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IRDM Chapter 7, overview 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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IRDM Chapter 7, today 

 Time Series 
1. Basic Ideas 
2. Prediction 
3. Motif Discovery 

 Discrete Sequences 
4. Basic Ideas 
5. Pattern Discovery 
6. Hidden Markov Models 

 
You’ll find this covered in  
Aggarwal Ch. 3.4, 14, 15 
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Chapter 7.3, ctd:  
Motif Discovery 

Aggarwal Ch. 14.4, 3.4 
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Dynamic Time Warping 
DTW stretches the time axis of one series to enable better matches 
 

(Aggarwal Ch. 3.4) 
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DTW, formally 
Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between the first 𝑖 and first 𝑗 
elements of time series 𝑋 of length 𝑛 and 𝑌 of length 𝑚 
 

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither
 

 

We initialise as follows 
 𝐷𝐷𝐷 0,0 = 0 
 𝐷𝐷𝐷 0, 𝑗 = ∞ for all 𝑗 ∈ {1, … ,𝑛}  
 𝐷𝐷𝐷 𝑖, 0 = ∞ for all 𝑖 ∈ {1, … ,𝑚} 
 

We can then simply iterate by increasing 𝑖 and 𝑗 
 

(Aggarwal Ch. 3.4) 
VII-1: 6 
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Computing DTW (1) 
Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between the first 𝑖 and first 𝑗 
elements of time series 𝑋 of length 𝑛 and 𝑌 of length 𝑚 
 

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither
 

 

From the initialised values, can simply iterate by increasing 𝑖 and 𝑗: 
for 𝑖 = 1 to 𝑚 
  for 𝑗 = 1 to 𝑛 
    compute 𝐷𝐷𝐷(𝑖, 𝑗) 

 

We can also compute it recursively, by dynamic programming.  
Both naïve strategies cost 𝑂 𝑛𝑛 , however. 

(Aggarwal Ch. 3.4) 
VII-1: 7 
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Computing DTW (2) 

Let 𝐷𝐷𝐷(𝑖, 𝑗) be the optimal distance between  
the first 𝑖 elements of time series 𝑋 of length 𝑛 and  
the first 𝑗 elements of time series 𝑌 of length 𝑚 
 

𝐷𝐷𝐷 𝑖, 𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑖 ,𝑌𝑗 + min�
𝐷𝑇𝑇(𝑖, 𝑗 − 1)
𝐷𝐷𝐷(𝑖 − 1, 𝑗)

𝐷𝐷𝐷(𝑖 − 1, 𝑗 − 1)

repeat 𝑥𝑖
repeat 𝑦𝑗

repeat neither
 

 
We can speed up computation by imposing constraints. 
 e.g. a window constraint to compute 𝐷𝐷𝐷(𝑖, 𝑗) only when 𝑖 − 𝑗 ≤ 𝑤 
 we then only need max 0, i − w − min {𝑛, 𝑖 + 𝑤} inner loops 

(Aggarwal Ch. 3.4) 
VII-1: 8 
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Lower bounds on DTW 

Even smarter is to speed up DTW using a lower bound. 
 

𝐿𝐿_𝐾𝐾𝐾𝐾𝐾(𝑋,𝑌)  = ��
𝑌𝑖 − 𝑈𝑖 2

𝑌𝑖 − 𝐿𝑖 2

0

if 𝑋𝑖 > 𝑈𝑖  
if 𝑋𝑖 < 𝐿𝑖
otherwise

𝑛

𝑖=1

 

 
𝑈𝑖 = max {𝑋𝑖−𝑟:𝑋𝑖+𝑟} 
𝐿𝑖 = min {𝑋𝑖−𝑟:𝑋𝑖+𝑟} 
 
where 𝑟 is the reach, 
the allowed range  
of warping 
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Discrete Sequences 

VII-
2: 10 
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Chapter 7.4:  
Basic Ideas 

Aggarwal Ch. 14.1-14.2 

VII-2: 11 



IRDM ‘15/16 

Trouble in Time Series Paradise 

Continuous real-valued time series have their downsides 
 mining results rely on either a distance function or assumptions 
 indexing, pattern mining, summarisation, clustering, classification, 

and outlier detection results hence rely on arbitrary choices 
 

Discrete sequences are often easier to deal with 
 mining results rely mostly on counting 
 
How to transform a time series into an event sequence? 
 discretisation 

 

