
IRDM ‘15/16 

Jilles Vreeken 

Chapter 8:  
Graph Mining 

1 Dec 2015 

Revision 1, December 4th  
typo’s fixed: edge order 



IRDM ‘15/16 

IRDM Chapter 8, overview 

1. The basics 
2. Properties of Graphs 
3. Frequent Subgraphs 
4. Community Detection 
5. Graph Clustering 

 
 

You’ll find this covered in:  
Aggarwal, Ch. 17, 19 
Zaki & Meira, Ch. 4, 11, 16 
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IRDM Chapter 8, today 

1. The basics 
2. Properties of Graphs 
3. Frequent Subgraphs 
4. Community Detection 
5. Graph Clustering 

 
 

You’ll find this covered in:  
Aggarwal, Ch. 17, 19 
Zaki & Meira, Ch. 4, 11, 16 
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Chapter 7.1:  
The Basics 

Aggarwal Ch. 17.1 

VIII-1: 4 



IRDM ‘15/16 

Networks are everywhere! 
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Human Disease Network 
[Barabasi 2007] 

Gene Regulatory Network 
[Decourty 2008] 

Facebook Network [2010] 

The Internet [2005] 
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The Internet 
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Skewed 
Degrees 
Robustness 
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High school dating network 

(Bearman et. al. Am. Jnl. of Sociology, 2004. Image: Mark Newman) 
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Blue: Male 
Pink: Female 

Interesting 
observations? 
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Karate club network 
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Friends 

How many of you think that  
your friends have more friends than you? 
 
A recent Facebook study 
 examined all of FB’s users: 721 million people with 69 billion 

friendships 
 about 10% of the world’s population 

 found that 93 percent of the time a user’s friend count was  
less than the average friend count of his or her friends,  

 users had an average of 190 friends,  
while their friends averaged 635 friends of their own 
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Reasons? 

You are a loner? 
 
Your friends are extraverts? 
 
There are more extraverts than introverts in the world? 
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Example 

Average number 
 of friends? 
 

=
 1 +  3 + 2 + 2

4
 

= 2 
 

(Strogatz, NYT 2012) 
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Average number  
of friends of friends? 

 
 

= (3 + 1 + 2 + 2 + 
3 + 2 + 3 + 2)/8 

 
= ( 1 × 1 + 3 × 3 + 

2 × 2 + (2 × 2))/8 
 

= 𝟐.𝟐𝟐  
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Always true (almost)! 
Proof? 
 

𝐸 𝑋 = ∑𝑥𝑖/𝑁 
 

𝑉𝑉𝑉 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2  
= 𝐸 𝑋2 − 𝐸 𝑋 2 

 
𝐸 𝑋2

𝐸 𝑋 = 𝐸 𝑋 +
𝑉𝑉𝑉 𝑋
𝐸 𝑋  

 
Essentially, it’s true if there is any spread in the number of 
friends (i.e. whenever there’s a non-zero variance). 
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Why graphs? 

Many real-world data sets are in the forms of graphs  
 social networks 
 hyperlinks 
 protein–protein interaction 
 XML parse trees 
 … 

 
Many of these graphs are enormous 
 humans cannot understand them → a task for data mining! 
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What is a graph? 
A graph 𝐺 is a pair (𝑉,𝐸 ⊆ 𝑉2) 
 elements in 𝑉 are vertices or nodes of the graph 
 pairs 𝑣, 𝑢 ∈ 𝐸 are edges or arcs of the graph 

 for undirected graphs pairs are unordered,  
for directed graphs pairs are ordered 

 
The graphs can be labelled 
 vertices can have labeling 𝐿(𝑣) 
 edges can have labeling 𝐿(𝑣,𝑢) 

 
A tree is a rooted, connected, and acyclic graph 

 
Graphs can be represented using adjacency matrices 
 |𝑉| × |𝑉| matrix 𝐴 with 𝐴 𝑖𝑖  =  1 if 𝑣𝑖 , 𝑣𝑖 ∈ 𝐸  
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Eccentricity, radius, and diameter 
The distance 𝑑(𝑣𝑖 , 𝑣𝑖) between two vertices is the (weighted) length 
of the shortest path between them 

