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13.1 IR Effectiveness Measures

13.2 Probabilistic IR

13.3 Statistical Language Model

13.4 Latent-Topic Models 

13.4.1  LSI based on SVD

13.4.2   pLSI and LDA 

13.4.3  Skip-Gram Model

13.5 Learning to Rank

Not only does God play dice, but He sometimes 

confuses us by throwing them where they can't be seen.

-- Stephen Hawking
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13.4 Latent Topic Models

• Ranking models like tf*idf, Prob. IR and Statistical LMs

do not capture lexical relations between terms in natural language:

synonymy (e.g. car and automobile),  homonymy (e.g. java), 

hyponymy (e.g. SUV and car), meronymy (e.g. wheel and car), etc.

• Word co-occurrence and indirect co-occurrence can help:

car and automobile both occur with fuel, emission, garage, …

java occurs with class and method but also with grind and coffee

• Latent topic models assume that documents are composed 

from a number k of latent (hidden) topics

where k ≪ |V| with vocabulary V

 project docs consisting of terms into

lower-dimensional space of docs consisting of latent topics
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13.4.1 Flashback: SVD

Theorem:

Each real-valued mn matrix A with rank r can be decomposed

into the form A = U    VT with

an mr matrix U with orthonormal column vectors,

an rr diagonal matrix , and

an nr matrix V with orthonormal column vectors.

This decomposition is called singular value decomposition (SVD) 

and is unique when the elements of  or sorted.

Theorem:

In the singular value decomposition A = U    VT of matrix A

the matrices U, , and V can be derived as follows:

•  consists of the singular values of A, 

i.e. the positive roots of the Eigenvalues of AT A,

• the columns of U are the Eigenvectors of A AT,

• the columns of V are the Eigenvectors of AT A.
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SVD as Low-Rank Approximation  (Regression)

Theorem:

Let A be an mn matrix with rank r, and let Ak = Uk  k  Vk
T,

where the kk diagonal matrix k contains the k largest singular values

of A and the mk matrix Uk and the nk matrix Vk contain the

corresponding Eigenvectors from the SVD of A.

Among all mn matrices C with rank at most k

Ak is the matrix that minimizes the Frobenius norm
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Example:
m=2, n=8, k=1
projection onto x‘ axis
minimizes „error“ or
maximizes „variance“
in k-dimensional space
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Latent Semantic Indexing (LSI):
Applying SVD to Vector Space Model

A is the mn term-document similarity matrix. Then:

• U and Uk are the mr and mk term-topic similarity matrices,

• V and Vk are the nr and nk document-topic similarity matrices,

• AAT and AkAk
T are the mm term-term similarity matrices,

• ATA  and Ak
TAk are the nn document-document similarity matrices
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mapping of m1 vectors into latent-topic space: T
j k j jd U d : d ' 

T
kq U q : q' 

scalar-product similarity in latent-topic space: dj‘
Tq‘ = ((kVk

T)*j)
T  q’
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Indexing and Query Processing

• The matrix k Vk
T corresponds to a „topic index“ and

is stored in a suitable data structure.

Instead of k Vk
T the simpler index Vk

T could be used.

• Additionally the term-topic mapping Uk must be stored.

• A query q (an m1 column vector) in the term vector space 

is transformed into query q‘= Uk
T  q (a k1 column vector) 

and evaluated in the topic vector space (i.e. Vk) 

(e.g. by scalar-product similarity Vk
T  q‘ or cosine similarity)

• A new document d (an m1 column vector) is transformed into

d‘ = Uk
T  d (a k 1 column vector) and

appended to the „index“ Vk
T as an additional column („folding-in“)
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Example 1 for Latent Semantic Indexing

m=5 (interface, library, Java, Kona, blend), n=7

























1320000

1320000

0005121

0005121

0005121

A 








































27.080.053.000.000.000.000.0

00.000.000.090.018.036.018.0

29.500.0

00.064.9

71.000.0

71.000.0

00.058.0

00.058.0

00.058.0

U
VT

the new document d8 = (1 1 0 0 0)T is transformed into

d8‘ = UT  d8 = (1.16  0.00)T and appended to VT

query q = (0 0 1 0 0)T is transformed into

q‘ = UT  q = (0.58  0.00)T and evaluated on VT
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Example 2 for Latent Semantic Indexing

