
Chapter 12: Query Processing

You have to think anyway,

so why not think big?

-- Donald Trump

Computers are useless,

they can only give you answers.

-- Pablo Picasso

There are lies, damn lies,

and workload assumptions.

-- anonymous

IRDM WS 2015 12-1

Outline

loosely following Büttcher/Clarke/Cormack Chapters 5 and 8.6

plus Manning/Raghavan/Schütze Chapters 7 and 9

plus specific literature

12.1 Query Processing Algorithms

12.2 Fast Top-k Search

12.3 Phrase and Proximity Queries

12.4 Query Result Diversification

IRDM WS 2015 12-2

Query Types

• Conjunctive

(i.e., all query terms are required)

• Disjunctive

(i.e., subset of query terms sufficient)

• Phrase or proximity

(i.e., query terms must occur in right order or close enough)

• Mixed-mode with negation

(e.g., “harry potter” review +movie -book)

• Combined with ranking of result documents according to

with score(t, d) depending on retrieval model (e.g. tf*idf)

IRDM WS 2015 12-3

Indexing with Document-Ordered Lists

Index lists

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

…

Data items: d1, …, dn

…

…

t1
d1
0.7

d78
0.9

d88
0.2

d64
0.8

d78
0.1

d78
0.5

d99
0.2

d10
0.8

d23
0.8

d1

t2
d1
0.2

d10
0.6

d23
0.6

t3
d10
0.7

d34
0.1

d64
0.4

index-list entries stored

in ascending order of

document identifiers

(document-ordered lists)

process all queries (conjunctive/disjunctive/mixed)

by sequential scan and merge of posting lists

IRDM WS 2015 12-4

d1, 1.0 d4, 2.0 d7, 0.2 d8, 0.1a

d4, 1.0 d7, 2.0 d8, 0.2 d9, 0.1b

d4, 3.0 d7, 1.0c

Document-at-a-Time Query Processing

Document-at-a-Time (DAAT) query processing

– assumes document-ordered posting lists

– scans posting lists for query terms t1, …, t|q| concurrently

– maintains an accumulator for each candidate result doc:

– 𝑎𝑐𝑐 𝑑 = 𝑖: 𝑑 𝑠𝑒𝑒𝑛 𝑖𝑛 𝐿(𝑡𝑖) 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖, 𝑑)

– always advances posting list with lowest current doc id

– exploit skip pointers when applicable

– required memory depends on # results to be returned

– top-k results in priority queue

d1 : 1.0

d4 : 6.0

d7 : 3.2

d8 : 0.3

d9 : 0.1

IRDM WS 2015 12-5

Accumulators

DAAT with Weak And: WAND Method

Disjunctive (Weak And) query processing

– assumes document-ordered posting lists with known

maxscore(i) values for each ti: maxd (score (d,ti))

– While scanning posting lists keep track of

• min-k: the lowest total score in current top-k results

• ordered term list: terms sorted by docId at current scan pos

• pivot term: smallest j such that min-k 𝑖≤𝑗𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒(𝑖)

• pivot doc: doc id at current scan pos in posting list Lj

Eliminate docs that cannot become top-k results (maxscore pruning):

– if pivot term does not exist (min-k > 𝑖𝑚𝑎𝑥𝑠𝑐𝑜𝑟𝑒(𝑖))

– then stop

– else advance scan positions to pos id of pivot doc (“big skip“)

[Broder et al. 2003]

IRDM WS 2015 12-6

Example: DAAT with WAND Method

Key invariant: For terms i=1..|q| and current scan positions curi

assume that cur1 = min {curi | i=1..|q|}

Then for each posting list i there is no docid between cur1 and curi

[Broder et al. 2003]

IRDM WS 2015 12-7

maxscorei term i curi

5 1 … 101

4 2 … … 250

2 3 … … … 300

3 4 … … … … … 600

Suppose that min-k = 12

then the pivot term is 4
(i=1.3 maxscorei > min-k, i=1.4 maxscorei min-k)

and the pivot docid is 600

 can advance all scan positions curi to 600

cannot contain any docid [102,599]

Term-at-a-Time (TAAT) query processing

– assumes document-ordered posting lists

– scans posting lists for query terms t1, …, t|q| one at a time,

(possibly in decreasing order of idf values)

– maintains an accumulator for each candidate result doc

– after processing L(tj): 𝑎𝑐𝑐 𝑑 = 𝑖≤𝑗 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖, 𝑑)