 
The eccentricity of a vertex 𝑣𝑖 , 𝑒(𝑣𝑖), is its  
maximum distance to any other vertex, max

𝑖
{𝑑(𝑣𝑖 , 𝑣𝑖)} 

 
The radius of a connected graph, 𝑉(𝐺), is the  
minimum eccentricity of any vertex, min

𝑖
{𝑒(𝑣𝑖)}  

 
The diameter of a connected graph, 𝑑(𝐺), is the  
maximum eccentricity of any vertex, max

𝑖
{𝑒(𝑣𝑖)}  = max

𝑖,𝑖
{𝑑(𝑣𝑖 , 𝑣𝑖)} 

 the effective diameter of a graph is smallest number that is larger than 
the eccentricity of a large fraction of the vertices in the graph 
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Clustering Coefficient 
The clustering coefficient of vertex 𝑣𝑖 , 𝐶(𝑣𝑖),  
tells how clique-like the neighbourhood of 𝑣𝑖 is 
 let 𝑛𝑖 be the number of neighbours of 𝑣𝑖 and 𝑚𝑖 the number of edges 

between the neighbours of 𝑣𝑖 excluding 𝑣𝑖 itself 

𝐶 𝑣𝑖 =
𝑚𝑖
𝑛𝑖
2

=
2𝑚𝑖

𝑛𝑖 𝑛𝑖 − 1
 

 
 well-defined only for 𝑣𝑖 with at least two neighbours 

 for others, let 𝐶(𝑣𝑖) = 0 
 

The clustering coefficient of the graph is  
the average clustering coefficient of the vertices:  

𝐶(𝐺)  =  𝑛−1�𝐶(𝑣𝑖)
𝑖
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What do to with a graph? 

There are many interesting data one can mine from 
graphs and sets of graphs 
 cliques of friends from social networks 
 hubs and authorities from link graphs 
 who is the centre of the Hollywood 
 subgraphs that appear frequently in (a set of) graph(s) 
 areas with higher inter-connectivity than intra-connectivity 
 … 
 
Graph mining is perhaps the most popular topic in 
contemporary data mining research 
 though not necessary called as such… 

VIII-1: 17 
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Chapter 7.2:  
Properties of Graphs 

Aggarwal Ch. 17.1, 19.2; Zaki & Meira Ch 4 
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Centrality 

Six degrees of Kevin Bacon 
 ”Every actor is related to Kevin Bacon by no more than 6 hops” 
 Kevin Bacon has acted with many, that have acted with many 

others, that have acted with many others… 
 this makes Kevin Bacon a centre of the co-acting graph 

 
Kevin, however, is not the centre: 
 the average distance to him is 2.998 
 but to Harvey Keitel it is only 2.848 

 

(http://oracleofbacon.org) 
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Degree and eccentricity Centrality 

Centrality is a function 𝑐 ∶ 𝑉 → ℝ inducing a total order in 𝑉 
 the higher the centrality of a vertex, the more important it is 

 
In degree centrality 𝑐(𝑣𝑖)  =  𝑑(𝑣𝑖), the degree of the vertex 
 
In eccentricity centrality the least eccentric vertex is  
the most central one, 𝑐 𝑣𝑖 = 1

𝑒 𝑣𝑖
 

 the least eccentric vertex is central  
 the most eccentric vertex is peripheral 
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Closeness centrality 
In closeness centrality the vertex with  
least distance to all other vertices is the centre 

𝑐 𝑣𝑖 = �𝑑 𝑣𝑖 ,𝑣𝑖
𝑖

−1

 

 
In eccentricity centrality we aim to  
minimize the maximum distance 
 
In closeness centrality we aim to  
minimize the average distance 
 this is the distance used to measure the centre of Hollywood 
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Betweenness centrality 

Betweenness centrality measures  
the number of shortest paths that travel through 𝑣𝑖 
 measures the “monitoring” role of the vertex 
 “all roads lead to Rome” 
 
