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IRDM Chapter 8, overview 

1. The basics 
2. Properties of Graphs 
3. Frequent Subgraphs 
4. Graph Clustering 

 
 

You’ll find this covered in:  
Aggarwal, Ch. 17, 19 
Zaki & Meira, Ch. 4, 11, 16 
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Chapter 7.4:  
Community Detection 

Aggarwal Ch. 19.3, 17.5 
Zaki & Meira Ch. 16 
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Chapter 7.4.1:  
Detecting Small Communities 

- 
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Trawling 

Searching for small communities in the Web graph 
 
What is the signature of a community in a Web graph? 
 intuition: Many people all talking about the same things 
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…
 

…
 

Dense 2-layer graph 

Use this to define “topics”: 
What the same people on  
the left talk about on the right 
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Searching for small communities 

A more well-defined problem: 
 enumerate complete bipartite subgraphs 𝐾𝛼,𝛽   

where 𝐾𝛼,𝛽 has 𝑠 nodes on the “left” and every such node in 𝑠 
links to the same set of 𝑡 nodes on the “right” 
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𝐾3,4 

|𝑋|  = 𝛼 =  3 
|𝑌|  = 𝛽 =  4 𝑋 𝑌 

Fully connected 
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Frequent itemset mining 

Recall market basket analysis.  
 market: universe 𝑈 of 𝑛 items 
 baskets: 𝑚 transctions, subsets of 𝑈: 𝑡1, 𝑡2, … , 𝑡𝑚 ⊆ 𝑈  

where each 𝑡𝑖 is a set of items one person bought 
 support: frequency threshold 𝜎 
 
Goal: 
 find all subsets 𝑋 ⊆ 𝑈  s.t.  𝑋 ⊆ 𝑡𝑖 of at least 𝜎 sets 𝑡𝑖 ∈ 𝑫  
 
What’s the connection between  
itemsets and complete bipartite graphs? 
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From itemsets to bipartite 𝐾𝛼,𝛽 

Frequent itemsets = complete bipartite graphs! 
 

How? 
 view each node 𝑖 as a  

set 𝑡𝑖 of the nodes 𝑖 points to 
𝐾𝛼,𝛽 = a set 𝑌 of size 𝛽  
that occurs in 𝛼 sets 𝑡𝑖 
 

 looking for 𝐾𝛼,𝛽 →  
set frequency threshold to 𝛼  
and look at layer 𝛽 , find  
all frequent sets of size 𝑡 
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𝑡𝑖 = {𝑎, 𝑏, 𝑐,𝑑} 
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𝑋 𝑌 

𝛼 … minimum support (|𝑋| = 𝛼) 
𝛽 … itemset size (|𝑌| = 𝛽) 
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From itemsets to bipartite 𝐾𝛼,𝛽 

(Kumar et al ‘99) 
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𝑡𝑖 = {𝑎, 𝑏, 𝑐,𝑑} 
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2) Find frequent itemsets: 
  𝛼 … minimum support 
  𝛽 … itemset size 

x 
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c 

a 

4) We found 𝐾𝛼,𝛽!  
𝐾𝛼,𝛽 = a set 𝑌 of size 𝛽  
that occurs in 𝛼 sets 𝑡𝑖  

1) View each node 𝑖 as a  
set 𝑡𝑖 of nodes 𝑖 points to 

3) Say we find a frequent itemset 
𝑋 = {𝑎,𝑏, 𝑐} of supp 𝛼 
This means, there are 𝛼 nodes 
that link to all of {𝑎, 𝑏, 𝑐}: 
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Example 
Support threshold 𝛼 = 𝜎 = 2 

 {𝑏,𝑑}: support 3 
 {𝑒, 𝑓}: support 2 

 i.e. we found 2 bipartite subgraphs: 
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c 

a b 

d 

f 
Itemsets: 
𝑎 =  {𝑏, 𝑐,𝑑} 
𝑏 =  {𝑑} 
𝑐 =  {𝑏,𝑑, 𝑒, 𝑓} 
𝑑 =  {𝑒, 𝑓} 
𝑒 =  {𝑏,𝑑} 
𝑓  =  {} 
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Chapter 7.4.2:  
Community Detection  

by Graph Clustering 
Aggarwal Ch. 17.5, 19.3 

Zaki & Meira Ch. 16 
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Where do graphs come from? 