– memory depends on the number of accumulators maintained

– TAAT is attractive when scanning many short lists

d1, 1.0 d4, 2.0 d7, 0.2 d8, 0.1a

d4, 1.0 d7, 2.0 d8, 0.2 d9, 0.1b

d4, 3.0 d7, 1.0c

Term-at-a-Time Query Processing

d1 : 0.0

d4 : 0.0

d7 : 0.0

d8 : 0.0

d9 : 0.0

d1 : 1.0

d4 : 0.0

d7 : 0.0

d8 : 0.0

d9 : 0.0

d1 : 1.0

d4 : 2.0

d7 : 0.0

d8 : 0.0

d9 : 0.0

d1 : 1.0

d4 : 2.0

d7 : 0.2

d8 : 0.0

d9 : 0.0

d1 : 1.0

d4 : 2.0

d7 : 0.2

d8 : 0.1

d9 : 0.0

d1 : 1.0

d4 : 3.0

d7 : 0.2

d8 : 0.1

d9 : 0.0

d1 : 1.0

d4 : 3.0

d7 : 2.2

d8 : 0.1

d9 : 0.0

d1 : 1.0

d4 : 3.0

d7 : 2.2

d8 : 0.3

d9 : 0.0

d1 : 1.0

d4 : 3.0

d7 : 2.2

d8 : 0.3

d9 : 0.1

d1 : 1.0

d4 : 6.0

d7 : 2.2

d8 : 0.3

d9 : 0.1

d1 : 1.0

d4 : 6.0

d7 : 3.2

d8 : 0.3

d9 : 0.1

Accumulators

IRDM WS 2015 12-8

Indexing with Impact-Ordered Lists

Index lists

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

…

Data items: d1, …, dn

…

…

t1
d78
0.9

d1
0.7

d88
0.2

d1
0.2

d78
0.1

d99
0.2

d34
0.1

d23
0.8

d10
0.8

d1

t2
d64
0.8

d23
0.6

d10
0.6

t3
d10
0.7

d78
0.5

d64
0.4

index-list entries stored

in descending order of

per-term score impact

(impact-ordered lists)

aims to avoid having to read entire lists

rather scan only (short) prefixes of lists

IRDM WS 2015 12-9

Greedy Query Processing Framework

Assume index lists are sorted by tf(ti,dj) or tf(ti,dj)*idl(dj) values

idf values are stored separately

Open scan cursors on all m index lists L(i)

Repeat

Find pos(g) among current cursor positions pos(i) (i=1..m)

with the largest value of idf(ti)*tf(ti,dj)

(or idf(ti)*tf(ti,dj)*idl(dj));

Update the accumulator of the corresponding doc;

Increment pos(g);

Until stopping condition

IRDM WS 2015 12-10

Stopping Criterion: Quit & Continue Heuristics

For scoring of the form

m

1i

jiij)d,t(s)d,q(score

)d(idl)t(idf)d,t(tf~)d,t(s jijijii with

quit heuristics (with docId-ordered or tf-ordered or tf*idl-ordered index lists):

• ignore index list L(i) if idf(ti) is below tunable threshold or

• stop scanning L(i) if idf(ti)*tf(ti,dj)*idl(dj) drops below threshold or

• stop scanning L(i) when the number of accumulators is too high

Assume hash array of accumulators for

summing up score mass of candidate results

continue heuristics:

upon reaching threshold, continue scanning index lists,

but do not add any new documents to the accumulator array

[Zobel/Moffat 1996]

IRDM WS 2015 12-11

12.2 Fast Top-k Search
Top-k aggregation query over relation R (Item, A1, ..., Am):

Select Item, s(R1.A1, ..., Rm.Am) As Aggr

From Outer Join R1, …, Rm Order By Aggr Limit k

with monotone s: (i: xi xi‘) s(x1 … xm) s(x1‘ … xm‘)

(example: item is doc, attributes are terms, attr values are scores)

• Precompute per-attr (index) lists sorted in desc attr-value order

(score-ordered, impact-ordered)

• Scan lists by sorted access (SA) in round-robin manner

• Perform random accesses (RA) by Item when convenient

• Compute aggregation s incrementally in accumulators

• Stop when threshold test guarantees correct top-k

(or when heuristics indicate „good enough“ approximation)

simple & elegant, adaptable & extensible to distributed system

following R. Fagin: Optimal aggregation algorithms for middleware, JCSS. 66(4), 2003

IRDM WS 2015 12-12

Threshold Algorithm (TA) [Fagin 01,Güntzer 00,

Nepal 99, Buckley 85]

Index lists

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

…

Data items: d1, …, dn

Query: q = (t1, t2, t3)