VII-2: 12 
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Approximating a Time Series 

(Lin et al. 2002, 2007) 
VII-2: 13 
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SAX 

Symbolic Aggregate Approximation (SAX)  
 most well-known approach to discretise a time series 
 type of piece-wise aggregated approximation (PAA) 

 
How to do SAX 
 divide the data into 𝑤 frames 
 compute the mean per frame 
 perform equal-height binning  

over the means, to obtain an  
alphabet of 𝑎 characters 
 

 
(Lin et al. 2002, 2007) 
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Definitions 

A discrete sequence 𝑋1 …𝑋𝑛 of length 𝑛 and 
dimensionality 𝑑, contains 𝑑 discrete feature values at 
each of 𝑛 different timestamps 𝑡1 … 𝑡𝑛.  
 
Each of the 𝑛 components 𝑋𝑖 contains 𝑑 discrete  
behavioral attributes (𝑥𝑖1 … 𝑥𝑖𝑑) collected at the 𝑖th 
timestamp. 
 
The actual time stamps are usually ignored – they only 
induce an order on the components, or events.  

VII-2: 15 
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Types of discrete sequences 

In many applications, the dimensionality is 1 
 e.g. strings, such as text or genomes. 
 for AATCGTAC over an alphabet Σ = {A, C, G, T}, each 𝑋𝑖 ∈ Σ 

 
In some applications, each 𝑋𝑖 is not a vector, but a set 
 e.g. a supermarket transaction, 𝑋𝑖 ⊆ Σ 
 there is no order within 𝑋𝑖 
 
We will consider the set-setting, as it is most general 
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Chapter 7.5:  
Frequent Patterns 

Aggarwal Ch. 15.2 

VII-2: 17 
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Sequential patterns 

A sequential pattern is a sequence.  
 to occur in the data, it has to be a subsequence of the data. 
 
 
 
 
Definition: Given two sequences 𝒳 = 𝑋1 …𝑋𝑛 and 𝒵 = 𝑍1 …𝑍𝑘 where 
all elements 𝑋𝑖 and 𝑍𝑖 in the sequences are sets. Then, the sequence 
𝒵 is a subsequence of 𝒳, if 𝑘 elements 𝑋𝑖1 …𝑋𝑖𝑘 can be found in 𝒳, 
such that 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 and 𝑍𝑗 ⊆ 𝑋𝑖𝑗 for each 𝑗 ∈ {1 …𝑘} 

VII-2: 18 
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Support 

Depending on whether we have a database 𝑫 of sequences, 
or a single long sequence, we have to define the support of a 
sequential pattern differently. 
 
Standard, or ‘per sequence’ support counting 
 given a database 𝑫 = {𝒳1, … ,𝒳𝑁}, the support of a subsequence 
𝒵 is the number of sequences in 𝑫 that contain 𝒵. 

 
Window-based support counting 
 given a single sequence 𝒳, the support of a subsequence 𝒵 is the 

number of windows over 𝒳 that contain 𝒵. 
 

(we can define frequency analogue as relative support) 
VII-2: 19 
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Windows 

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 

 

VII-2: 20 

a a a b d c d b a b c a b d a a b c 

a b 𝒵 = 

𝒳 = 



IRDM ‘15/16 

Windows 

VII-2: 21 

a a a b d c d b a b c a b d a a b c 

a b : 1 

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 

 

𝒵 = 

𝒳 = 



IRDM ‘15/16 

Windows 
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a a a b d c d b a b c a b d a a b c 

a b : 1 

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 

 

𝒵 = 

𝒳 = 
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Windows 

VII-2: 23 

a a a b d c d b a b c a b d a a b c 

a b : 1 : 2 

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 

 

𝒵 = 

𝒳 = 
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A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 

 

Windows 

VII-2: 24 

a a a b d c d b a b c a b d a a b c 

a b : 2 : 3 𝒵 = 

𝒳 = 
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Windows 
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a a a b d c d b a b c a b d a a b c 

a b : 3 : 4 

A window 𝒳[𝑠; 𝑒] is a strict subsequence of sequence 𝒳.  
𝒳[𝑠; 𝑒] = 𝑋𝑖 ∈ 𝒳 ∣ 𝑒 ≤ 𝑖 ≤ s  

 
 

 
 
 
 

Window-based support counting 
 we can choose a window length 𝑤, and sweep over the data 
 support is now dependent on 𝑤, what happens with longer 𝑤? 

