
IRDM ‘15/16

Jilles Vreeken

Chapter 8-2:
Community Detection

3 Dec 2015

IRDM ‘15/16

IRDM Chapter 8, overview

1. The basics
2. Properties of Graphs
3. Frequent Subgraphs
4. Graph Clustering

You’ll find this covered in:
Aggarwal, Ch. 17, 19
Zaki & Meira, Ch. 4, 11, 16

VIII-2: 2

IRDM ‘15/16

IRDM Chapter 8, today

1. The basics
2. Properties of Graphs
3. Frequent Subgraphs
4. Community Detection

You’ll find this covered in:
Aggarwal, Ch. 17, 19
Zaki & Meira, Ch. 4, 11, 16

VIII-2: 3

IRDM ‘15/16

Chapter 7.4:
Community Detection

Aggarwal Ch. 19.3, 17.5
Zaki & Meira Ch. 16

VIII-2: 4

IRDM ‘15/16

Chapter 7.4.1:
Detecting Small Communities

-

VIII-2: 5

IRDM ‘15/16

Trawling

Searching for small communities in the Web graph

What is the signature of a community in a Web graph?
 intuition: Many people all talking about the same things

VIII-2: 6

…

…

Dense 2-layer graph

Use this to define “topics”:
What the same people on
the left talk about on the right

IRDM ‘15/16

Searching for small communities

A more well-defined problem:
 enumerate complete bipartite subgraphs 𝐾𝛼,𝛽

where 𝐾𝛼,𝛽 has 𝑠 nodes on the “left” and every such node in 𝑠
links to the same set of 𝑡 nodes on the “right”

VIII-2: 7

𝐾3,4

|𝑋| = 𝛼 = 3
|𝑌| = 𝛽 = 4 𝑋 𝑌

Fully connected

IRDM ‘15/16

Frequent itemset mining

Recall market basket analysis.
 market: universe 𝑈 of 𝑛 items
 baskets: 𝑚 transctions, subsets of 𝑈: 𝑡1, 𝑡2, … , 𝑡𝑚 ⊆ 𝑈

where each 𝑡𝑖 is a set of items one person bought
 support: frequency threshold 𝜎

Goal:
 find all subsets 𝑋 ⊆ 𝑈 s.t. 𝑋 ⊆ 𝑡𝑖 of at least 𝜎 sets 𝑡𝑖 ∈ 𝑫

What’s the connection between
itemsets and complete bipartite graphs?

VIII-2: 8

IRDM ‘15/16

From itemsets to bipartite 𝐾𝛼,𝛽

Frequent itemsets = complete bipartite graphs!

How?
 view each node 𝑖 as a

set 𝑡𝑖 of the nodes 𝑖 points to
𝐾𝛼,𝛽 = a set 𝑌 of size 𝛽
that occurs in 𝛼 sets 𝑡𝑖

 looking for 𝐾𝛼,𝛽 →
set frequency threshold to 𝛼
and look at layer 𝛽 , find
all frequent sets of size 𝑡

VIII-2: 9

i
b
c
d

a

𝑡𝑖 = {𝑎, 𝑏, 𝑐,𝑑}

j
i
k

b
c
d

a

𝑋 𝑌

𝛼 … minimum support (|𝑋| = 𝛼)
𝛽 … itemset size (|𝑌| = 𝛽)

IRDM ‘15/16

From itemsets to bipartite 𝐾𝛼,𝛽

(Kumar et al ‘99)
VIII-2: 10

i
b
c
d

a

𝑡𝑖 = {𝑎, 𝑏, 𝑐,𝑑}

x
y
z

b
c

a

𝑋

𝑌

2) Find frequent itemsets:
 𝛼 … minimum support
 𝛽 … itemset size

x
b
c

a

4) We found 𝐾𝛼,𝛽!
𝐾𝛼,𝛽 = a set 𝑌 of size 𝛽
that occurs in 𝛼 sets 𝑡𝑖

1) View each node 𝑖 as a
set 𝑡𝑖 of nodes 𝑖 points to

3) Say we find a frequent itemset
𝑋 = {𝑎,𝑏, 𝑐} of supp 𝛼
This means, there are 𝛼 nodes
that link to all of {𝑎, 𝑏, 𝑐}:

z
a
b
c

y
b
c

a

IRDM ‘15/16

Example
Support threshold 𝛼 = 𝜎 = 2

 {𝑏,𝑑}: support 3
 {𝑒, 𝑓}: support 2

 i.e. we found 2 bipartite subgraphs:

VIII-2: 11

c

a b

d

f
Itemsets:
𝑎 = {𝑏, 𝑐,𝑑}
𝑏 = {𝑑}
𝑐 = {𝑏,𝑑, 𝑒, 𝑓}
𝑑 = {𝑒, 𝑓}
𝑒 = {𝑏,𝑑}
𝑓 = {}

e

c

a b

d

e

c
d

f
e

IRDM ‘15/16

Chapter 7.4.2:
Community Detection

by Graph Clustering
Aggarwal Ch. 17.5, 19.3

Zaki & Meira Ch. 16

VIII-2: 12

IRDM ‘15/16

Where do graphs come from?