 
We can have data in graph form 
 e.g. the clusters of our  

social networks 
 

 
Or, we map existing data to a graph 
 data points become vertices 
 add an edge if two data points are similar 

 edge weights can also tell about similarity 
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Similarity and adjacency matrices 
A similarity matrix is an 𝑛-by- 𝑛 non-negative, symmetric matrix 
 the opposite of the distance matrix 
 
Recall that a weighted adjacency matrix is an 𝑛-by-𝑛  
non-negative, symmetric matrix  
 for weighted, undirected graphs 

 
So, we can think every similarity matrix as  
an adjacency matrix of some weighted, undirected graph 
 this graph will be complete (a clique) 
 
Further, we can use any similarity measure between  
two points as an edge weight 
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Getting non-complete graphs 

Using complete graphs can be a waste of resources 
 for clustering, we don’t really care about very dissimilar pairs 

 
We can remove edges between dissimilar vertices 
 zero weight 

 
Or, we adjust the weights to diminish dissimilar points 
 the Gaussian kernel is popular for this 

𝑤𝑖𝑖 = exp −
𝑥𝑖 − 𝑥𝑖

2

2𝜎2
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Getting non-complete graphs (2) 

How to decide when vertices are too dissimilar? 
 
In 𝝐-neighbour graphs we add an edge between two 
vertices that are within distance 𝜖 to each other 
 usually the resulting graph is considered unweighted as all weights would 

be roughly similar 
 

In 𝑘-nearest neighbour graphs we connect two vertices if 
one is within the 𝑘 nearest neighbours of the other 
 in mutual 𝑘-nearest neighbour graph we only connect two vertices if 

they’re both in each other’s 𝑘 nearest neighbours 
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Which similarity graph? 
With 𝜖-graphs choosing the parameter is hard 
 no single correct answer if different clusters have different internal similarities 
 
𝑘-nearest neighbours can connect points with  
different similarities 
 but far-away high density regions become unconnected 
 
The mutual 𝑘-nearest neighbours is somewhat in between 
 good for detecting clusters with different densities 
 
General recommendation: start with 𝑘-NN 
 others if data supports that 
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Example graph 
 

(Zaki & Meira, Fig 16.1) 
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Graph partitioning 
Undirected graph  

 
Bi-partitioning task: 
 divide vertices into two disjoint groups  

 
 

 
 
 

 
Questions: 
 how can we define a “good partition of”? 
 how can we efficiently identify such a partition? 
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Graph partitioning 

What makes a good partition? 
 maximize the number of within-group connections 
 minimize the number of between-group connections 
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Clustering as Graph Cuts 
A cut of a connected graph 𝐺 =  (𝑉,𝐸) divides the set of 
vertices into two partitions 𝑆 and 𝑉 ∖ 𝑆 and removes the 
edges between them 
 cut can be expressed by giving the set 𝑆  
 or by giving the cut set, i.e. edges with exactly one end in 𝑆,  

 
𝐹 = { 𝑣,𝑢 ∈ 𝐸 ∶ 𝑣,𝑢 ∩ 𝑆 = 1} 

 
A graph cut groups the vertices of a graph into two clusters 
 subsequent cuts in the components give us a hierarchical clustering 
 
A 𝒌-way cut cuts the graph into 𝑘 disjoint set of vertices 
𝐶1,𝐶2, … ,𝐶𝑘 and removes the edges between them 
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What is a good cut? 

Not every cut will cut it 
 
In minimum cut the goal is to find any set of vertices 
such that cutting them from the rest of the graph 
requires removing the least number of edges 
 least sum of weights for weighted graphs 
 the extension to multiway cuts is straightforward 
 
The minimum cut can be found in polynomial time 
 the max-flow min-cut theorem 
 
But minimum cut isn’t very good for clustering purposes 
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Cuts that cut it 

The minimum cut usually removes only one vertex  
 not very appealing clustering 
 we want to penalize the cut for imbalanced cluster sizes 
 
