can generate sequences such as
 VVVVVVVMVV Veggie (common)
 MVMVVMMVM Omni (common)
 MMVMVVVVVV Omni-turned-Veggie (not very common)
 MMMMMMMM Carnivore (rare)

VII-2: 36

Vegetarian Omnivore 0.99 0.90
0.01

0.10

Meal distribution
 V = 99%
 M = 1%

Meal distribution
 𝑉 = 50%
 𝑀 = 50%

IRDM ‘15/16

Example HMM (2)

VII-2: 37

Flexitarian Omnivore 0.60 0.90
0.20

0.08

Meal distribution
V = 80%
M = 20%

Meal distribution
𝑉 = 50%
𝑀 = 50%

Vegetarian Carnivore

0.99

Meal distribution
V = 99%
M = 1%

Meal distribution
V = 1%

M = 99%

0.60

0.01 0.20 0.40 0.02

IRDM ‘15/16

Formal definition

A Hidden Markov Model over alphabet Σ = {𝜎1, … ,𝜎 Σ } is a
directed graph 𝐺(𝑆,𝑇) consisting of 𝑛 states 𝑆 = {𝑠1, … , 𝑠𝑛}.

The initial state probabilities are 𝜋𝑖 , … ,𝜋𝑛. The (directed)
edges correspond to state transitions. The probability of a
transition from state 𝑠𝑖 to state 𝑠𝑗 is denoted by 𝑝𝑖𝑖 .

For every visit to a state, a symbol from Σ is generated with
probability 𝑃(𝜎𝑖 ∣ 𝑠𝑗).

 VII-2: 38

IRDM ‘15/16

What to do with an HMM
There are three main things to do with an HMM

1. Training.

Given topology 𝐺 and database 𝑫, learn the initial state probabilities,
transition probabilities, and the symbol emission probabilities.

2. Explanation.
Given an HMM, determine the most likely state sequence that
generated test sequence 𝒵.

3. Evaluation.
Given an HMM, determine the probability of test sequence 𝒵.

VII-2: 39

IRDM ‘15/16

Using an HMM for Evaluation

We want to know the fit probability that sequence
𝒳 = 𝑋1 …𝑋𝑚 was generated by the given HMM.

Naïve approach
 compute all 𝑛𝑚 possible paths over 𝐺
 for each, determine probability of generating 𝒳
 sum these probabilities, this is the fit probability of 𝒳

VII-2: 40

IRDM ‘15/16

Recursive Evaluation

The fit probability of the first 𝑟 symbols1 can be computed
recursively from the fit probability of the first (𝑟 − 1) symbols2

Let 𝛼𝑟 𝒳, 𝑠𝑗 be the probability that the first 𝑟 symbols of 𝒳
are generated by the model, and the last state is 𝑠𝑗.

𝛼𝑟 𝒳, 𝑠𝑗 = �𝛼𝑟−1 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃 𝑋𝑟 𝑠𝑗
𝑛

𝑖=1

That is, we sum over all paths up to different final nodes.

1 and a fixed value of the 𝑟𝑡𝑡 state 2 and a fixed value of the (𝑟 − 1)𝑠𝑠 state
VII-2: 41

IRDM ‘15/16

Forward Algorithm

We initialise with with 𝛼1 𝒳, 𝑠𝑗 = 𝜋𝑗 ⋅ 𝑃 𝑋1 𝑠𝑗 and
then iteratively compute for each 𝑟 = 1 …𝑚.

The fit probability of 𝒳 is the sum over all end-states,

𝐹(𝒳) = �𝛼𝑚 𝒳, 𝑠𝑗

𝑛

𝑗=1

The complexity of the Forward Algorithm is 𝑂(𝑛2𝑚)

VII-2: 42

IRDM ‘15/16

But, why?

Good question to ask: why compute the fit probability?
 classification
 clustering
 anomaly detection

For the first two, we can now create group-specific
HMMs, and assign the most likely sequences to those.

For the the third, we have an HMM for our training data,
and can now report poorly fitting sequences.

VII-2: 43

IRDM ‘15/16

Using an HMM for Explanation

We want to know why a sequence 𝓧 fits our data. The
most likely state sequence gives an intuitive explanation.

Naïve approach
 compute all 𝑛𝑚 possible paths over the HMM
 for each, determine probability of generating 𝒳
 report the path with maximum probability

Instead of naively, can re-use the recursive approach?

VII-2: 44

IRDM ‘15/16

Viterbi Algorithm
Any subpath of an optimal state path must also be optimal for
generating the corresponding subsequence.

Let 𝛿𝑟(𝒳, 𝑠𝑗) be the probability of the best state sequence
generating the first 𝑟 symbols of 𝒳 ending at state 𝑠𝑗 , with

𝛿𝑟 𝒳, 𝑠𝑗 = max
𝑖∈[1,𝑛]

𝛿𝑟−1 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃(𝑋𝑟 ∣ 𝑠𝑗)

That is, we recursively compute the maximum-probability
path over all 𝑛 different paths for different final nodes.

Overall, we initialise recursion with 𝛿1 𝒳, 𝑠𝑗 = 𝜋𝑗𝑃(𝑋1 ∣ 𝑠𝑗),
and then iteratively compute for 𝑟 = 1 …𝑚.