𝒵 = 

𝒳 = 
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Minimal windows 

Fixed window lengths lead to double counting 
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒] 

 
We can avoid this by counting only minimal windows 
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but 

no other proper sub-windows of w contain 𝒵. 
 for efficiency or fun, we may want to set a maximal window size  
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a a a b d c d b a b c a b d a a b c 

a b 𝒵 = 

𝒳 = 
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Minimal windows 

Fixed window lengths lead to double counting 
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒] 

 
We can avoid this by counting only minimal windows 
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but 

no other proper sub-windows of w contain 𝒵. 
 for efficiency or fun, we may want to set a maximal window size  
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a a a b d c d b a b c a b d a a b c 

a b 𝒵 = 

𝒳 = 
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Minimal windows 

Fixed window lengths lead to double counting 
 if 𝒳[𝑠; 𝑒] supports sequence 𝒵 so do 𝒳[𝑠; 𝑒 + 𝑘] and 𝒳[𝑠 − 𝑘; 𝑒] 

 
We can avoid this by counting only minimal windows 
 𝑤 = 𝒳[𝑠; 𝑒] is a minimal window of pattern 𝒵 if 𝑤 contains 𝒵 but 

no other proper sub-windows of w contain 𝒵. 
 for efficiency or fun, we may want to set a maximal window size  
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a a a b d c d b a b c a b d a a b c 

a b 𝒵 = 
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Mining Frequent Sequential Patterns 

Like for itemsets, the per-sequence and per-window 
definitions of support are also monotone 
 we can employ level-wise search! 

 
We can modify 
 APRIORI to get to GSP (Agrawal & Srikant, 1995; Mannila, Toivonen, Verkamo, 1995) 

 ECLAT to get SPADE (Zaki, 2000) 

 FP-GROWTH to get PREFIXSPAN (Pei et al., 2001) 
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Generalised Sequential Pattern Mining 

Algorithm GSP(sequence database 𝑫, minimal support 𝜎) 
begin 
  𝑘 ← 1; 
  ℱ𝑘 ← {all frequent 1 − item elements} 
  while ℱ𝑘 is not empty do 
    Generate 𝒞𝑘+1 by joining pairs of sequences in ℱ𝑘 ,  
      such that removing an item from the first element of one sequence 
      matches the sequence obtained by removing an item from the  
      last element of the other 
    Prune sequences from 𝒞𝑘+1 that violate downward closure 
    Determine ℱ𝑘+1 by support counting on (𝒞𝑘+1,𝑫) and retaining 
      sequences from 𝒞𝑘+1 with support at least 𝜎 
    𝑘 ← 𝑘 + 1 
  end 
  return ⋃ ℱ𝑖𝑘

𝑖=1  
end 
 (Agrawal & Srikant, 1995; Mannila, Toivonen & Verkamo, 1995) 

VII-2: 30 
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Episodes 

There are many types of sequential patterns 
 
The most well-known are  
 𝑛-grams, 𝑘-mers, or strict subsequences,  

where we do not allow gaps 
 serial episodes, or subsequences, 

where we do allow gaps 
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Episodes 

There are many types of sequential patterns 
 
The most well-known are  
 𝑛-grams, 𝑘-mers, or strict subsequences,  

where we do not allow gaps 
 serial episodes, or subsequences, 

where we do allow gaps 
 

Each element can contain one or more items 
 

VII-2: 32 
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Parallel episodes 

Serial episodes are still restrictive 
 not everything always happens exactly in sequential order 

 
 
 
 
Parallel episodes acknowledge this 
 a parallel episode defines a partial order, for a match it requires all 

parallel events to happen, but does not specify their exact order. 
 e.g. first     ,, then in any order        and       , and then 
 
We can also combine the two into generalised episodes 
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Chapter 7.6:  
Hidden Markov Models 

Aggarwal Ch. 15.5 

VII-2: 34 
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Informal definition 
Hidden Markov Models are probabilistic, generative models for 
discrete sequences. It is a graphical model in which nodes 
correspond to system states, and edges to state changes. 
 
In a HMM the states of the system are hidden; not directly visible to 
the user. We only observe a sequence over symbols Σ that the 
system generates when it switches between states.  
 