In ratio cut, the goal is to minimize the ratio of the 
weight of the edges in the cut set and the size of the 
clusters 𝐶𝑖   
 Let 𝑊 𝐴,𝐵 = ∑ 𝑤𝑖𝑖𝑖∈𝐴,𝑖∈𝐵  

 wij is the weight of edge (i, j) 
 

RatioCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖

𝐶𝑖

𝑘

𝑖=1
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Cuts that cut it 

The volume of a set of vertices 𝐴 is the weight of all 
edges connected to 𝐴  

𝑣𝑣𝑣 𝐴 = 𝑊 𝐴,𝑉 = � 𝑤𝑖𝑖
𝑖∈𝐴,𝑖∈𝑉

 

 
In normalized cut we measure the size of 𝐶𝑖 by 𝑣𝑣𝑣(𝐶𝑖) 
instead of |𝐶𝑖| 
 

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1
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Cuts that cut it 

The volume of a set of vertices 𝐴 is the weight of all 
edges connected to 𝐴  

𝑣𝑣𝑣 𝐴 = 𝑊 𝐴,𝑉 = � 𝑤𝑖𝑖
𝑖∈𝐴,𝑖∈𝑉

 

 
In normalized cut we measure the size of 𝐶𝑖 by 𝑣𝑣𝑣(𝐶𝑖) 
instead of 𝐶𝑖  
 

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1
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Finding the optimal  
RatioCut or NormalisedCut  

is NP-hard 
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Spectral Graph Partitioning 
 A: adjacency matrix of undirected G 

 𝑨𝑖𝑖 = 1  if  is an edge, else 0 
 𝒙 is a vector in ℝ𝑛 with components (‘value groups’)  

 think of it as a label/value of each node 
 
What is the meaning of 𝑨 ⋅ 𝒙? 

 
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝑥1
⋮
𝑥𝑛

=
𝑦1
⋮
𝑦𝑛

  

 
 

 

Entry 𝑦𝑖 is a sum of labels 𝑥𝑖 of neighbors of 𝑖 
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𝑦𝑖 = �𝑨𝑖𝑖𝑥𝑖

𝑛

𝑖

= � 𝒙𝑖
𝑖,𝑖 ∈𝐸
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What is the meaning of 𝑨𝒙? 

𝑗𝑡𝑡 coordinate of 𝑨 ⋅ 𝒙  
 sum of the 𝒙-values  

of neighbors of 𝒋 
 make this a new value  

at node 𝒋  
 

Spectral graph theory 
 analyse the spectrum of the matrix 
 the spectrum are the eigenvectors of a graph, ordered by the 

magnitude (strength) of their corresponding eigenvalues 
Λ = 𝜆1, 𝜆2, … , 𝜆𝑛  with 
𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 
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𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝑥1
⋮
𝑥𝑛

= 𝜆
𝑥1
⋮
𝑥𝑛

 

𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 
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Example: 𝑑-regular graph 

Suppose all nodes in connected graph 𝐺 have degree 𝑑 
 

What are some eigenvalues/vectors of 𝐺? 
𝑨 ⋅ 𝒙 = 𝜆 ⋅ 𝒙 What is 𝜆? What is 𝒙? 

 let’s try: 𝒙 = (1,1, … , 1) 
 then: 𝑨 ⋅ 𝒙 = 𝑑,𝑑, … ,𝑑 = 𝜆 ⋅ 𝒙. So: 𝜆 = 𝑑 
 
We found eigenpair of 𝐺: 𝒙 = 1,1, … , 1 , 𝜆 = 𝑑 
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Remember the meaning of 𝒚 = 𝑨 ⋅ 𝒙: 

𝑦𝑖 = �𝑨𝑖𝑖𝑥𝑖

𝑛

𝑖

= � 𝒙𝑖
𝑖,𝑖 ∈𝐸
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Example: Graph of 2 components 

What if 𝐺 is not connected? 
 𝐺 has 2 components, each 𝑑-regular 

 

What are some eigenvectors? 
 𝒙 = put all 1s on 𝑪𝟏 and 0s on 𝑪𝟐 or vice versa 

 𝑥′ = (1, … , 1,0, … , 0) then 𝑨 ⋅ 𝑥′ = (d, … , d, 0, … , 0) 
 𝑥′′ = (0, … , 0,1, … , 0) then 𝑨 ⋅ 𝑥′′ = (0, … , 0, d, … , d) 
 and so, in both cases the corresponding 𝜆 = 𝑑 