Let 𝜂𝑖𝑗 be the number of shortest paths between 𝑣𝑖 and 
𝑣𝑗 and let 𝜂𝑖𝑗(𝑣𝑖) be the number of those that include 𝑣𝑖 
 let 𝛾𝑖𝑗 𝑣𝑖 = 𝜂𝑖𝑗(𝑣𝑖)/𝜂𝑖𝑗 
 betweenness centrality is defined as 

𝑐 𝑣𝑖 = ��𝛾𝑖𝑗
𝑗≠𝑖
𝑗>𝑖

𝑖≠𝑖
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Prestige 

In prestige, the vertex is more central if it has many 
incoming edges from other vertices of high prestige 
 𝐴 is the adjacency matrix of the directed graph 𝐺  
 𝑝 is 𝑛-dimensional vector giving the prestige of the vertices 
 𝑝 = 𝐴𝑇𝑝 
 starting from an initial prestige vector 𝑝0, we get 
𝑝𝑗 = 𝐴𝑇𝑝𝑗−1 = 𝐴𝑇 𝐴𝑇𝑝𝑗−2 = 𝐴𝑇 2𝑝𝑗−2 = 𝐴𝑇 3𝑝𝑗−3 = ⋯ = 𝐴𝑇 𝑗𝑝0 
 
Vector 𝑝 converges to the dominant eigenvector of 𝐴𝑇 
 under some assumptions 
 

(PageRank is based on (normalized) prestige) 
VIII-1: 23 
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Graph properties 

Several real-world graphs exhibit certain characteristics 
 studying what these are and explaining why they appear is an 

important area of network research 
 
As data miners, we need to understand the 
consequences of these characteristics 
 finding a result that can be explained merely by one  

of these characteristics is not interesting 
 
We also want to model graphs with these characteristics 
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It’s a small world after all 

A graph 𝐺 is said to exhibit a small-world property if its 
average path length scales logarithmically, 

𝜇𝐿 ∝ log𝑛 
 six degrees of Kevin Bacon is based on this property 
 similarly so for Erdős numbers 

 how far a mathematician is from Hungarian combinatorist Paul Erdős 
 radius of a large, connected mathematical co-authorship network 

(268K authors) is 12 and diameter 23 
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Scale-free property 

The degree distribution of a graph is  
the distribution of its vertex degrees  
 how many vertices with degree 1, how many with degree 2, etc. 
 𝑓(𝑘) is the number of edges with degree 𝑘 
 
A graph 𝐺 is said to  
exhibit a scale-free property if 𝑓 𝑘 ∝ 𝑘−𝛾 
 follows a so-called power-law distribution 
 majority of vertices have low degree, few with very high degree 
 scale-free: 𝑓 𝑐𝑘 = 𝛼 𝑐𝑘 −𝛾 = 𝛼𝑐−𝛾 𝑘−𝛾 ∝ 𝑘−𝛾 
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Example: WWW links 
In-degree 

 
 
 
 
 
 
 
 
 
 

𝑠 = 2.09 
 
 
 
 
 
 

(Broder et al.,’00) 
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Out-degree 
 
 
 
 
 
 
 
 
 
 
 

𝑠 = 2.72 
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Clustering effect 

A graph exhibits the clustering effect  
if the distribution of average clustering  
coefficient (per degree) follows a power law 
 if 𝐶(𝑘) is the average clustering coefficient of all vertices of 

degree 𝑘, then 𝐶 𝑘 ∝ 𝑘−𝛾 
 
The vertices with small degrees are part of highly 
clustered areas (high clustering coefficient) while  
“hub vertices” have smaller clustering coefficients 
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Chapter 7.3:  
Frequent Subgraph Mining 

Aggarwal Ch. 17.2, 17.4; Zaki & Meira Ch 11 

VIII-1: 29 
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Subgraphs 

Graph (𝑉′,𝐸′) is a subgraph of graph (𝑉,𝐸) iff  
 𝑉′ ⊆ 𝑉 
 𝐸′ ⊆ 𝐸 
 
Note that subgraphs don’t have to be connected 
 today we consider only connected subgraphs   