 
 

VII-2: 35 
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Example HMM 

This HMM can generate sequences such as 
 VVVVVVVMVV  Veggie (common) 
 MVMVVMMVM Omni (common) 
 MMVMVVVVVV Omni-turned-Veggie (not very common) 
 MMMMMMMM Carnivore (rare) 

VII-2: 36 

Vegetarian Omnivore 0.99 0.90 
0.01 

0.10 

Meal distribution 
    V = 99% 
    M = 1% 

Meal distribution 
 𝑉 = 50%       
 𝑀 = 50%     
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Example HMM (2) 

VII-2: 37 

Flexitarian Omnivore 0.60 0.90 
0.20 

0.08 

Meal distribution 
V = 80% 
M = 20% 

Meal distribution 
𝑉 = 50% 
𝑀 = 50% 

 

Vegetarian Carnivore 

0.99 

Meal distribution 
V = 99% 
M = 1% 

Meal distribution 
V = 1% 

M = 99% 

0.60 

0.01 0.20 0.40 0.02 
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Formal definition 

A Hidden Markov Model over alphabet Σ = {𝜎1, … ,𝜎 Σ } is a 
directed graph 𝐺(𝑆,𝑇) consisting of 𝑛 states 𝑆 = {𝑠1, … , 𝑠𝑛}.  
 
The initial state probabilities are 𝜋𝑖 , … ,𝜋𝑛. The (directed) 
edges correspond to state transitions. The probability of a 
transition from state 𝑠𝑖 to state 𝑠𝑗 is denoted by 𝑝𝑖𝑖 .  
 
For every visit to a state, a symbol from Σ is generated with 
probability 𝑃(𝜎𝑖 ∣ 𝑠𝑗).  
 
 
 
 VII-2: 38 



IRDM ‘15/16 

What to do with an HMM 
There are three main things to do with an HMM 
 
1. Training.  

Given topology 𝐺 and database 𝑫, learn the initial state probabilities, 
transition probabilities, and the symbol emission probabilities.  
 

2. Explanation.  
Given an HMM, determine the most likely state sequence that 
generated test sequence 𝒵. 
 

3. Evaluation.  
Given an HMM, determine the probability of test sequence 𝒵. 
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Using an HMM for Evaluation 

We want to know the fit probability that sequence 
𝒳 = 𝑋1 …𝑋𝑚 was generated by the given HMM. 
 
Naïve approach 
 compute all 𝑛𝑚 possible paths over 𝐺 
 for each, determine probability of generating 𝒳 
 sum these probabilities, this is the fit probability of 𝒳 
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Recursive Evaluation 

The fit probability of the first 𝑟 symbols1 can be computed 
recursively from the fit probability of the first (𝑟 − 1) symbols2 
 
Let 𝛼𝑟 𝒳, 𝑠𝑗  be the probability that the first 𝑟 symbols of 𝒳 
are generated by the model, and the last state is 𝑠𝑗. 
 

𝛼𝑟 𝒳, 𝑠𝑗 = �𝛼𝑟−1 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃 𝑋𝑟 𝑠𝑗  
𝑛

𝑖=1

 

 
That is, we sum over all paths up to different final nodes.  
 

1 and a fixed value of the 𝑟𝑡𝑡 state 2 and a fixed value of the (𝑟 − 1)𝑠𝑠 state 
VII-2: 41 
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Forward Algorithm 

We initialise with with 𝛼1 𝒳, 𝑠𝑗 = 𝜋𝑗 ⋅ 𝑃 𝑋1 𝑠𝑗  and 
then iteratively compute for each 𝑟 = 1 …𝑚. 
 
The fit probability of 𝒳 is the sum over all end-states, 

𝐹(𝒳) = �𝛼𝑚 𝒳, 𝑠𝑗

𝑛

𝑗=1

 

 
The complexity of the Forward Algorithm is 𝑂(𝑛2𝑚) 
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But, why? 

Good question to ask: why compute the fit probability? 
 classification 
 clustering 
 anomaly detection 

 
For the first two, we can now create group-specific 
HMMs, and assign the most likely sequences to those. 
 
For the the third, we have an HMM for our training data, 
and can now report poorly fitting sequences. 
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Using an HMM for Explanation 

We want to know why a sequence 𝓧 fits our data. The 
most likely state sequence gives an intuitive explanation.  
 
Naïve approach 
 compute all 𝑛𝑚 possible paths over the HMM 
 for each, determine probability of generating 𝒳 
 report the path with maximum probability 

 
Instead of naively, can re-use the recursive approach? 
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Viterbi Algorithm 
Any subpath of an optimal state path must also be optimal for 
generating the corresponding subsequence. 
 