 

A bit of intuition: 
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𝐶1 𝐶2  

𝐶1 𝐶2  𝐶1 𝐶2  

𝜆𝑛 = 𝜆𝑛−1 𝜆𝑛 − 𝜆𝑛−1 ≈ 0 

2nd largest 
eigenvalue 𝜆𝑛−1 
now has value 
very close to 𝜆𝑛 
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More intuition 

If the graph is connected (right) then we already know  
that 𝒙𝑛 = (1, … , 1) is an eigenvector 
 

Since eigenvectors are orthogonal, the components of 𝒙𝑛−1 sum to 0 
 why? Because 𝒙𝑛 ⋅ 𝒙𝑛−1 = ∑ 𝒙𝑛 𝑖 ⋅ 𝒙𝑛−1[𝑖]𝑖  

 

So, we can look at the eigenvectors of the 2𝑛𝑛 largest eigenvalue and 
declare nodes with positive label in 𝐶1 and negative label in 𝐶2 
 

Still, lots to sort out. 
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𝐶1 𝐶2  𝐶1 𝐶2  

𝜆𝑛 = 𝜆𝑛−1 𝜆𝑛 − 𝜆𝑛−1 ≈ 0 

2nd largest 
eigenvalue 𝜆𝑛−1 
now has value 
very close to 𝜆𝑛 
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Matrix representations 

The (weighted) adjacency matrix 𝑨 has  
the weight of edge (𝑖, 𝑗) at position 𝒂𝑖𝑖   
 𝒏×𝒏 matrix 
 𝑨 = [𝒂𝒊𝒋],𝒂𝒊𝒋 = 𝟏 if edge between node i and j 

 
 
 
 
 
 
 

 
Important properties:  
 symmetric matrix 
 eigenvectors are real and orthogonal 
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1 

3 
2 

5 

4 6 

1 2 3 4 5 6 

1 0 1 1 0 1 0 
2 1 0 1 0 0 0 
3 1 1 0 1 0 0 
4 0 0 1 0 1 1 
5 1 0 0 1 0 1 
6 0 0 0 1 1 0 
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Matrix representations (2) 

The degree matrix  of a graph is a diagonal 𝑛-by-𝑛 
matrix with the degree of vertex 𝑖 at position 𝚫𝑖𝑖 = 𝑑𝑖 
 𝚫𝑖𝑖 = 𝑑𝑖 = ∑ 𝑎𝑖𝑖𝑖 =  degree of node i 
 n× n  diagonal matrix 
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1 

3 
2 

5 

4 6 

1 2 3 4 5 6 

1 3 0 0 0 0 0 
2 0 2 0 0 0 0 
3 0 0 3 0 0 0 
4 0 0 0 3 0 0 
5 0 0 0 0 3 0 
6 0 0 0 0 0 2 
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Matrix representations (3) 

The normalized adjacency matrix 𝑴 is the adjacency 
matrix where in every row 𝑖 all values are divided by 𝑑𝑖  
 every row sums up to 1 
 𝑴 = 𝚫−1𝑨 

 
 

(picture is on vacation) 
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Matrix representations (4) 

The Laplacian matrix 𝐿 or Λ of a graph is the adjacency 
matrix subtracted from the degree matrix 
 𝒏× 𝒏 symmetric matrix 

 
 
 

 
 
 
 
 
 

Important properties: 
 eigenvalues are non-negative real numbers 
 eigenvectors are real and orthogonal 
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𝑳 =  𝑫 −  𝑨 

1 

3 
2 

5 

4 6 

1 2 3 4 5 6 

1 3 -1 -1 0 -1 0 

2 -1 2 -1 0 0 0 

3 -1 -1 3 -1 0 0 

4 0 0 -1 3 -1 -1 

5 -1 0 0 -1 3 -1 

6 0 0 0 -1 -1 2 
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Matrix representations (4) 

The Laplacian matrix 𝐿 or Λ of a graph is the adjacency 
matrix subtracted from the degree matrix 
 𝒏× 𝒏 symmetric matrix 