We can have data in graph form
 e.g. the clusters of our

social networks

Or, we map existing data to a graph
 data points become vertices
 add an edge if two data points are similar

 edge weights can also tell about similarity

VIII-2: 13

IRDM ‘15/16

Similarity and adjacency matrices
A similarity matrix is an 𝑛-by- 𝑛 non-negative, symmetric matrix
 the opposite of the distance matrix

Recall that a weighted adjacency matrix is an 𝑛-by-𝑛
non-negative, symmetric matrix
 for weighted, undirected graphs

So, we can think every similarity matrix as
an adjacency matrix of some weighted, undirected graph
 this graph will be complete (a clique)

Further, we can use any similarity measure between
two points as an edge weight

VIII-2: 14

IRDM ‘15/16

Getting non-complete graphs

Using complete graphs can be a waste of resources
 for clustering, we don’t really care about very dissimilar pairs

We can remove edges between dissimilar vertices
 zero weight

Or, we adjust the weights to diminish dissimilar points
 the Gaussian kernel is popular for this

𝑤𝑖𝑖 = exp −
𝑥𝑖 − 𝑥𝑗

2

2𝜎2

VIII-2: 15

IRDM ‘15/16

Getting non-complete graphs (2)

How to decide when vertices are too dissimilar?

In 𝝐-neighbour graphs we add an edge between two
vertices that are within distance 𝜖 to each other
 usually the resulting graph is considered unweighted as all weights would

be roughly similar

In 𝑘-nearest neighbour graphs we connect two vertices if
one is within the 𝑘 nearest neighbours of the other
 in mutual 𝑘-nearest neighbour graph we only connect two vertices if

they’re both in each other’s 𝑘 nearest neighbours

VIII-2: 16

IRDM ‘15/16

Which similarity graph?
With 𝜖-graphs choosing the parameter is hard
 no single correct answer if different clusters have different internal similarities

𝑘-nearest neighbours can connect points with
different similarities
 but far-away high density regions become unconnected

The mutual 𝑘-nearest neighbours is somewhat in between
 good for detecting clusters with different densities

General recommendation: start with 𝑘-NN
 others if data supports that

VIII-2: 17

IRDM ‘15/16

Example graph

(Zaki & Meira, Fig 16.1)
VIII-2: 18

IRDM ‘15/16

Graph partitioning
Undirected graph

Bi-partitioning task:
 divide vertices into two disjoint groups

Questions:
 how can we define a “good partition of”?
 how can we efficiently identify such a partition?

VIII-2: 19

1

3
2

5

4 6

A B

1

3

2

5

4 6

IRDM ‘15/16

Graph partitioning

What makes a good partition?
 maximize the number of within-group connections
 minimize the number of between-group connections

VIII-2: 20

1

3

2

5

4 6

A B

IRDM ‘15/16

Clustering as Graph Cuts
A cut of a connected graph 𝐺 = (𝑉,𝐸) divides the set of
vertices into two partitions 𝑆 and 𝑉 ∖ 𝑆 and removes the
edges between them
 cut can be expressed by giving the set 𝑆
 or by giving the cut set, i.e. edges with exactly one end in 𝑆,

𝐹 = { 𝑣,𝑢 ∈ 𝐸 ∶ 𝑣,𝑢 ∩ 𝑆 = 1}

A graph cut groups the vertices of a graph into two clusters
 subsequent cuts in the components give us a hierarchical clustering

A 𝒌-way cut cuts the graph into 𝑘 disjoint set of vertices
𝐶1,𝐶2, … ,𝐶𝑘 and removes the edges between them

VIII-2: 21

IRDM ‘15/16

What is a good cut?