Let 𝛿𝑟(𝒳, 𝑠𝑗) be the probability of the best state sequence  
generating the first 𝑟 symbols of 𝒳 ending at state 𝑠𝑗 , with 
 

𝛿𝑟 𝒳, 𝑠𝑗 = max
𝑖∈[1,𝑛]

𝛿𝑟−1 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃(𝑋𝑟 ∣ 𝑠𝑗) 

 
That is, we recursively compute the maximum-probability  
path over all 𝑛 different paths for different final nodes.  
 
Overall, we initialise recursion with 𝛿1 𝒳, 𝑠𝑗 = 𝜋𝑗𝑃(𝑋1 ∣ 𝑠𝑗),  
and then iteratively compute for 𝑟 = 1 …𝑚. 
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Training an HMM 

So far, we assumed the given HMM was trained.  
How do we train a HMM in practice? 

 
Learning the parameters of an HMM is difficult 
 no known algorithm is guaranteed to give the global optimum 

 

There do exist methods for reasonably effective solutions 
 e.g. the Forward-Backward (Baum-Welch) algorithm 
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Backward 

We already know how to calculate the forward probability 
𝛼𝑟(𝒳, 𝑠𝑗) for the first 𝑟 symbols of a sequence 𝒳, ending at 𝑠𝑗. 
  
Now, let 𝛽𝑟(𝒳, 𝑠𝑗) be the backward probability for the sequence 
after and not including the 𝑟𝑡𝑡 symbol, conditioned that the 𝑟𝑡𝑡 
state is 𝑠𝑗. We initialise 𝛽𝒳 𝒳, 𝑠𝑗 = 1, and compute 𝛽𝑟(𝒳, 𝑠𝑗) 
just as 𝛼𝑟(𝒳, 𝑠𝑗) but from back to front. 
  
For the Baum-Welch algorithm, we’ll also need 
 𝛾𝑟 𝒳, 𝑠𝑖  for the probability that the 𝑟𝑡𝑡 state corresponds to 𝑠𝑖 , and 
 𝜓𝑟(𝒳, 𝑠𝑖 , 𝑠𝑗) for the probability of the 𝑟𝑡𝑡 state 𝑠𝑖 , and the 𝑟 + 1 𝑡𝑡 state 𝑠𝑗 
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Baum-Welch 

We initialize the model parameters randomly. 
 

We will then iteratively 
(E-step) Estimate 𝛼 ⋅ ,𝛽 ⋅ ,𝜓 ⋅ , and 𝛾(⋅)  
  from the current model parameters 
(M-step) Estimate model parameters 𝜋 ⋅ ,𝑃 ⋅ ⋅ ,𝑝⋅⋅ 
  from the current 𝛼 ⋅ ,𝛽 ⋅ ,𝜓 ⋅ , and 𝛾(⋅) 
until the parameters converge. 
 
This is simply the EM strategy! 
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Estimating parameters 

𝛼 ⋅     Easy. We estimate these using the 
   Forward algorithm. 
 
𝛽 ⋅     Easy. We estimate these using the 
   Backward algorithm.  
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Estimating parameters (2) 

𝜓(⋅)    We can split this value into  
   first till 𝑟𝑡𝑡 , 𝑟𝑡𝑡, and 𝑟 + 1 𝑡𝑡 till end 
 
𝜓𝑟 𝒳, 𝑠𝑖 , 𝑠𝑗 = 𝛼𝑟 𝒳, 𝑠𝑖 ⋅ 𝑝𝑖𝑖 ⋅ 𝑃 𝑋𝑟+1 𝑠𝑗 ⋅ 𝛽𝑟+1(𝒳, 𝑠𝑗) 

 
   and normalize to probabilities over 
   all pairs 𝑖, 𝑗. So, easy, after all. 
 
𝛾 ⋅     Easy. For 𝛾𝑟(𝒳, 𝑠𝑖) just fix 𝑠𝑖 and sum 
   over 𝜓𝑟(𝒳, 𝑠𝑖 , 𝑠𝑗) varying 𝑠𝑗 
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But, why? 
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Conclusions 

Discrete sequences are a fun aspect of time series 
 many interesting problems 

 
Mining sequential patterns 
 more expressive than itemsets, more difficult to define support 

 

Hidden Markov Models 
 can be used to predict, explain, evaluate discrete sequences 
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