𝑳 = 𝚲 = 𝚫 − 𝐀 =

∑ 𝑎1,𝑖𝑖≠1 −𝑎1,2    …     −𝑎1,𝑛

−𝑎2,1
⋮

−𝑎𝑛,1

∑ 𝑎2,𝑖𝑖≠2 … −𝑎2,𝑛
⋮ ⋱ ⋮

−𝑎𝑛,2 … ∑ 𝑎𝑛,𝑖𝑖≠𝑛

  

 
The Laplacian is symmetric and positive semi-definite 
 (for undirected graphs) 
 has 𝑛 real, non-negative, orthogonal eigenvalues 

0 ≤ 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ ⋯𝜆𝑛 
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The normalised, symmetric Laplacian 

The normalised, symmetric Laplacian matrix 𝐿𝑠 or Λs of a 
graph is defined as 

𝚫−
𝟏
𝟐𝑳𝚫−

𝟏
𝟐 = 𝑰 − 𝚫−

𝟏
𝟐𝐀𝚫−

𝟏
𝟐 =

∑ 𝑎1,𝑗𝑗≠1

𝑛1𝑛1
− 𝑎1,2

𝑛1𝑛2
…     − 𝑎1,𝑛

𝑛1𝑛𝑛

− 𝑎2,1
𝑛2𝑛1
⋮

− 𝑎𝑛,1
𝑛𝑛𝑛1

∑ 𝑎2,𝑗𝑗≠2

𝑛2𝑛2
… − 𝑎2,𝑛

𝑛2𝑛𝑛
⋮ ⋱ ⋮

− 𝑎𝑛,2
𝑛𝑛𝑛2

…
∑ 𝑎𝑛,𝑗𝑗≠𝑛

𝑛𝑛𝑛𝑛

  

 
and is also positive semi-definite 

 
The normalised, asymmetric Laplacian 𝐿𝑎 is 𝐿𝑎 = Δ−1𝐿 
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Clusterings and matrices, redux 
Recall that we can express a clustering using  
a binary cluster assignment matrix 
 each row has exactly one non-zero 
 
Let the 𝑖-th column of this matrix be 𝒄𝑖  
 clusters are disjoint so 𝒄𝑖𝑇𝒄𝑖  =  0 
 cluster has 𝒄𝑖𝑇𝒄𝑖  =  𝒄𝑖

2 elements 
 
We can get the 𝑣𝑣𝑣(𝐶𝑖) and 𝑊(𝐶𝑖 ,𝑉) using 𝒄𝒊’s 
 𝑣𝑣𝑣 𝐶𝑖 = ∑ 𝑑𝑖 = ∑ ∑ 𝒄𝑖𝑖𝚫𝑖𝑠𝒄𝑖𝑠𝑛

𝑠
𝑛
𝑖=1 = 𝒄𝑖𝑇𝚫𝒄𝑖𝑖∈𝐶𝑖  

 𝑊 𝐶𝑖 ,𝐶𝑖 = ∑ ∑ 𝑎𝑖𝑠 = 𝒄𝑖𝑇𝑨𝒄𝑖𝑠∈𝐶𝑖𝑖∈𝐶𝑖  
 𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖 = 𝑊 𝐶𝑖 ,𝑉 −𝑊 𝐶𝑖 ,𝐶𝑖 = 𝒄𝑖𝑇 𝚫 − 𝑨 𝒄𝑖 = 𝒄𝑖𝑇𝑳𝒄𝑖  
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Cuts using matrices 
 

RatioCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖

𝐶𝑖

𝑘

𝑖=1

= �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖

2

𝑘

𝑖=1

 

 

NormalisedCut = �
𝑊 𝐶𝑖 ,𝑉 ∖ 𝐶𝑖
𝑣𝑣𝑣 𝐶𝑖

𝑘

𝑖=1

= �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖𝑇𝚫𝒄𝑖

𝑘

𝑖=1
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The second eigenvalue, 𝜆2, as an 
optimization problem 

Fact: for symmetric matrix 𝑴: 
𝜆2 = min

𝒙

𝒙𝑇𝑴𝒙
𝒙𝑇𝒙

 
 