Not every cut will cut it

In minimum cut the goal is to find any set of vertices
such that cutting them from the rest of the graph
requires removing the least number of edges
 least sum of weights for weighted graphs
 the extension to multiway cuts is straightforward

The minimum cut can be found in polynomial time
 the max-flow min-cut theorem

But minimum cut isn’t very good for clustering purposes

VIII-2: 22

IRDM ‘15/16

Cuts that cut it

The minimum cut usually removes only one vertex
 not very appealing clustering
 we want to penalize the cut for imbalanced cluster sizes

In ratio cut, the goal is to minimize the ratio of the
weight of the edges in the cut set and the size of the
clusters 𝐶𝑖
 Let 𝑊 𝐴,𝐵 = ∑ 𝑤𝑖𝑖𝑖∈𝐴,𝑗∈𝐵

 wij is the weight of edge (i, j)

RatioCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖

𝐶𝑖

𝑘

𝑖=1

VIII-2: 23

IRDM ‘15/16

Cuts that cut it

The volume of a set of vertices 𝐴 is the weight of all
edges connected to 𝐴

𝑣𝑣𝑣 𝐴 = 𝑊 𝐴,𝑉 = � 𝑤𝑖𝑖
𝑖∈𝐴,𝑗∈𝑉

In normalized cut we measure the size of 𝐶𝑖 by 𝑣𝑣𝑣(𝐶𝑖)
instead of |𝐶𝑖|

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1

VIII-2: 24

IRDM ‘15/16

Cuts that cut it

The volume of a set of vertices 𝐴 is the weight of all
edges connected to 𝐴

𝑣𝑣𝑣 𝐴 = 𝑊 𝐴,𝑉 = � 𝑤𝑖𝑖
𝑖∈𝐴,𝑗∈𝑉

In normalized cut we measure the size of 𝐶𝑖 by 𝑣𝑣𝑣(𝐶𝑖)
instead of 𝐶𝑖

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1

VIII-2: 25

Finding the optimal
RatioCut or NormalisedCut

is NP-hard

IRDM ‘15/16

Spectral Graph Partitioning
 A: adjacency matrix of undirected G

 𝑨𝑖𝑖 = 1 if is an edge, else 0
 𝒙 is a vector in ℝ𝑛 with components (‘value groups’)

 think of it as a label/value of each node

What is the meaning of 𝑨 ⋅ 𝒙?

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛𝑛 ⋯ 𝑎𝑛𝑛

𝑥1
⋮
𝑥𝑛

=
𝑦1
⋮
𝑦𝑛

Entry 𝑦𝑖 is a sum of labels 𝑥𝑗 of neighbors of 𝑖

VIII-2: 26

𝑦𝑖 = �𝑨𝑖𝑖𝑥𝑗

𝑛

𝑗

= � 𝒙𝑗
𝑖,𝑗 ∈𝐸

IRDM ‘15/16

What is the meaning of 𝑨𝑨?

𝑗𝑡𝑡 coordinate of 𝑨 ⋅ 𝒙
 sum of the 𝒙-values

of neighbors of 𝒋
 make this a new value

at node 𝒋

Spectral graph theory
 analyse the spectrum of the matrix
 the spectrum are the eigenvectors of a graph, ordered by the

magnitude (strength) of their corresponding eigenvalues
Λ = 𝜆1, 𝜆2, … , 𝜆𝑛 with
𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛

VIII-2: 27

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛𝑛 ⋯ 𝑎𝑛𝑛

𝑥1
⋮
𝑥𝑛

= 𝜆
𝑥1
⋮
𝑥𝑛

𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙

IRDM ‘15/16

Example: 𝑑-regular graph

Suppose all nodes in connected graph 𝐺 have degree 𝑑

What are some eigenvalues/vectors of 𝐺?
𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 What is 𝜆? What is 𝒙?

 let’s try: 𝒙 = (1,1, … , 1)
 then: 𝑨 ⋅ 𝒙 = 𝑑,𝑑, … ,𝑑 = 𝜆 ⋅ 𝒙. So: 𝜆 = 𝑑

We found eigenpair of 𝐺: 𝒙 = 1,1, … , 1 , 𝜆 = 𝑑

VIII-2: 28

Remember the meaning of 𝒚 = 𝑨 ⋅ 𝒙:

𝑦𝑖 = �𝑨𝑖𝑖𝑥𝑗

𝑛

𝑗

= � 𝒙𝑗
𝑖,𝑗 ∈𝐸

IRDM ‘15/16

Example: Graph of 2 components

What if 𝐺 is not connected?
 𝐺 has 2 components, each 𝑑-regular

What are some eigenvectors?
 𝒙 = put all 1s on 𝑪𝟏 and 0s on 𝑪𝟐 or vice versa

 𝑥′ = (1, … , 1,0, … , 0) then 𝑨 ⋅ 𝑥′ = (d, … , d, 0, … , 0)
 𝑥′′ = (0, … , 0,1, … , 0) then 𝑨 ⋅ 𝑥′′ = (0, … , 0, d, … , d)
 and so, in both cases the corresponding 𝜆 = 𝑑