 
To check whether a graph is a subgraph of other is trivial 
 but, in most real-world applications there are no direct subgraphs 
 two graphs might be similar even if their vertex sets are disjoint 
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Graph isomorphism 
Graphs 𝐺 𝑉,𝐸  and 𝐺′ = (𝑉′,𝐸′) are isomorphic if there exists 
a bijective function 𝜙:𝑉 → 𝑉𝑉 such that 
 𝑢,𝑣 ∈ 𝐸 if and only if 𝜙 𝑢 ,𝜙 𝑣 ∈ 𝐸𝑉 
 𝐿 𝑣 = 𝐿(𝜙 𝑣 ) for all 𝑣 ∈ 𝑉 
 𝐿 𝑢, 𝑣 =  𝐿 𝜙 𝑢 ,𝜙 𝑣  for all 𝑢, 𝑣 ∈ 𝐸 

 
Graph 𝐺𝐺 is subgraph isomorphic to 𝐺 if  
there exists a subgraph of 𝐺 which is isomorphic to 𝐺𝐺 

 
No polynomial-time algorithm is known for  
determining if 𝐺 and 𝐺𝐺 are isomorphic 

 
Determining if 𝐺𝐺 is subgraph isomorphic to 𝐺 is NP-hard 
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Equivalence and canonical graphs 

Isomorphism defines an equivalence class 
 id: 𝑉 → 𝑉, 𝑖𝑑(𝑣) = 𝑣 shows 𝐺 is isomorphic to itself 
 if 𝐺 is isomorphic to 𝐺𝐺 via 𝜙, then 𝐺𝐺 is isomorphic to 𝐺 via 𝜙−1 
 if 𝐺 is isomorphic to 𝐻 via 𝜙, and 𝐻 to 𝐼 via 𝜒, then 𝐺 is 

isomorphic to 𝐼 via 𝜙 ∘ 𝜒 
 

A canonization of a graph 𝐺, 𝑐𝑉𝑛𝑐𝑛(𝐺) produces another 
graph 𝐶 such that if 𝐻 is a graph that is isomorphic to 𝐺, 
𝑐𝑉𝑛𝑐𝑛(𝐺)  =  𝑐𝑉𝑛𝑐𝑛(𝐻) 
 two graphs are isomorphic if and only if  

their canonical versions are the same 
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Example of isomorphic graphs 
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Example of isomorphic graphs 
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Example of isomorphic graphs 
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Frequent subgraph mining 
Given a set 𝑫 of 𝑛 graphs and a minimum support 𝜎,  
find all connected graphs that are subgraph isomorphic 
to at least 𝜎 graphs in 𝑫 
 enormously complex problem 
 
For graphs that have 𝑚 vertices there are 
 2𝑂 𝑚2  subgraphs (not all are connected) 
 
If we have 𝑠 labels for vertices and edges we have 
 𝑂 2𝑠 𝑂 𝑚2  labelings of the different graphs 
 
Counting support means solving multiple NP-hard problems 
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An example 
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Mining frequent subgraph patterns 

Like for itemsets, the sub-graph definition of support is 
monotone 
 we can employ level-wise search! 

 
We can modify 
 APRIORI to get to AGM (Inokuchi, Washio, Motoda, 2000)  

 ECLAT to get FFSM (Huan, Wang, Prins, 2003) 

 FP-GROWTH to get GSPAN (Pei et al., 2001) 
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GraphApriori 

Algorithm GRAPHAPRIORI(graph db 𝑫, minsup 𝜎) 
begin 
  𝑘 ← 1; 
  ℱ𝑗 ← {all frequent singleton graphs} 
  while ℱ𝑗 is not empty do 
    Generate 𝒞𝑗+1 by joining pairs of graphs in ℱ𝑗 
      that have in common a subgraph of size (𝑘 − 1) 
    Prune subgraphs from 𝒞𝑗+1 that violate downward closure 
    Determine ℱ𝑗+1 by support counting on 𝒞𝑗+1,𝑫  
      and retaining subgraphs from 𝒞𝑗+1 with support  
      at least 𝜎 
    𝑘 ← 𝑘 + 1 
  end 
  return ⋃ ℱ𝑖𝑗

𝑖=1  
end 
 

(Inokuchi et al. 2000; Kuramochi & Karypis 2001) 
VII-2: 39 
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GraphApriori 