What is the meaning of min𝒙𝑇𝑳𝒙 on graph 𝐺? 
𝒙𝑇𝑳𝒙 = �𝑳𝑖𝑖𝒙𝑖𝒙𝑖 = � 𝑫𝑖𝑖 − 𝑨𝑖𝑖 𝒙𝑖𝒙𝑖

𝑛

𝑖𝑖

𝑛

𝑖𝑖

 

= �𝑫𝑖𝑖𝒙𝑖2

𝑖

− � 2𝒙𝑖𝒙𝑖
𝑖,𝑖 ∈𝐸

 

= � (𝒙𝑖2 + 𝒙𝑖2

𝑖,𝑖 ∈𝐸

− 2𝒙𝑖𝒙𝑖) 
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= � 𝒙𝑖 − 𝒙𝑖
2

𝑖,𝑖 ∈𝐸

 

Node 𝑖 has degree 𝑑𝑖. So, value 𝒙𝑖2 needs to be summed up 𝑑𝑖 times. 
But each edge (𝑖, 𝑗) has two endpoints, so we need 𝒙𝑖2 + 𝒙𝑖2 
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𝜆2, as an optimization problem 
What else do we know about 𝑥? 
 𝒙 is a unit vector: ∑ 𝒙𝑖2 = 1𝑖  
 𝒙 is orthogonal to 1st eigenvector (1, … , 1) thus: 
∑ 𝑥𝑖 ⋅ 1𝑖 = ∑ 𝑥𝑖𝑖 = 0  
 

Remember 

𝜆2 = min
all labelings
of nodes i so
that ∑𝒙𝑖=0

∑ 𝒙𝑖 − 𝒙𝑖
2

𝑖,𝑖 ∈𝐸

∑ 𝒙𝑖2𝑖
 

 
We want to assign values 𝒙𝑖 to nodes 𝑖 such  
that few edges cross 0.  
(we want 𝒙𝑖 and 𝒙𝑖 to subtract eachother) 
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Finding an optimal cut 
Back to finding the optimal cut 
 
Express partition (𝐶1,𝐶2) as a vector 

𝒄𝑖 = �+1  if 𝑖 ∈ 𝐶1
−1  if 𝑖 ∈ 𝐶2

 

 
We can minimise the cut of the partition  
by finding a non-trivial vector 𝑥 that minimises 

arg min
𝒄∈ −1,+1 𝑛 𝑓 𝒄 = � 𝒄𝑖 − 𝒄𝑖

2

𝑖,𝑖 ∈𝐸

 

 
NP-hard… so, let’s relax! 
 let 𝒄𝑖’s take any real value 

(Fiedler, 1973) 
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Rayleigh theorem 

min
𝒄∈ℝ𝑛

𝑓 𝒄 = � 𝒄𝑖 − 𝒄𝑖
2

𝑖,𝑖 ∈𝐸

= 𝒄𝑇𝑳𝒄 

 
 
𝜆2 = min

𝒄
𝑓(𝒄): the minimum value of 𝑓 𝒄  is  

given by the 2nd smallest eigenvalue 𝝀𝟐 of the Laplacian matrix 𝑳 
 
𝒙 = arg min

𝒄
𝑓(𝒄): the optimal solution for 𝒄 is given by the 

corresponding eigenvector 𝒙 and is referred to as the Fiedler vector 
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So far… 

How to define a good partition of a graph? 
 minimise a given graph cut criterion 

 
How to efficiently identify such a partition? 
 approximate using information provided by the  

eigenvalues and eigenvalues of a graph 
 

Spectral clustering 
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Spectral clustering algorithms 

Three basic stages 
1. pre-processing 

 construct a matrix representation of the graph 

2. decomposition 
 compute eigenvalues and eigenvectors of the matrix 
 map each point to a lower-dimensional representation  

based on one or more eigenvectors 

3. grouping 
 assign points to two or more clusters, 

based on the new representation 
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Spectral partitioning algorithm 
1) Pre-processing: 
 build Laplacian  

matrix 𝑳 of the  
graph 

 
2) Decomposition: 
 find eigenvalues λ 

and eigenvectors 𝒙  
of the matrix 𝑳 
 

 map vertices to  
corresponding  
components of 𝜆2 
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0.0 -0.4 -0.4 0.4 -0.6 0.4 

0.5 0.4 -0.2 -0.5 -0.3 0.4 

-0.5 0.4 0.6 0.1 -0.3 0.4 

0.5 -0.4 0.6 0.1 0.3 0.4 

0.0 0.4 -0.4 0.4 0.6 0.4 

-0.5 -0.4 -0.2 -0.5 0.3 0.4 

5.0 

4.0 

3.0 

3.0 

1.0 

0.0 

λ= X 
= 

How do we now 
find the clusters? 