A bit of intuition:

VIII-2: 29

𝐶1 𝐶2

𝐶1 𝐶2 𝐶1 𝐶2

𝜆𝑛 = 𝜆𝑛−1 𝜆𝑛 − 𝜆𝑛−1 ≈ 0

2nd largest
eigenvalue 𝜆𝑛−1
now has value
very close to 𝜆𝑛

IRDM ‘15/16

More intuition

If the graph is connected (right) then we already know
that 𝒙𝑛 = (1, … , 1) is an eigenvector

Since eigenvectors are orthogonal, the components of 𝒙𝑛−1 sum to 0
 why? Because 𝒙𝑛 ⋅ 𝒙𝑛−1 = ∑ 𝒙𝑛 𝑖 ⋅ 𝒙𝑛−1[𝑖]𝑖

So, we can look at the eigenvectors of the 2𝑛𝑛 largest eigenvalue and
declare nodes with positive label in 𝐶1 and negative label in 𝐶2

Still, lots to sort out.

VIII-2: 30

𝐶1 𝐶2 𝐶1 𝐶2

𝜆𝑛 = 𝜆𝑛−1 𝜆𝑛 − 𝜆𝑛−1 ≈ 0

2nd largest
eigenvalue 𝜆𝑛−1
now has value
very close to 𝜆𝑛

IRDM ‘15/16

Matrix representations

The (weighted) adjacency matrix 𝑨 has
the weight of edge (𝑖, 𝑗) at position 𝒂𝑖𝑖
 𝒏×𝒏 matrix
 𝑨 = [𝒂𝒊𝒊],𝒂𝒊𝒊 = 𝟏 if edge between node i and j

Important properties:
 symmetric matrix
 eigenvectors are real and orthogonal

VIII-2: 31

1

3
2

5

4 6

1 2 3 4 5 6

1 0 1 1 0 1 0
2 1 0 1 0 0 0
3 1 1 0 1 0 0
4 0 0 1 0 1 1
5 1 0 0 1 0 1
6 0 0 0 1 1 0

IRDM ‘15/16

Matrix representations (2)

The degree matrix of a graph is a diagonal 𝑛-by-𝑛
matrix with the degree of vertex 𝑖 at position 𝚫𝑖𝑖 = 𝑑𝑖
 𝚫𝑖𝑖 = 𝑑𝑖 = ∑ 𝑎𝑖𝑖𝑗 = degree of node i
 n× n diagonal matrix

VIII-2: 32

1

3
2

5

4 6

1 2 3 4 5 6

1 3 0 0 0 0 0
2 0 2 0 0 0 0
3 0 0 3 0 0 0
4 0 0 0 3 0 0
5 0 0 0 0 3 0
6 0 0 0 0 0 2

IRDM ‘15/16

Matrix representations (3)

The normalized adjacency matrix 𝑴 is the adjacency
matrix where in every row 𝑖 all values are divided by 𝑑𝑖
 every row sums up to 1
 𝑴 = 𝚫−1𝑨

(picture is on vacation)

VIII-2: 33

IRDM ‘15/16

Matrix representations (4)

The Laplacian matrix 𝐿 or Λ of a graph is the adjacency
matrix subtracted from the degree matrix
 𝒏× 𝒏 symmetric matrix

Important properties:
 eigenvalues are non-negative real numbers
 eigenvectors are real and orthogonal

VIII-2: 34

𝑳 = 𝑫 − 𝑨

1

3
2

5

4 6

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

IRDM ‘15/16

Matrix representations (4)

The Laplacian matrix 𝐿 or Λ of a graph is the adjacency
matrix subtracted from the degree matrix
 𝒏× 𝒏 symmetric matrix

𝑳 = 𝚲 = 𝚫 − 𝐀 =

∑ 𝑎1,𝑗𝑗≠1 −𝑎1,2 … −𝑎1,𝑛

−𝑎2,1
⋮

−𝑎𝑛,1

∑ 𝑎2,𝑗𝑗≠2 … −𝑎2,𝑛
⋮ ⋱ ⋮

−𝑎𝑛,2 … ∑ 𝑎𝑛,𝑗𝑗≠𝑛

The Laplacian is symmetric and positive semi-definite
 (for undirected graphs)
 has 𝑛 real, non-negative, orthogonal eigenvalues