…

…

t1
d78
0.9

d88
0.2

d78
0.1

d34
0.1

d23
0.8

d10
0.8

d1

t2
d64
0.9

d23
0.6

d10
0.6

t3
d10
0.7

d78
0.5

d64
0.3

Threshold algorithm (TA):
scan index lists; consider d at posi in Li;
highi := s(ti,d);
if d top-k then {

look up s(d) in all lists L with i;
score(d) := aggr {s(d) | =1..m};

if score(d) > min-k then
add d to top-k and remove min-score d’;
min-k := min{score(d’) | d’ top-k};

threshold := aggr {high | =1..m};
if threshold min-k then exit;

Scan

depth 1
Scan

depth 2
Scan

depth 3

k = 2

simple & DB-style;
needs only O(k) memory

Scan

depth 4

d1
0.7

d99
0.2

d12
0.2 2 d64 0.9

Rank Doc Score

2 d64 1.2

1 d78 0.91 d78 1.51 d78 1.5

2 d64 0.9

Rank Doc Score

2 d78 1.5

1 d10 2.1
Rank Doc Score

1 d10 2.1

2 d78 1.5

Rank Doc Score

1 d10 2.1

2 d78 1.5

Rank Doc Score

1 d10 2.1

2 d78 1.5

STOP!

IRDM WS 2015 12-13

TA with Sorted Access only (NRA) [Fagin 01, Güntzer 01]

Index lists

s(t1,d1) = 0.7
…
s(tm,d1) = 0.2

…

Data items: d1, …, dn

Query: q = (t1, t2, t3)

Rank Doc Worst-

score

Best-

score

1 d78 0.9 2.4

2 d64 0.8 2.4

3 d10 0.7 2.4

Rank Doc Worst-

score

Best-

score

1 d78 1.4 2.0

2 d23 1.4 1.9

3 d64 0.8 2.1

4 d10 0.7 2.1

Rank Doc Worst-

score

Best-

score

1 d10 2.1 2.1

2 d78 1.4 2.0

3 d23 1.4 1.8

4 d64 1.2 2.0

…

…

t1
d78
0.9

d1
0.7

d88
0.2

d12
0.2

d78
0.1

d99
0.2

d34
0.1

d23
0.8

d10
0.8

d1

t2
d64
0.8

d23
0.6

d10
0.6

t3
d10
0.7

d78
0.5

d64
0.4

STOP!

No-random-access algorithm (NRA):
scan index lists; consider d at posi in Li;
E(d) := E(d) {i}; highi := s(ti,d);
worstscore(d) := aggr{s(t,d) | E(d)};

bestscore(d) := aggr{worstscore(d),
aggr{high | E(d)}};

if worstscore(d) > min-k then add d to top-k
min-k := min{worstscore(d’) | d’ top-k};

else if bestscore(d) > min-k then
cand := cand {d};

threshold := max {bestscore(d’) | d’ cand};
if threshold min-k then exit;

Scan

depth 1
Scan

depth 2
Scan

depth 3

k = 1

sequential access (SA) faster
than random access (RA)
by factor of 20-1000

IRDM WS 2015 12-14

TA Complexity and Instance Optimality

Definition:

For class A of algorithms and class D of datasets,

algorithm B is instance optimal over A and D if

for every AA on DD : cost(B,D) c*O(cost(A,D)) + c‘

(competitiveness c).

Theorem:

• TA is instance optimal over all algorithms that are based on

sorted and random accesses to m lists (no „wild guesses“).

• NRA is instance optimal over all algorithms with SA only.

if „wild guesses“ are allowed,
then no deterministic algorithm is instance-optimal

IRDM WS 2015 12-15

TA has worst-case run-time O(𝑛
𝑚−1

𝑚) with high prob. and space O(1)

NRA has worst-case run-time O(n) and space O(n)

Implementation Issues for TA Family
• Limitation of asymptotic complexity:

• m (#lists) and k (#results) are important parameters

• Priority queues:

• straightforward use of Fibonacci heap has high overhead

• better: periodic rebuild of bounded-size PQs

• Memory management:

• peak memory use as important for performance

as scan depth

• aim for early candidate pruning

even if scan depth stays the same

• Hybrid block index:

• pack index entries into big blocks in desc score order

• keep blocks in score order

• keep entries within a block in item id order

• after each block read: merge-join first, then PQ update

IRDM WS 2015 12-16

Approximate Top-k Answers

• IR heuristics for impact-ordered lists [Anh/Moffat: SIGIR’01]:

Accumulator Limiting, Accumulator Thresholding

• Approximation TA [Fagin et al.2003] :

-approximation T‘ for q with > 1 is a set T‘ of items with:

• |T‘|=k and

• for each d‘T‘ and each d‘‘T‘: *score(q,d‘) score(q,d‘‘)

Modified TA:

... stop when min-k aggr (high1, ..., highm) /

• Probabilistic Top-k [Theobald et al. 2004] :

guarantee small deviation from exact top-k result

with high probability

IRDM WS 2015 12-17

scan
depth

drop d
from
priority
queue

 Approximate top-k with

probabilistic guarantees:

bestscore(d)

worstscore(d)

min-k

score
• Add d to top-k result, if

worstscore(d) > min-k

• Drop d only if bestscore(d) <
min-k, otherwise keep in PQ

TA family of algorithms based on invariant (with sum as aggr):

i i i
i E(d) i E(d) i E(d)

s (d) s(d) s (d) high

worstscore(d) bestscore(d)

i i
i E(d) i E(d)

p(d) : P[s (d) S]

 Often overly conservative
(deep scans,
high memory for PQ)

discard candidates d from queue if p(d)

score predictor estimates
convolution with
histograms or
poisson mixtures or …

 E[rel. precision@k] = 1

Probabilistic Top-k Answers

with = min-k

IRDM WS 2015 12-18

Combined Algorithm (CA)
for Balanced SA/RA Scheduling [Fagin et al. 03]

perform NRA (TA-sorted)

...

after every r rounds of SA (m*r scan steps)

perform RA to look up all missing scores of „best candidate“ in Q

cost ratio CRA/CSA = r

cost competitiveness w.r.t. „optimal schedule“

(scan until i highi ≤ min{bestscore(d) | d final top-k},

then perform RAs for all d‘ with bestscore(d‘) > min-k): 4m + k

IRDM WS 2015 12-19

Flexible Scheduling of SA‘s and RA‘s
for Top-k Query Processing

Goals:

1. decrease highi upper-bounds quickly

 decreases bestscore for candidates

 reduces candidate set

2. reduce worstscore-bestscore gap for most promising candidates

 increases min-k threshold

 more effective threshold test for other candidates

Ideas for better scheduling:

1. Non-uniform choice of SA steps in different lists

2. Careful choice of postponed RA steps for promising candidates

when worstscore is high and worstscore-bestscore gap is small

IRDM WS 2015 12-20

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

 =
1.48

 =
1.7

batch of b = i=1..m bi steps:

choose bi values so as to

achieve high score reduction

+ carefully chosen RAs:

score lookups for

„interesting“ candidates

IRDM WS 2015 12-21

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

compute top-1 result

using flexible SAs and RAs

IRDM WS 2015 12-22

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

A: [0.8, 2.4]

G: [0.7, 2.4]

Y: [0.9, 2.4]

?: [0.0, 2.4]

candidates:

IRDM WS 2015 12-23

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

A: [1.5, 2.0]

G: [0.7, 1.6]

Y: [0.9, 1.6]

?: [0.0, 1.4]

candidates:

IRDM WS 2015 12-24

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

A: [1.5, 2.0]

G: [0.7, 1.2]

Y: [1.4, 1.6]
candidates:

IRDM WS 2015 12-25

Scheduling Example
L1 L2 L3

A: 0.8

B: 0.2

K: 0.19

F: 0.17

M: 0.16

Z: 0.15

W: 0.1

Q: 0.07

G: 0.7

H: 0.5

R: 0.5

Y: 0.5

W: 0.3

D: 0.25

W: 0.2

A: 0.2

Y: 0.9

A: 0.7

P: 0.3

F: 0.25

S: 0.25

T: 0.2

Q: 0.15

X: 0.1

...

...

...

A: [1.7, 2.0] Y: [1.4, 1.6]
candidates:

execution costs: 9 SA + 1 RA

IRDM WS 2015 12-26

Top-k Queries on Internet Sources
[Marian et al. 2004]

Setting:

• score-ordered lists dynamically produced by Internet sources

• some sources restricted to lookups only (no lists)

Example:

preference search for hotel based on distance, price, rating

using mapquest.com, booking.com, tripadvisor.com

Goal:
good scheduling for (parallel) access to restricted sources:

SA-sources, RA-sources, universal sources
with different costs for SA and RA

Method (Idea):
• scan all SA-sources in parallel
• in each step: choose next SA-source or

perform RA on RA-source or universal source
with best benefit/cost contribution

IRDM WS 2015 12-27

Top-k Rank Joins on Structured Data
[Ilyas et al. 2008]

extend TA/NRA/etc. to ranked query results from structured data

(improve over baseline: evaluate query, then sort)

Select R.Name, C.Theater, C.Movie

From RestaurantsGuide R, CinemasProgram C

Where R.City = C.City

Order By R.Quality/R.Price + C.Rating Desc

BlueDragon Chinese €15 SB
Haiku Japanese €30 SB
Mahatma Indian €20 IGB
Mescal Mexican €10 IGB
BigSchwenk German €25 SLS

...