-0.6 6 

-0.3 5 

-0.3 4 

0.3 3 

0.6 2 

0.3 1 

1 2 3 4 5 6 

1 3 -1 -1 0 -1 0 

2 -1 2 -1 0 0 0 

3 -1 -1 3 -1 0 0 

4 0 0 -1 3 -1 -1 

5 -1 0 0 -1 3 -1 

6 0 0 0 -1 -1 2 
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Spectral partitioning 
3) Grouping: 
 sort components of reduced 1-dimensional vector 
 identify clusters by splitting the sorted vector in two 
 

How to choose a splitting point? 
 naïve approaches:  

 split at 0 or median value 
 more expensive approaches: 

 attempt to minimize normalized cut in 1-dimension  
(sweep over ordering of nodes induced by the eigenvector) 
 

 

VIII-2: 46 -0.6 6 

-0.3 5 

-0.3 4 

0.3 3 

0.6 2 

0.3 1 
Split at 0: 

Cluster A: Positive points 
Cluster B: Negative points 

0.3 3 

0.6 2 
0.3 1 

-0.6 6 

-0.3 5 

-0.3 4 

A B 
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Example: Spectral Partitioning 
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Example: Spectral Partitioning 
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Rank in x2 

Va
lu

e 
of

 x
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Eigenvector corresponding to 𝜆2 is useful,  
it shows communities! 
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Example: Spectral Partitioning 
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Eigenvector corresponding to 𝜆1 is useless,  
it doesn’t show anything 

Eigenvector corresponding to 𝜆3 is  
useless  by itself, but useful when considered together with 𝝀𝟐 
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𝑘-way Spectral clustering 

How do we partition a graph into k clusters? 
 

There are two basic approaches 
 recursive bi-partitioning (Hagen et al., ’92) 

 recursively apply a bi-partitioning algorithm in  
a hierarchical divisive manner 

 inefficient, and unstable 
 

 cluster multiple eigenvectors  (Shi-Malik, ’00) 

 build a reduced space from multiple eigenvectors 
 commonly used in recent papers 
 a preferable approach… 
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Why use multiple eigenvectors? 
Approximates the optimal cut 
 can be used to approximate optimal k-way normalized cut 
 
Emphasizes cohesive clusters 
 increases the unevenness in the distribution of the data 
 associations between similar points are amplified, associations between dissimilar 

points are attenuated 
 the data begins to “approximate a clustering” 
 
Well-separated space 
 transforms data to a new “embedded space”,  

consisting of k orthogonal basis vectors 
 
Multiple eigenvectors prevent instability due to information loss 

 
 (Shi-Malik, 2000) 
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Is spectral clustering optimal? 

Spectral clustering is not always a  
good approximation of the graph cuts 
 in so-called cockroach graphs, spectral clustering always cuts 

horizontally, while vertically is optimal 
 approximation ratio of 𝑂(𝑛)  
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Spectral clustering 

To do the clustering, we need to move our real-valued 
eigenvectors 𝒖𝑖 to binary cluster indicator vectors 
 

First, create a matrix 𝑼 with 𝒖𝑖 ’s as its columns 
 optionally, normalize the rows to sum up to 1 (esp when using 𝑳𝑠) 
 

Cluster the rows of this matrix using 𝑘-means  
 or, in principle, any other clustering algorithm 
 

Solving the eigenvectors is 𝑂(𝑛3) in general or 𝑂(𝑛2) if 
the similarity graph has as many edges as vertices 
 the 𝑘-means on the 𝑼 matrix takes 𝑂(𝑡𝑛𝑘2)  

 𝑡 is the number of iterations in 𝑘-means 
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Another look at Approximate cuts 
 

Allowing for real-valued cluster assignment vectors 
𝑐𝑖 makes Relaxed RatioCut look like 
 