0 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ ⋯𝜆𝑛

VIII-2: 35

IRDM ‘15/16

The normalised, symmetric Laplacian

The normalised, symmetric Laplacian matrix 𝐿𝑠 or Λs of a
graph is defined as

𝚫−
𝟏
𝟐𝑳𝚫−

𝟏
𝟐 = 𝑰 − 𝚫−

𝟏
𝟐𝐀𝚫−

𝟏
𝟐 =

∑ 𝑎1,𝑗𝑗≠1

𝑑1𝑑1
− 𝑎1,2

𝑑1𝑑2
… − 𝑎1,𝑛

𝑑1𝑑𝑛

− 𝑎2,1
𝑑2𝑑1
⋮

− 𝑎𝑛,1
𝑑𝑛𝑑1

∑ 𝑎2,𝑗𝑗≠2

𝑑2𝑑2
… − 𝑎2,𝑛

𝑑2𝑑𝑛
⋮ ⋱ ⋮

− 𝑎𝑛,2
𝑑𝑛𝑑2

…
∑ 𝑎𝑛,𝑗𝑗≠𝑛

𝑑𝑛𝑑𝑛

and is also positive semi-definite

The normalised, asymmetric Laplacian 𝐿𝑎 is 𝐿𝑎 = Δ−1𝐿

VIII-2: 36

IRDM ‘15/16

Clusterings and matrices, redux
Recall that we can express a clustering using
a binary cluster assignment matrix
 each row has exactly one non-zero

Let the 𝑖-th column of this matrix be 𝒄𝑖
 clusters are disjoint so 𝒄𝑖𝑇𝒄𝑗 = 0
 cluster has 𝒄𝑖𝑇𝒄𝑖 = 𝒄𝑖

2 elements

We can get the 𝑣𝑣𝑣(𝐶𝑖) and 𝑊(𝐶𝑖 ,𝑉) using 𝒄𝒊’s
 𝑣𝑣𝑣 𝐶𝑖 = ∑ 𝑑𝑗 = ∑ ∑ 𝒄𝑖𝑖𝚫𝑟𝑟𝒄𝑖𝑖𝑛

𝑠
𝑛
𝑟=1 = 𝒄𝑖𝑇𝚫𝒄𝑖𝑗∈𝐶𝑖

 𝑊 𝐶𝑖 ,𝐶𝑖 = ∑ ∑ 𝑎𝑟𝑟 = 𝒄𝑖𝑇𝑨𝒄𝑖𝑠∈𝐶𝑖𝑟∈𝐶𝑖
 𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖 = 𝑊 𝐶𝑖 ,𝑉 −𝑊 𝐶𝑖 ,𝐶𝑖 = 𝒄𝑖𝑇 𝚫 − 𝑨 𝒄𝑖 = 𝒄𝑖𝑇𝑳𝒄𝑖

VIII-2: 37

IRDM ‘15/16

Cuts using matrices

RatioCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖

𝐶𝑖

𝑘

𝑖=1

= �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖

2

𝑘

𝑖=1

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1

= �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖𝑇𝚫𝒄𝑖

𝑘

𝑖=1

VIII-2: 38

IRDM ‘15/16

The second eigenvalue, 𝜆2, as an
optimization problem

Fact: for symmetric matrix 𝑴:
𝜆2 = min

𝒙

𝒙𝑇𝑴𝑴
𝒙𝑇𝒙

What is the meaning of min𝒙𝑇𝑳𝑳 on graph 𝐺?
𝒙𝑇𝑳𝑳 = �𝑳𝑖𝑖𝒙𝑖𝒙𝑗 = � 𝑫𝑖𝑖 − 𝑨𝑖𝑖 𝒙𝑖𝒙𝑗

𝑛

𝑖𝑖

𝑛

𝑖𝑖

= �𝑫𝑖𝑖𝒙𝑖2

𝑖

− � 2𝒙𝑖𝒙𝑗
𝑖,𝑗 ∈𝐸

= � (𝒙𝑖2 + 𝒙𝑗2

𝑖,𝑗 ∈𝐸

− 2𝒙𝑖𝒙𝑗)

VIII-2: 39

= � 𝒙𝑖 − 𝒙𝑗
2

𝑖,𝑗 ∈𝐸

Node 𝑖 has degree 𝑑𝑖. So, value 𝒙𝑖2 needs to be summed up 𝑑𝑖 times.
But each edge (𝑖, 𝑗) has two endpoints, so we need 𝒙𝑖2 + 𝒙𝑗2