Name Type Quality Price City

RestaurantsGuide

BlueSmoke Tombstone 7.5 SB
Oscar‘s Hero 8.2 SB
Holly‘s Die Hard 6.6 SB
GoodNight Seven 7.7 IGB
BigHits Godfather 9.1 IGB

...

Theater Movie Rating City

CinemasProgram

IRDM WS 2015 12-28

DAAT, TAAT, Top-k: Lessons Learned

• TA family over impact-ordered lists

• is most elegant and potentially most efficient

• but depending on score skew, it may degrade badly

IRDM WS 2015 12-29

• TAAT is of interest for special use-cases

(e.g. patent search with many keywords in queries)

• DAAT over document-ordered lists

• is most versatile and robust

• has lowest overhead and still allows pruning

• can be easily scaled out on server farm

12.3 Phrase Queries and Proximity Queries
phrase queries such as:
“Star Wars Episode 7“, “The Force Awakens“, “Obi Wan Kenobi“, “dark lord“

“Wir schaffen das“, “to be or not to be“, “roots of cubic polynomials“, “evil empire “

difficult to anticipate and index all (meaningful) phrases

sources could be thesauri/dictionaries or query logs

 standard approach:

combine single-term index with separate position index

term doc score

...
empire 77 0.85
empire 39 0.82
...
evil 49 0.81
evil 39 0.78
evil 12 0.75
...
evil 77 0.12
...

In
v

er
te

d
In

d
ex

term doc offset
...
empire 39 191
empire 77 375
...
evil 12 45
evil 39 190
evil 39 194
evil 49 190
...
evil 77 190
...

P
o

sitio
n

 In
d

ex

IRDM WS 2015 12-30

Bigram and Phrase Indexing

build index over all word pairs (bigrams):

index lists (term1, term2, doc, score) or

for each term1 nested list (term2, doc, score)

variations:
• treat nearest nouns as pairs,
or discount articles, prepositions, conjunctions

• index phrases from query logs, compute correlation statistics

query processing by merging posting lists:

• decompose even-numbered phrases into bigrams

• decompose odd-numbered phrases into bigrams

with low selectivity (as estimated by df(term1))

• may additionally use standard single-term index if necessary

Examples:
to be or not to be (to be) (or not) (to be)
The Lord of the Rings (The Lord) (Lord of) (the Rings)

IRDM WS 2015 12-31

Proximity Search

keyword proximity score [Büttcher/Clarke: SIGIR’06]:

aggregation of per-term scores #
+ per-term-pair scores attributed to each term

m..1i im1)t(score)t...t(score

ij

jkik2
ji

j
...)or)t(pos)t(pos)t(pos(t|

))t(pos)t(pos(

)t(idf

Example queries: root polynom three,
high cholesterol measure, doctor degree defense

Idea: identify positions (pos) of all query-term occurrences
and reward short distances

count only pairs of query terms
with no other query term in between

cannot be precomputed
 expensive at query-time

IRDM WS 2015 12-32

Example: Proximity Score Computation

It1 took2 the3 sea4 a5 thousand6 years,7

A8 thousand9 years10 to11 trace12

The13 granite14 features15 of16 this17 cliff,18

In19 crag20 and21 scarp22 and23 base.24

Query: {sea, years, cliff}

IRDM WS 2015 12-33

Efficient Proximity Search

Define aggregation function to be distributive [Broschart et al. 2007]

rather than „holistic“ [Büttcher/Clarke 2006]:

precompute term-pair distances and sum up at query-time

m..1i im1)t(score)t...t(score

ij ji

j

tptp

tidf
2

))()((

)(

result quality comparable to „holistic“ scores

count all pairs of query terms

index all pairs within max. window size

(or nested list of nearby terms for each term),

with precomputed pair-score mass

IRDM WS 2015 12-34

Ex.: Efficiently Computable Proximity Score

It1 took2 the3 sea4 a5 thousand6 years,7

A8 thousand9 years10 to11 trace12

The13 granite14 features15 of16 this17 cliff,18

In19 crag20 and21 scarp22 and23 base.24

Query: {sea, years, cliff}

IRDM WS 2015 12-35

Relevance Feedback

Classical IR approach: Rocchio method (for term vectors)

Given: a query q, a result set (or ranked list) D,

a user‘s assessment u: D {+, }

yielding positive docs D+ D and negative docs D D

Goal: derive query q‘ that better captures the user‘s intention,

by adapting term weights in the query or by query expansion

DdDd

d
D

d
D

qq
||||

'

 with , , [0,1]

and typically > >

Modern approach: replace explicit feedback by implicit feedback

derived from query&click logs (pos. if clicked, neg. if skipped)

or rely on pseudo-relevance feedback:

assume that all top-k results are positive

IRDM WS 2015 12-36

Relevance Feedback using
Text Classification or Clustering

Relevant and irrelevant docs (as indicated by user)

form two classes or clusters of text-doc-vector distribution

Classifier:

• train classifier on relevant docs as positive class

• run feature selection to identify best terms for expansion

• pass results of expanded query through classifier

Clustering:

• refine clusters or compute sub-space clusters:

• user explores the resulting sub-clusters and guides expansion

http://yippy.com

http://exalead.com

IRDM WS 2015 12-37

Search engine examples:

http://yippy.com/
http://exalead.com/

Query Expansion

Example q: traffic tunnel disasters
(from TREC benchmark)

traffic tunnel disasters

transit

highway

car

truck

metro

train

“ rail car“

…

tube

underground

“Mont Blanc”

…

catastrophe

accident

fire

flood

earthquake

“land slide”

…

0.9

0.8

0.7

0.6

0.6

0.5

0.1

1.0

0.9

0.7

0.6

0.6

0.5

0.9

0.8

0.7

1.0 1.0 1.0

d1

d2

• Query expansion can be beneficial whenever high recall is needed

• Expansion terms can come from thesauri/dictionaries/ontologies

or personalized profile, regardless of user feedback

• Term-term similarities precomputed from co-occurrence statistics

IRDM WS 2015 12-38

WordNet: Thesaurus/Ontology

of Words and Concepts

word

word sense

(synset,

Concept)

200 000 concepts and

lexical relations

can be cast into

• logical form or

• graph with weights

for concept-concept

relatedness strength

http://wordnet.princeton.edu

IRDM WS 2015 12-39

http://wordnet.princeton.edu/

WordNet: Thesaurus/Ontology

of Words and Concepts

hyponyms

(sub-concepts)

IRDM WS 2015 12-40

WordNet: Thesaurus/Ontology

of Words and Concepts

hypernyms

(super-concepts)

hyponyms

(sub-concepts)

meronyms

(part-of)

IRDM WS 2015 12-41

Robust Query Expansion

Threshold-based query expansion:
substitute w by exp(w):={c1 ... ck} with all ci with sim(w, ci)

risk of

topic drift

Approach to careful expansion and scoring:

• determine phrases from query or best initial query results

(e.g., forming 3-grams and looking up ontology/thesaurus entries)

• if uniquely mapped to one concept

then expand with synonyms and weighted hyponyms

• avoid undue score-mass accumulation by expansion terms

Naive scoring:
s(q,d) = wq cexp(w) sim(w,c) * sc(d)

s(q,d) = wq max cexp(w) { sim(w,c) * sc(d) }

IRDM WS 2015 12-42

Query Expansion with Incremental Merging

relaxable query q: ~professor research

with expansions
based on ontology relatedness modulating
monotonic score aggregation by sim(t,w)

Better: dynamic query expansion with
incremental merging of additional index lists

efficient and robust

lecturer:
0.7

37: 0.9
44: 0.8

..
.

22: 0.7
23: 0.6
51: 0.6
52: 0.6

scholar: 0.6

92: 0.9
67: 0.9

..
.

52: 0.9
44: 0.8
55: 0.8

research

index on terms

57: 0.6
44: 0.4

..
.

professor

52: 0.4
33: 0.3
75: 0.3

12: 0.9
14: 0.8

..
.

28: 0.6
17: 0.55
61: 0.5
44: 0.5

44: 0.4

meta-index
(ontology / thesuarus)

professor

lecturer: 0.7
scholar: 0.6
academic: 0.53
scientist: 0.5
...

exp(t)={w | sim(t,w) , tq}

primadonna

teacher

investigator

magician

wizard

intellectual

artist

alchemist

director

professor

scholar

academic,
academician,
faculty member

scientist

researcher

Hyponym (0.749)

mentor

Related (0.48)

lecturerTA/NRA scans of index lists for tq exp(t)

[M. Theobald et al.: SIGIR 2005]

IRDM WS 2015 12-43

Query Expansion Example

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity,

the activity, and, if possible, collaborating organizations and the countries involved.

From TREC 2004 Robust Track Benchmark:

IRDM WS 2015 12-44

Query = {international[0.145|1.00],

~META[1.00|1.00][{gangdom[1.00|1.00], gangland[0.742|1.00],
"organ[0.213|1.00] & crime[0.312|1.00]", camorra[0.254|1.00], maffia[0.318|1.00],
mafia[0.154|1.00], "sicilian[0.201|1.00] & mafia[0.154|1.00]",
"black[0.066|1.00] & hand[0.053|1.00]", mob[0.123|1.00], syndicate[0.093|1.00]}],
organ[0.213|1.00], crime[0.312|1.00], collabor[0.415|0.20],
columbian[0.686|0.20], cartel[0.466|0.20], ...}}

Query Expansion Example

Title: International Organized Crime

Description: Identify organizations that participate in international criminal activity,

the activity, and, if possible, collaborating organizations and the countries involved.