𝐽𝑖𝑟 𝐶 = �
𝒄𝑖𝑇𝑳𝒄𝑖
𝒄𝑖

2

𝑘

𝑖=1

= �
𝒄𝑖
𝒄𝑖

𝑇

𝑳
𝒄𝑖
𝒄𝑖

𝑘

𝑖=1

= �𝒖𝑖𝑇𝑳𝒖𝑖

𝑘

𝑖=1

 

 
 𝒖𝑖 = 𝒄𝑖

𝒄𝑖
 i.e. the unit vector in the direction of 𝒄𝑖  
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Solving the relaxed version 

We want to minimize the function 𝐽𝑖𝑟 over 𝒖𝑖 ’s 
 we have a constraint that 𝒖𝑖𝑇𝒖𝑖  =  1 
 
To solve, derive w.r.t. 𝒖𝑖 ’s and find the roots 
 add Lagrange multipliers to incorporate the constraints: 

𝛿
𝛿𝒖𝑖

�𝒖𝑖𝑇𝑳𝒖𝑖 + �𝜆𝑖 1 − 𝒖𝑖𝑇𝒖𝑖

𝑘

𝑖

𝑘

𝑖

= 𝟎 

 
Hence, 𝑳𝒖𝑖  = 𝜆𝑖𝒖𝑖  
 𝒖𝑖 is an eigenvector of 𝑳 corresponding to the eigenvalue 𝜆𝑖  
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Which eigenvectors to choose 

We know that 𝑳𝒖𝑖  = 𝜆i𝒖i  
 hence 𝜆𝑖 = 𝒖𝑖𝑇𝑳𝒖𝑖  

 

As we’re minimizing the sum of 𝒖𝑖𝑇𝑳𝒖𝑖 ’s we should choose 
the 𝒖𝑖 ’s corresponding to the 𝑘 smallest eigenvalues 
 these are our relaxed cluster indicators 

 
But, we also know that 𝜆1 = 0 and 
that the corresponding eigenvector is (𝑛–12,𝑛–12, … ,𝑛–12) 
 hmm, that doesn’t help with clustering... 
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Normalised cut and choice of Laplacians 

For normalized cut similar procedure shows that we should 
select the 𝑘 smallest eigenvectors of 𝑳𝑠 instead of 𝑳  
 or, we can use the asymmetric Laplacian 𝑳𝑎  

 

Which one we should choose? 
 both ratio and normalised cut aim at minimising intra-cluster similarity 
 only normalised cut considers inter-cluster similarity → either 𝑳𝑠 or 𝑳𝑎  
 

The asymmetric Laplacian is better 
 with symmetric one further normalisation is needed 
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Pseudo-code 
Algorithm SPECTRALCLUSTERING(connected graph 𝐺, 𝑘) : 
  compute the similarity matrix 𝑨 ∈ ℝ𝑛×𝑛 for 𝐺 
  if 𝑟𝑎𝑡𝑖𝑣 𝑐𝑢𝑡 then  𝑩 ← 𝑳 
  else if 𝑛𝑣𝑟𝑚𝑎𝑣𝑖𝑠𝑒𝑑 𝑐𝑢𝑡 then 𝑩 ← 𝑳𝒔 or 𝑳𝒂 
  solve 𝑩𝒖𝑖 = 𝜆𝑖𝒖𝑖 for 𝑖 = 𝑘 + 1, where 𝜆2 ≤ 𝜆3 ≤ ⋯ ≤ 𝜆𝑘+1 
  𝑼 ← 𝒖𝑛  𝒖𝑛−1  …𝒖𝑛−𝑘+1  
  𝒀 ← normalise rows of 𝑼 
  𝑪 ← 𝑪𝟏, … ,𝑪𝑘  via 𝑘-means on 𝒀 
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Conclusions 

Frequent subgraph mining finds recurring patterns in 
graph data 
 enormously complex problem → exact algorithms can’t be fast 
 but graphs are not usually very big even if there are many of them 

 
Graph clustering is much like other clustering 
 any clusterable data can be turned into similarity graph 
 spectral clustering uses well-known linear algebra 
 though this doesn’t necessarily make it a good clustering algorithm 
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graph data 
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