IRDM ‘15/16

𝜆2, as an optimization problem
What else do we know about 𝑥?
 𝒙 is a unit vector: ∑ 𝒙𝑖2 = 1𝑖
 𝒙 is orthogonal to 1st eigenvector (1, … , 1) thus:
∑ 𝑥𝑖 ⋅ 1𝑖 = ∑ 𝑥𝑖𝑖 = 0

Remember

𝜆2 = min
all labelings
of nodes i so
that ∑𝒙𝑖=0

∑ 𝒙𝑖 − 𝒙𝑗
2

𝑖,𝑗 ∈𝐸

∑ 𝒙𝑖2𝑖

We want to assign values 𝒙𝑖 to nodes 𝑖 such
that few edges cross 0.
(we want 𝒙𝑖 and 𝒙𝑗 to subtract eachother)

VIII-2: 40

IRDM ‘15/16

Finding an optimal cut
Back to finding the optimal cut

Express partition (𝐶1,𝐶2) as a vector

𝒄𝑖 = �+1 if 𝑖 ∈ 𝐶1
−1 if 𝑖 ∈ 𝐶2

We can minimise the cut of the partition
by finding a non-trivial vector 𝑥 that minimises

arg min
𝒄∈ −1,+1 𝑛 𝑓 𝒄 = � 𝒄𝑖 − 𝒄𝑗

2

𝑖,𝑗 ∈𝐸

NP-hard… so, let’s relax!
 let 𝒄𝑖’s take any real value

(Fiedler, 1973)
VIII-2: 41

IRDM ‘15/16

Rayleigh theorem

min
𝒄∈ℝ𝑛

𝑓 𝒄 = � 𝒄𝑖 − 𝒄𝑗
2

𝑖,𝑗 ∈𝐸

= 𝒄𝑇𝑳𝑳

𝜆2 = min

𝒄
𝑓(𝒄): the minimum value of 𝑓 𝒄 is

given by the 2nd smallest eigenvalue 𝝀𝟐 of the Laplacian matrix 𝑳

𝒙 = arg min

𝒄
𝑓(𝒄): the optimal solution for 𝒄 is given by the

corresponding eigenvector 𝒙 and is referred to as the Fiedler vector

VIII-2: 42

IRDM ‘15/16

So far…

How to define a good partition of a graph?
 minimise a given graph cut criterion

How to efficiently identify such a partition?
 approximate using information provided by the

eigenvalues and eigenvalues of a graph

Spectral clustering

VIII-2: 43

IRDM ‘15/16

Spectral clustering algorithms

Three basic stages
1. pre-processing

 construct a matrix representation of the graph

2. decomposition
 compute eigenvalues and eigenvectors of the matrix
 map each point to a lower-dimensional representation

based on one or more eigenvectors

3. grouping
 assign points to two or more clusters,

based on the new representation

VIII-2: 44

IRDM ‘15/16

Spectral partitioning algorithm
1) Pre-processing:
 build Laplacian

matrix 𝑳 of the
graph

2) Decomposition:
 find eigenvalues λ

and eigenvectors 𝒙
of the matrix 𝑳

 map vertices to
corresponding
components of 𝜆2

VIII-2: 45

0.0 -0.4 -0.4 0.4 -0.6 0.4

0.5 0.4 -0.2 -0.5 -0.3 0.4

-0.5 0.4 0.6 0.1 -0.3 0.4

0.5 -0.4 0.6 0.1 0.3 0.4

0.0 0.4 -0.4 0.4 0.6 0.4

-0.5 -0.4 -0.2 -0.5 0.3 0.4

5.0

4.0

3.0

3.0

1.0

0.0

λ= X
=

How do we now
find the clusters?

-0.6 6

-0.3 5

-0.3 4

0.3 3

0.6 2

0.3 1

1 2 3 4 5 6

1 3 -1 -1 0 -1 0

2 -1 2 -1 0 0 0

3 -1 -1 3 -1 0 0

4 0 0 -1 3 -1 -1

5 -1 0 0 -1 3 -1

6 0 0 0 -1 -1 2

IRDM ‘15/16

Spectral partitioning
3) Grouping:
 sort components of reduced 1-dimensional vector
 identify clusters by splitting the sorted vector in two

How to choose a splitting point?
 naïve approaches:

 split at 0 or median value
 more expensive approaches:

 attempt to minimize normalized cut in 1-dimension
(sweep over ordering of nodes induced by the eigenvector)

VIII-2: 46 -0.6 6

-0.3 5

-0.3 4

0.3 3

0.6 2

0.3 1
Split at 0:

Cluster A: Positive points
Cluster B: Negative points

0.3 3

0.6 2
0.3 1

-0.6 6

-0.3 5

-0.3 4

A B

IRDM ‘15/16

Example: Spectral Partitioning

VIII-2: 47

Rank in x2

Va
lu

e
of

 x
2

IRDM ‘15/16

Example: Spectral Partitioning

VIII-2: 48

Rank in x2

Va
lu

e
of

 x
2

Eigenvector corresponding to 𝜆2 is useful,
it shows communities!