Algorithm GRAPHAPRIORI(graph db 𝑫, minsup 𝜎) 
begin 
  𝑘 ← 1; 
  ℱ𝑗 ← {all frequent singleton graphs} 
  while ℱ𝑗 is not empty do 
    Generate 𝒞𝑗+1 by joining pairs of graphs in ℱ𝑗 
      that have in common a subgraph of size (𝑘 − 1) 
    Prune subgraphs from 𝒞𝑗+1 that violate downward closure 
    Determine ℱ𝑗+1 by support counting on 𝒞𝑗+1,𝑫  
      and retaining subgraphs from 𝒞𝑗+1 with support  
      at least 𝜎 
    𝑘 ← 𝑘 + 1 
  end 
  return ⋃ ℱ𝑖𝑗

𝑖=1  
end 
 

(Inokuchi et al. 2000; Kuramochi & Karypis 2001) 
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Canonical codes 

We can improve the running time of frequent  
subgraph mining by either 
 speeding up the computation of support 

 lots of efforts in faster isomorphism checking but only little progress 
 creating fewer candidates that we need to check 

 level-wise algorithms generate huge numbers of candidates, 
all of which must be checked for isomorphism with others 

 
The gSPAN algorithm is the frequent subgraph mining 
equivalent of FP-growth; it uses a depth-first approach 

(Zaki & Meira chapter 11 ; Yan & Han 2002) 
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Depth-First Spanning tree 
A depth-first spanning (DFS) tree of a graph 𝐺 
 is a connected tree 
 contains all the vertices of 𝐺 
 is built in depth-first order 

 selection between the siblings is e.g. based on the vertex index 
 

Edges of the DFS tree are forward edges  
 

Edges not in the DFS tree are backward edges 
 

A rightmost path in the DFS tree is the path that travels from 
the root to the rightmost vertex by always taking the 
rightmost child (last added) 

VIII-1: 42 



IRDM ‘15/16 

An example – DFS traversal 

VIII-1: 43 
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An example – the DFS tree 
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Candidates from the DFS tree 

Given graph 𝐺, we extend it only from the vertices in the 
rightmost path 
 we can add a backward edge from the rightmost vertex  

to some other vertex in the rightmost path 
 we can add a forward edge from any vertex in the rightmost path 

 this increases the number of vertices by 1 
 
The order of generating the candidates is 
 first backward extensions 

 first to root, then to root’s child, … 
 then forward extensions 

 first from the leaf, then from leaf’s father, … 
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An example – the DFS tree 
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DFS codes and their orders 
A DFS code is a sequence of tuples of type  

⟨𝑣𝑖 ,𝑣𝑖 , 𝐿(𝑣𝑖), 𝐿(𝑣𝑖), 𝐿(𝑣𝑖 , 𝑣𝑖)⟩ 
 tuples are given in DFS order 

 backwards edges are listed before forward edges 
 vertices are numbered in DFS order 

 
A DFS code is canonical if  
it is the smallest of the codes in the ordering 

 ⟨𝑣𝑖 , 𝑣𝑖 , 𝐿(𝑣𝑖), 𝐿(𝑣𝑖 , 𝐿(𝑣𝑖 ,𝑣𝑖)⟩  <  ⟨𝑣𝑥, 𝑣𝑦, 𝐿(𝑣𝑥), 𝐿(𝑣𝑦), 𝐿(𝑣𝑥, 𝑣𝑦)⟩ if 
 𝑣𝑖 ,𝑣𝑖 <𝑒 ⟨𝑣𝑥 ,𝑣𝑦⟩; or 
 ⟨𝑣𝑖 ,𝑣𝑖⟩ = ⟨𝑣𝑥,𝑣𝑦⟩ and 
𝐿 𝑣𝑖 , 𝐿 𝑣𝑖 , 𝐿 𝑣𝑖 , 𝑣𝑖 <𝑙  ⟨𝐿(𝑣𝑥), 𝐿(𝑣𝑦), 𝐿(𝑣𝑥, 𝑣𝑦)⟩ 

 the ordering of the label tuples is lexicographical 
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Ordering the edges 