m=6 terms
t1: bak(e,ing)
t2: recipe(s)
t3: bread
t4: cake
t5: pastr(y,ies)
t6: pie

n=5 documents
d1: How to bake bread without recipes
d2: The classic art of Viennese Pastry
d3: Numerical recipes: the art of

scientific computing
d4: Breads, pastries, pies and cakes:

quantity baking recipes
d5: Pastry: a book of best French recipes


















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







0000.04082.00000.00000.00000.0

7071.04082.00000.00000.10000.0

0000.04082.00000.00000.00000.0

0000.04082.00000.00000.05774.0

7071.04082.00000.10000.05774.0

0000.04082.00000.00000.05774.0

A
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Example 2 for Latent Semantic Indexing (2)

A
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6394.02774.00127.01182.0

1158.00838.08423.05198.0

6394.02774.00127.01182.0

2847.05308.02567.02670.0

0816.05249.03981.07479.0

2847.05308.02567.02670.0

U



VT
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Example 2 for Latent Semantic Indexing (3)

3A





















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













0155.02320.00522.00740.01801.0

7043.04402.00094.09866.00326.0

0155.02320.00522.00740.01801.0

0069.04867.00232.00330.04971.0

7091.03858.09933.00094.06003.0

0069.04867.00232.00330.04971.0

T
VU 333 
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Example 2 for Latent Semantic Indexing (4)

query q: baking bread

q = ( 1 0 1 0 0 0 )T

transformation into topic space with k=3

q‘ = Uk
T  q = (0.5340  -0.5134  1.0616)T

scalar product similarity in topic space with k=3:

sim (q, d1) = Vk
T

*1  q‘  0.86 sim (q, d2) = Vk
T

*2  q  -0.12

sim (q, d3) = Vk
T

*3  q‘  -0.24 etc.

Folding-in of a new document d6: 

algorithmic recipes for the computation of pie 

d6 = ( 0  0.7071  0  0  0  0.7071 )T

transformation into topic space with k=3

d6‘ = Uk
T  d6  ( 0.5  -0.28  -0.15 )

d6‘ is appended to Vk
T as a new column
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Multilingual Retrieval with LSI
• Construct LSI model (Uk, k, Vk

T) from
training documents that are available in multiple languages:

• consider all language variants of the same document
as a single document and

• extract all terms or words for all languages.
• Maintain index for further documents by „folding-in“, i.e.

mapping into topic space and appending to Vk
T.

• Queries can now be asked in any language, and the
query results include documents from all languages.

Example:
d1: How to bake bread without recipes. 

Wie man ohne Rezept Brot backen kann.

d2: Pastry: a book of best French recipes.
Gebäck: eine Sammlung der besten französischen Rezepte.

Terms are e.g. bake, bread, recipe, backen, Brot, Rezept, etc.
Documents and terms are mapped into compact topic space.
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Connections between LSI and Clustering

LSI can also be seen as an

unsupervised clustering method (cf. spectral clustering):

simple variant for k clusters

• map each data point into k-dimensional space

• assign each point to its highest-value dimension: 

strongest spectral component

Conversely, we could compute k clusters

for the data points (using any clustering algorithm) and

project data points onto k centroid vectors („axes“ of k-dim. space)

to represent data in LSI-style manner („concept indexing (CI)“)
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More General Matrix Factorizations


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Non-negative Matrix Factorization (NMF)

Matrix Factorization with L2 Regularizer

Matrix Factorization with L1 Regularizer (favors sparseness)

Am×n  Lm×k × Rk×n to minimize

with Lij  0 and Rij  0 

222

FFF

T LLRLA Am×n  Lm×k × Rk×n to minimize

11

2

RLRLA
F

T Am×n  Lm×k × Rk×n to minimize

 numerical methods for non-convex optimization

e.g. iterative gradient descent

data loss model complexity

data loss model complexity
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Power of Non-negative Matrix 
Factorization (NMF) vs. SVD

x1

x2

x1

x2

SVD of data matrix A NMF of data matrix A
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Application: Recommender Systems

Users × Items → Ratings

Low-rank matrix factorization with regularization:

Mu×t  Lu×k × Rk×t

such that ij (Mij  (L×R)ij  bi  bj)
2 +  (||L||2 + ||R||2) = min!

possibly with constraints: Lij ≥ 0 and Rij ≥ 0

alternatively: 

….. +  (||L||1 + ||R||1) = min!