IRDM ‘15/16

Example: Spectral Partitioning

VIII-2: 49

Eigenvector corresponding to 𝜆1 is useless,
it doesn’t show anything

Eigenvector corresponding to 𝜆3 is
useless by itself, but useful when considered together with 𝝀𝟐

IRDM ‘15/16

𝑘-way Spectral clustering

How do we partition a graph into k clusters?

There are two basic approaches
 recursive bi-partitioning (Hagen et al., ’92)

 recursively apply a bi-partitioning algorithm in
a hierarchical divisive manner

 inefficient, and unstable

 cluster multiple eigenvectors (Shi-Malik, ’00)

 build a reduced space from multiple eigenvectors
 commonly used in recent papers
 a preferable approach…

VIII-2: 50

IRDM ‘15/16

Why use multiple eigenvectors?
Approximates the optimal cut
 can be used to approximate optimal k-way normalized cut

Emphasizes cohesive clusters
 increases the unevenness in the distribution of the data
 associations between similar points are amplified, associations between dissimilar

points are attenuated
 the data begins to “approximate a clustering”

Well-separated space
 transforms data to a new “embedded space”,

consisting of k orthogonal basis vectors

Multiple eigenvectors prevent instability due to information loss

 (Shi-Malik, 2000)

VIII-2: 51

IRDM ‘15/16

Is spectral clustering optimal?

Spectral clustering is not always a
good approximation of the graph cuts
 in so-called cockroach graphs, spectral clustering always cuts

horizontally, while vertically is optimal
 approximation ratio of 𝑂(𝑛)

VIII-2: 52

v1 vk+1 v2k

v2k+1 v3k

vk

v3k+1 v4k

Optimal

Spectral

IRDM ‘15/16

Spectral clustering

To do the clustering, we need to move our real-valued
eigenvectors 𝒖𝑖 to binary cluster indicator vectors

First, create a matrix 𝑼 with 𝒖𝑖 ’s as its columns
 optionally, normalize the rows to sum up to 1 (esp when using 𝑳𝑠)

Cluster the rows of this matrix using 𝑘-means
 or, in principle, any other clustering algorithm

Solving the eigenvectors is 𝑂(𝑛3) in general or 𝑂(𝑛2) if
the similarity graph has as many edges as vertices
 the 𝑘-means on the 𝑼 matrix takes 𝑂(𝑡𝑡𝑘2)

 𝑡 is the number of iterations in 𝑘-means

VIII-2: 53

IRDM ‘15/16

Another look at Approximate cuts

Allowing for real-valued cluster assignment vectors
𝑐𝑖 makes Relaxed RatioCut look like

𝐽𝑟𝑟 𝐶 = �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖

2

𝑘

𝑖=1

= �
𝒄𝑖
𝒄𝑖

𝑇

𝑳
𝒄𝑖
𝒄𝑖

𝑘

𝑖=1

= �𝒖𝑖𝑇𝑳𝒖𝑖

𝑘

𝑖=1

 𝒖𝑖 = 𝒄𝑖

𝒄𝑖
 i.e. the unit vector in the direction of 𝒄𝑖

VIII-2: 54

IRDM ‘15/16

Solving the relaxed version

We want to minimize the function 𝐽𝑟𝑟 over 𝒖𝑖 ’s
 we have a constraint that 𝒖𝑖𝑇𝒖𝑖 = 1

To solve, derive w.r.t. 𝒖𝑖 ’s and find the roots
 add Lagrange multipliers to incorporate the constraints:

𝛿
𝛿𝒖𝑖

�𝒖𝑖𝑇𝑳𝒖𝑖 + �𝜆𝑖 1 − 𝒖𝑖𝑇𝒖𝑖

𝑘

𝑖

𝑘

𝑖

= 𝟎

Hence, 𝑳𝒖𝑖 = 𝜆𝑖𝒖𝑖
 𝒖𝑖 is an eigenvector of 𝑳 corresponding to the eigenvalue 𝜆𝑖

VIII-2: 55

IRDM ‘15/16

Which eigenvectors to choose

We know that 𝑳𝒖𝑖 = 𝜆i𝒖i
 hence 𝜆𝑖 = 𝒖𝑖𝑇𝑳𝒖𝑖

As we’re minimizing the sum of 𝒖𝑖𝑇𝑳𝒖𝑖 ’s we should choose
the 𝒖𝑖 ’s corresponding to the 𝑘 smallest eigenvalues
 these are our relaxed cluster indicators

But, we also know that 𝜆1 = 0 and
that the corresponding eigenvector is (𝑛–12,𝑛–12, … ,𝑛–12)
 hmm, that doesn’t help with clustering...