Let 𝑒𝑖𝑖  = 𝑣𝑖 , 𝑣𝑖  and 𝑒𝑥𝑦  = 𝑣𝑥, 𝑣𝑦  
 

𝑒𝑖𝑖 <𝑒 𝑒𝑥𝑦 if 
 if 𝑒𝑖𝑖 and 𝑒𝑥𝑦 are both forward edges, then  

 𝑗 < 𝑦; or  
 𝑗 = 𝑦 and 𝑖 >  𝑥 

 if 𝑒𝑖𝑖 and 𝑒𝑥𝑦 are both backward edges, then  
 𝑖 <  𝑥; or  
 𝑖 =  𝑥 and 𝑗 <  𝑦 

 if 𝑒𝑖𝑖 is forward and 𝑒𝑥𝑦 is backward, then 𝑗 ≤ 𝑥 
 if 𝑒𝑖𝑖 is backward and 𝑒𝑥𝑦 is forward, then 𝑖 < 𝑦 

 
(typo fixed, edge order now in sync with Zaki & Meira) 
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Example 
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𝑡11 = 𝑣1,𝑣2,𝑉, 𝑉, 𝑞  
𝑡12 = 𝑣2,𝑣3, 𝑉, 𝑉, 𝑉  
𝑡13 = 𝑣3, 𝑣1,𝑉, 𝑉, 𝑉  
𝑡14 = 𝑣2,𝑣4, 𝑉, 𝑏, 𝑉  

𝑡21 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡22 = 𝑣2, 𝑣3, 𝑉, 𝑏, 𝑉  
𝑡23 = 𝑣2, 𝑣4,𝑉, 𝑉, 𝑉  
𝑡24 = 𝑣4,𝑣1, 𝑉, 𝑉, 𝑉  

𝑡31 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡32 = 𝑣2, 𝑣3, 𝑉, 𝑉, 𝑉  
𝑡33 = 𝑣3,𝑣1, 𝑉, 𝑉, 𝑉  
𝑡34 = 𝑣1,𝑣4, 𝑉, 𝑏, 𝑉  
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𝑡11 = 𝑣1,𝑣2,𝑉, 𝑉, 𝑞  
𝑡12 = 𝑣2,𝑣3, 𝑉, 𝑉, 𝑉  
𝑡13 = 𝑣3, 𝑣1,𝑉, 𝑉, 𝑉  
𝑡14 = 𝑣2,𝑣4, 𝑉, 𝑏, 𝑉  

𝑡21 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡22 = 𝑣2, 𝑣3, 𝑉, 𝑏, 𝑉  
𝑡23 = 𝑣2, 𝑣4,𝑉, 𝑉, 𝑉  
𝑡24 = 𝑣4,𝑣1, 𝑉, 𝑉, 𝑉  

𝑡31 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡32 = 𝑣2, 𝑣3, 𝑉, 𝑉, 𝑉  
𝑡33 = 𝑣3,𝑣1, 𝑉, 𝑉, 𝑉  
𝑡34 = 𝑣1,𝑣4, 𝑉, 𝑏, 𝑉  

First rows are identical 
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𝑡11 = 𝑣1,𝑣2,𝑉, 𝑉, 𝑞  
𝑡12 = 𝑣2,𝑣3, 𝑉, 𝑉, 𝑉  
𝑡13 = 𝑣3, 𝑣1,𝑉, 𝑉, 𝑉  
𝑡14 = 𝑣2,𝑣4, 𝑉, 𝑏, 𝑉  

𝑡21 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡22 = 𝑣2, 𝑣3, 𝑉, 𝑏, 𝑉  
𝑡23 = 𝑣2, 𝑣4,𝑉, 𝑉, 𝑉  
𝑡24 = 𝑣4,𝑣1, 𝑉, 𝑉, 𝑉  

𝑡31 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡32 = 𝑣2, 𝑣3, 𝑉, 𝑉, 𝑉  
𝑡33 = 𝑣3,𝑣1, 𝑉, 𝑉, 𝑉  
𝑡34 = 𝑣1,𝑣4, 𝑉, 𝑏, 𝑉  