From TREC 2004 Robust Track Benchmark:

135530 sorted accesses in 11.073s.

Results:
1. Interpol Chief on Fight Against Narcotics
2. Economic Counterintelligence Tasks Viewed
3. Dresden Conference Views Growth of Organized Crime in Europe
4. Report on Drug, Weapons Seizures in Southwest Border Region
5. SWITZERLAND CALLED SOFT ON CRIME

...
IRDM WS 2015 12-45

Statistics for Term-Term Similarity

or Concept-Concept Relatedness

Dice coefficient: 2 { docs with c1} { docs with c2 }

{ docs with c1} { docs with c2 }

Relatedness measures sim(c1, c2) based on co-occurrences in corpus:

Jaccard coefficient: { docs with c1} { docs with c2 }

{ docs with c1} { docs with c2 } { docs with c1 and c2 }

Conditional probability: P[doc has c1 | doc has c2]

PMI (Pointwise
Mutual Information):)2c(freq)1c(freq

)2cand1c(freq
log

Relatedness measures sim(c1, c2) based on WordNet-like thesaurus:

Wu-Palmer distance: |path(c1,lca(c1,c2))| + path(c2,lca(c1,c2))

with lowest common ancestor lca(c1,c2) in DAG|
Variants with edge weights based on edge type (hyponym, hypernym, …)

IRDM WS 2015 12-46

Exploiting Query Logs for Query Expansion

Given: user sessions of the form (q, D+)

with clicked docs D+ (often only a single doc)

We are interested in the correlation between words

w in a query and w‘ in a clicked-on document:

]|'[qwDdsomefordwP

]|[]|'[qwDdPDddwP
Dd

Estimate
from query log:

relative frequency

of w‘ in d

relative frequency of d being clicked on

when w appears in query

:]|'[wwP

Expand query by adding top m words w‘ in desc. order of
qw

wwP]|'[

IRDM WS 2015 12-47

Term-Term Similarity Estimation
from Query-Click Logs

Useful for

• Suggestions for alternative queries (“did you mean …?“)

• Suggestions for auto-completion

• Background statistics for geo-localization or user-personalization

Use co-occurrences of

• term and term in same query (ordered terms)

• term in query and term in (title or URL of) clicked doc

• term in query without click and term in next query

to compute maximum-likelihood estimator for

multinomial distribution for ordered term pairs or n-grams

and derive P[term u | term w] ~ freq[term u | term w]

IRDM WS 2015 12-48

12.4 Query Result Diversification

True goal of search engine is to maximize

P[user clicks on at least one of the top-k results]

With ambiguity of query terms and uncertainty about user intention
(examples: “apple farm“, “mpi research“, “darwin expedition“,

“Star Wars 7: The Force Awakens“, “physics nobel prize“, …)

we need to diversify the top-10 for risk minimization (portfolio mix)

Given a query q, query results D={d1, d2, …},

similarity scores for results and the query sim(di,q)

and pair-wise similarities among results sim(di,dj)

 Select top-k results r1, …, rk D such that

𝛼 𝑖=1..𝑘 𝑠𝑖𝑚 𝑟𝑖 , 𝑞 − (1 − 𝛼) 𝑖≠𝑗 𝑠𝑖𝑚 𝑟𝑖 , 𝑟𝑗 = 𝑚𝑎𝑥!

IRDM WS 2015 12-49

Alternative Models for Diversification

Variant 2: intention-modulated [Agrawal et al. 2009]

assume that q may have m intentions t1..tm
(trained on query-click logs, Wikipedia disambiguation pages, etc.):

determine result set R with |R|=k such that

 max!]),|[1(1]|[]|[
1

m

i Rr ii tqrPqtPqRP

Variant 1: Max-Min-Dispersion [Ravi, Rosenkrantz, Tayi 1994]

determine results set R={ r1, …, rk } such that

𝛼 min
𝑖=1..𝑘

𝑠𝑖𝑚(𝑟𝑖 , 𝑞) − 1 − 𝛼 max
𝑖≠𝑗

𝑠𝑖𝑚 𝑟𝑖 , 𝑟𝑗 = 𝑚𝑎𝑥!

at least one r clicked

given intention ti for q

More variants in the literature, most are NP-hard

But many are submodular (have diminishing marginal returns)

 greedy algorithms with approximation guarantees

IRDM WS 2015 12-50

Submodular Set Functions

Given a set , a function f: 2 R is submodular if

for every X, Y with X Y and z Y

the following diminishing-returns property holds

f(X {z}) f(X) f(Y {z}) f(Y)