VIII-2: 56

IRDM ‘15/16

Normalised cut and choice of Laplacians

For normalized cut similar procedure shows that we should
select the 𝑘 smallest eigenvectors of 𝑳𝑠 instead of 𝑳
 or, we can use the asymmetric Laplacian 𝑳𝑎

Which one we should choose?
 both ratio and normalised cut aim at minimising intra-cluster similarity
 only normalised cut considers inter-cluster similarity → either 𝑳𝑠 or 𝑳𝑎

The asymmetric Laplacian is better
 with symmetric one further normalisation is needed

VIII-2: 57

IRDM ‘15/16

Pseudo-code
Algorithm SPECTRALCLUSTERING(connected graph 𝐺, 𝑘) :
 compute the similarity matrix 𝑨 ∈ ℝ𝑛×𝑛 for 𝐺
 if 𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐 then 𝑩 ← 𝑳
 else if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐 then 𝑩 ← 𝑳𝒔 or 𝑳𝒂
 solve 𝑩𝒖𝑖 = 𝜆𝑖𝒖𝑖 for 𝑖 = 𝑘 + 1, where 𝜆2 ≤ 𝜆3 ≤ ⋯ ≤ 𝜆𝑘+1
 𝑼 ← 𝒖𝑛 𝒖𝑛−1 …𝒖𝑛−𝑘+1
 𝒀 ← normalise rows of 𝑼
 𝑪 ← 𝑪𝟏, … ,𝑪𝑘 via 𝑘-means on 𝒀

VIII-2: 58

IRDM ‘15/16

Conclusions

Frequent subgraph mining finds recurring patterns in
graph data
 enormously complex problem → exact algorithms can’t be fast
 but graphs are not usually very big even if there are many of them

Graph clustering is much like other clustering
 any clusterable data can be turned into similarity graph
 spectral clustering uses well-known linear algebra
 though this doesn’t necessarily make it a good clustering algorithm

VIII-2: 59

IRDM ‘15/16

Frequent subgraph mining finds recurring patterns in
graph data
 enormously complex problem → exact algorithms can’t be fast
 but graphs are not usually very big even if there are many of them

Graph clustering is much like other clustering
 any clusterable data can be turned into similarity graph
 spectral clustering uses well-known linear algebra
 though this doesn’t necessarily make it a good clustering algorithm

VIII-2: 60

	Slide Number 1
	IRDM Chapter 8, overview
	IRDM Chapter 8, today
	Slide Number 4
	Slide Number 5
	Trawling
	Searching for small communities
	Frequent itemset mining
	From itemsets to bipartite 𝐾 𝛼,𝛽
	From itemsets to bipartite 𝐾 𝛼,𝛽
	Example
	Slide Number 12
	Where do graphs come from?
	Similarity and adjacency matrices
	Getting non-complete graphs
	Getting non-complete graphs (2)
	Which similarity graph?
	Example graph
	Graph partitioning
	Graph partitioning
	Clustering as Graph Cuts
	What is a good cut?
	Cuts that cut it
	Cuts that cut it
	Cuts that cut it
	Spectral Graph Partitioning
	What is the meaning of 𝑨𝒙?
	Example: 𝑑-regular graph
	Example: Graph of 2 components
	More intuition
	Matrix representations
	Matrix representations (2)
	Matrix representations (3)
	Matrix representations (4)
	Matrix representations (4)
	The normalised, symmetric Laplacian
	Clusterings and matrices, redux
	Cuts using matrices
	The second eigenvalue, 𝜆 2 , as an optimization problem
	 𝜆 2 , as an optimization problem
	Finding an optimal cut
	Rayleigh theorem
	So far…
	Spectral clustering algorithms
	Spectral partitioning algorithm
	Spectral partitioning
	Example: Spectral Partitioning
	Example: Spectral Partitioning
	Example: Spectral Partitioning
	𝑘-way Spectral clustering
	Why use multiple eigenvectors?
	Is spectral clustering optimal?
	Spectral clustering
	Another look at Approximate cuts
	Solving the relaxed version
	Which eigenvectors to choose
	Normalised cut and choice of Laplacians
	Pseudo-code
	Conclusions
	Slide Number 60