VII-2: 45

IRDM ‘15/16

Training an HMM

So far, we assumed the given HMM was trained.
How do we train a HMM in practice?

Learning the parameters of an HMM is difficult
 no known algorithm is guaranteed to give the global optimum

There do exist methods for reasonably effective solutions
 e.g. the Forward-Backward (Baum-Welch) algorithm

VII-2: 46

IRDM ‘15/16

Backward

We already know how to calculate the forward probability
𝛼𝑟(𝒳, 𝑠𝑗) for the first 𝑟 symbols of a sequence 𝒳, ending at 𝑠𝑗.

Now, let 𝛽𝑟(𝒳, 𝑠𝑗) be the backward probability for the sequence
after and not including the 𝑟𝑡𝑡 symbol, conditioned that the 𝑟𝑡𝑡
state is 𝑠𝑗. We initialise 𝛽𝒳 𝒳, 𝑠𝑗 = 1, and compute 𝛽𝑟(𝒳, 𝑠𝑗)
just as 𝛼𝑟(𝒳, 𝑠𝑗) but from back to front.

For the Baum-Welch algorithm, we’ll also need
 𝛾𝑟 𝒳, 𝑠𝑖 for the probability that the 𝑟𝑡𝑡 state corresponds to 𝑠𝑖 , and
 𝜓𝑟(𝒳, 𝑠𝑖 , 𝑠𝑗) for the probability of the 𝑟𝑡𝑡 state 𝑠𝑖 , and the 𝑟 + 1 𝑡𝑡 state 𝑠𝑗

VII-2: 47

IRDM ‘15/16

Baum-Welch

We initialize the model parameters randomly.

We will then iteratively
(E-step) Estimate 𝛼 ⋅ ,𝛽 ⋅ ,𝜓 ⋅ , and 𝛾(⋅)
 from the current model parameters
(M-step) Estimate model parameters 𝜋 ⋅ ,𝑃 ⋅ ⋅ ,𝑝⋅⋅
 from the current 𝛼 ⋅ ,𝛽 ⋅ ,𝜓 ⋅ , and 𝛾(⋅)
until the parameters converge.

This is simply the EM strategy!

VII-2: 48

IRDM ‘15/16

Estimating parameters

𝛼 ⋅ Easy. We estimate these using the
 Forward algorithm.

𝛽 ⋅ Easy. We estimate these using the
 Backward algorithm.

VII-2: 49

IRDM ‘15/16

Estimating parameters (2)

𝜓(⋅) We can split this value into
 first till 𝑟𝑡𝑡 , 𝑟𝑡𝑡, and 𝑟 + 1 𝑡𝑡 till end

𝜓𝑟 𝒳, 𝑠𝑖 , 𝑠𝑗 = 𝛼𝑟 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃 𝑋𝑟+1 𝑠𝑗 ⋅ 𝛽𝑟+1(𝒳, 𝑠𝑗)

 and normalize to probabilities over
 all pairs 𝑖, 𝑗. So, easy, after all.

𝛾 ⋅ Easy. For 𝛾𝑟(𝒳, 𝑠𝑖) just fix 𝑠𝑖 and sum
 over 𝜓𝑟(𝒳, 𝑠𝑖 , 𝑠𝑗) varying 𝑠𝑗

VII-2: 50

IRDM ‘15/16

But, why?

VII-2: 51

IRDM ‘15/16

Conclusions

Discrete sequences are a fun aspect of time series
 many interesting problems

Mining sequential patterns
 more expressive than itemsets, more difficult to define support

Hidden Markov Models
 can be used to predict, explain, evaluate discrete sequences

VII-2: 52

IRDM ‘15/16

Discrete sequences are a fun aspect of time series
 many interesting problems

Mining sequential patterns
 more expressive than itemsets, more difficult to define support

Hidden Markov Models
 can be used to predict, explain, evaluate discrete sequences

VII-2: 53

	Slide Number 1
	IRDM Chapter 7, overview
	IRDM Chapter 7, today
	Slide Number 4
	Dynamic Time Warping
	DTW, formally
	Computing DTW (1)
	Computing DTW (2)
	Lower bounds on DTW
	Slide Number 10
	Slide Number 11
	Trouble in Time Series Paradise
	Approximating a Time Series
	SAX
	Definitions
	Types of discrete sequences
	Slide Number 17
	Sequential patterns
	Support
	Windows
	Windows
	Windows
	Windows
	Windows
	Windows
	Minimal windows
	Minimal windows
	Minimal windows
	Mining Frequent Sequential Patterns
	Generalised Sequential Pattern Mining
	Episodes
	Episodes
	Parallel episodes
	Slide Number 34
	Informal definition
	Example HMM
	Example HMM (2)
	Formal definition
	What to do with an HMM
	Using an HMM for Evaluation
	Recursive Evaluation
	Forward Algorithm
	But, why?
	Using an HMM for Explanation
	Viterbi Algorithm
	Training an HMM
	Backward
	Baum-Welch
	Estimating parameters
	Estimating parameters (2)
	But, why?
	Conclusions
	Slide Number 53