In second row, 𝐺2 is bigger in label order 
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𝑡11 = 𝑣1,𝑣2,𝑉, 𝑉, 𝑞  
𝑡12 = 𝑣2,𝑣3, 𝑉, 𝑉, 𝑉  
𝑡13 = 𝑣3, 𝑣1,𝑉, 𝑉, 𝑉  
𝑡14 = 𝑣2,𝑣4, 𝑉, 𝑏, 𝑉  

𝑡21 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡22 = 𝑣2, 𝑣3, 𝑉, 𝑏, 𝑉  
𝑡23 = 𝑣2, 𝑣4,𝑉, 𝑉, 𝑉  
𝑡24 = 𝑣4,𝑣1, 𝑉, 𝑉, 𝑉  

𝑡31 = 𝑣1,𝑣2, 𝑉, 𝑉, 𝑞  
𝑡32 = 𝑣2, 𝑣3, 𝑉, 𝑉, 𝑉  
𝑡33 = 𝑣3,𝑣1, 𝑉, 𝑉, 𝑉  
𝑡34 = 𝑣1,𝑣4, 𝑉, 𝑏, 𝑉  

Last two rows are forward edges, and 4 = 4 but 2 > 1 → 𝐺1 is smallest 
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graph-based substructure pattern mining 

The general idea 
 use the DFS codes to create candidates 

 extend only canonical and frequent candidates 
 

There can be very, very many extensions 
 we need to see them all, and all of their isomorphisms,  

to count their supports 
 
 
 

(Yan  
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Constructing candidates 

The candidates are build in a DFS code tree 
 a DFS code 𝑉 is an ancestor of DFS code 𝑏 if 𝑉 is a proper prefix of 𝑏 
 the siblings in the tree follow the DFS code order 
 
A graph can be frequent if and only if all of the graphs 
representing its ancestors in the DFS tree are frequent 
 
The DFS tree contains all the canonical codes for  
all subgraphs of the graphs in the data 
 but not all vertices in the code tree correspond to canonical codes 
 
We (implicitly) traverse this tree 
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The gSPAN algorithm (sketch) 
GSPAN(graph 𝐺, minsup 𝜎) 
  for each frequent 1-edge graph do 
    call subgrm to grow all nodes in the tree rooted in this edge-graph 
    remove this edge from the graph 
 
SUBGRM(frequent subgraph 𝑋, minsup 𝜎) 
  if the code is not canonical then return 
  add 𝑋 to the set of frequent graphs 
  create all super-graphs 𝑌 ⊃ 𝑋, extending 𝑋 with one more edge 
  compute frequencies of all 𝑌’s 
  call SUBGRM for canonical representation of all frequent 𝑌’s 
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Computing frequencies 

gSPAN merges extension generation and  
support computation 
 
For each graph in the data base 
 gSPAN computes all isomorphisms of the current candidate 

 can mean solving NP-complete problems… 
 for all isomorphisms, computes all backward and forward extensions 

 these extensions are stored together with the graph they appear in 
 

The support of each extension is  
the number of times we’ve stored it 
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Checking canonicity 

Given a DFS code of an extension,  
we need to check if the code is canonical 
 
This can be done by re-creating the code 
 at every step, choose the smallest of the right-most path extension 

of the current code in the graph corresponding to the extension 
 
If at any step we get a code that is smaller than the suffix 
of the extension’s code, we do not have a canonical code 
 if after 𝑘 steps we arrive at the extensions code, it is canonical 
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Easier problems 

Much of the complexity of subgraph mining lies  
in (checking for) isomorphisms 
 
For some types of graphs isomorphism is easy 
 different types of trees 

 ordered and unordered 
 rooted and unrooted 

 graphs where every node has a distinct label 
 

VIII-1: 58 



IRDM ‘15/16 

Conclusions 
Graphs are everywhere 
 many interesting problems 
 real graphs often exhibit power-law-like behaviour 

 

Graphs generalise many data settings 
 makes it possible to create general algorithms 

 
Many problems in graphs are very difficult  
 subgraph isomorphism 

 
Frequent subgraph mining 
 involves multiple NP-hard problems 
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