Typical optimization problem aims to

choose a subset X that minimizes or maximizes f

under cardinality constraints for X

• these problems are usually NP-hard

but often have polynomial algorithms with

very good approximation guarantees

• greedy algorithms often yield very good

approximate solutions

IRDM WS 2015 12-51

Maximal Marginal Relevance (MMR):
Greedy Reordering for Diversification

Choose results in descending order of marginal utility:

repeat

𝑆 ≔ 𝑆 ∪ 𝑎𝑟𝑔𝑚𝑎𝑥𝑑 𝛼 𝑠𝑖𝑚 𝑑, 𝑞 − 1 − 𝛼 𝑟∈𝑆 𝑠𝑖𝑚(𝑟, 𝑑)
until |S|=k

Compute a pool of top-m candidate results where m > k

(e.g. m=1000 for k=10)

Initialize S :=

[Carbonell/Goldstein 1998]

IRDM WS 2015 12-52

Summary of Chapter 12

• with ambiguity of query terms and uncertainty of user intention,

query result diversification is crucial

• document-ordered posting lists:

QP based on scan and merge; can optimize order of lists

and heuristically control memory for accumulators

• impact-ordered posting lists:

top-k search can be sublinear with Threshold Algorithm family

• additional algorithmic options and optimizations for

phrase and proximity queries and for query expansion

IRDM WS 2015 12-53

Additional Literature for Chapter 12

• J. Zobel, A. Moffat: Self-Indexing Inverted Files for Fast Text Retrieval, ACM TOIS 1996

• A. Broder, D. Carmel, M. Herscovici, A. Soffer, J. Zien: Efficient query

evaluation using a two-level retrieval process, CIKM 2003

• R. Fagin, A. Lotem, M. Naor: Optimal Aggregation Algorithms for Middleware,

Journal of Computer and System Sciences 2003

• C. Buckley, A. Lewit: Optimization of Inverted Vector Searches, SIGIR 1985

• I.F. Ilyas, G. Beskales, M.A. Soliman: A Survey of Top-k Query Processing Techniques

in Relational Database Systems, ACM Comp. Surveys 40(4), 2008

• A. Marian, N. Bruno, L. Gravano: Evaluating Top-k Queries over Web-accessible Databases,

ACM TODS 2004

• M. Theobald et al.: Top-k Query Processing with Probabilistic Guarantees, VLDB 2004

• H. Bast et al.: IO-Top-k: Index-access Optimized Top-k Query Processing. VLDB 2006

• H.E. Williams, J. Zobel, D. Bahle: Fast Phrase Querying with Combined Indexes, TOIS 2004

• A. Broschart, R. Schenkel: High-performance processing of text queries

with tunable pruned term and term pair indexes. ACM TOIS 2012

• S. Büttcher, C. Clarke, B. Lushman: Term proximity scoring for ad-hoc retrieval

on very large text collections. SIGIR 2006

• R. Schenkel et al.: Efficient Text Proximity Search, SPIRE 2007

IRDM WS 2015 12-54

Additional Literature for Chapter 12
• G. Miller, C. Fellbaum: WordNet: An Electronic Lexical Database. MIT Press 1998

• B. Billerbeck, F. Scholer, H.E. Williams, J. Zobel: Query expansion

using associated queries. CIKM 2003

• S. Liu, F. Liu, C.T. Yu, W. Meng: An effective approach to document retrieval via

utilizing WordNet and recognizing phrases, SIGIR 2004

• M. Theobald, R. Schenkel, G. Weikum: Efficient and Self-Tuning Incremental

Query Expansion for Top-k Query Processing, SIGIR 2005

• H. Bast, I. Weber: Type Less, Find More: Fast Autocompletion Search with a

Succinct Index, SIGIR 2006

• Z. Bar-Yossef, M. Gurevich: Mining Search Engine Query Logs via Suggestion Sampling.

PVLDB 2008

• Z. Bar-Yossef, N. Kraus: Context-sensitive query auto-completion. WWW 2011

• T. Joachims et al.: Evaluating the accuracy of implicit feedback from clicks and

query reformulations in Web search, TOIS 2007

• SP.Chirita, C.Firan, W.Nejdl: Personalized Query Expansion for the Web. WWW 2007

• J. Carbonell, J. Goldstein: The Use of MMR: Diversity-based Reranking, SIGIR 1998

• R. Agrawal, S. Gollapudi, A. Halverson, S. Ieong: Diversifying search results.

WSDM 2009

• S. Gollapudi, A. Sharma: An Axiomatic Approach for Result Diversification, WWW 2009

IRDM WS 2015 12-55