3         2        ?? 3         1

? 4          ? ? ?

5         ? 4           4         ?

4         ? 5           1         4       

plus temporal bias …

plus user-user profile sim …

plus item-item contents sim …

Alice

Bob

Claire

Don

3         2        ?? 3         1

? 4          ? ? ?

5         ? 4           4         ?

4         ? 5           1         4       

data loss user

bias

item

bias

regularizer
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Application: Recommender Systems

also applicable to social graphs, and

co-occurrence graphs from user logs, text mining, etc.

for recommending „friends“, communities, bars, songs, etc. (see IRDM Chapter 7)

→ huge size poses scalability challenge

latent factor 1

la
te

n
t 

fa
ct

o
r

2

Serious

Escapist

Female Male
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LSI Issues

+ Elegant well-founded model with

automatic consideration of term-term (cor)relations

(incl. synonymy/homonymy, morphological variations, cross-lingual)

– Model Selection: choice of low rank k not easy

– Computational and storage cost:

term-doc matrix is sparse, SVD factors are dense

SVD does not scale to Web dimensions (10s of Mio‘s to 100s of Bio‘s))

– Unconvincing results for IR benchmarks and Web search
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13.4.2 Probabilistic Aspect Models
(pLSI, LDA, …)

• each document d is viewed as a mix of (latent) topics (aspects) z,

each with a certain probability (summing up to 1)

• each topic generates words w with topic-specific probabilities

• P[wdz]: prob. of word w occurring in doc d about topic z

• we postulate: conditional independence of w and d given z

P[wdz]  =  P[wd|z] P[z]  =  P[w|z] P[d|z] P[z]

P[wd]    =  z P[w|z] P[d|z] P[z]

P[w|d]    =  z P[z|d] P[w|z]
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Probabilistic LSI (pLSI)

documents d latent concepts z
(aspects)

terms w
(words)

 
z

zwPdzPdwP ]|[]|[]|[
d and w 
conditionally 
independent
given z
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Relationship of pLSI to LSI

 z
]d,w[P P[w|z] · P[z] · P[d|z]

Key difference to LSI:

• non-negative matrix decomposition

• with L1 normalization

........................

..
..
..
..
..
..
..

mn



mk
kk kn

 

..
..
..
..
..
..
..
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........ ......................
1

k0

0

k Vk
T

..
..
..
.

term probs
per concept

doc probs
per concept

concept
probs

Key difference to LMs:

• no generative model for docs

• tied to given corpus
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Learning and Using the pLSI Model

IRDM  WS 2015 13-92

Parameter estimation:

given (d,w) data and #aspects k, 

estimate P[z|d] and P[w|z] by EM 

(Expectation Maximization, see Chapter 5: EM Clustering)

or gradient-descent methods for analytically intractable MLE or MAP

Query processing:

q = {w1…wn} is „folded in“ (via EM and learned model) 

to compute P[z|q]: aspect vector that best explains the query

Ranking of query results:

compare the aspect vectors of query and candidate documents

by Kullback-Leibler divergence or other similarity measure (e.g. cosine)



Experimental Results: Example

Source: Thomas Hofmann, Tutorial at ADFOCS 2004
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13.4.3 Latent Dirichlet Allocation (LDA)
• Multiple-cause mixture model

• Documents contain multiple latent topics

• Topics are expressed by (multinomial) word distribution

• LDA is a generative model for such docs (Dirichlet topic mixtures)
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LDA Generative Model

multinomial (, M)

Dirichlet () multinomial (, k) topic z word w

per word 
occurrence

per document

observable 
RV (data)

for each doc d:

• choose doc length N (# word occurrences) ~ Poisson()

• choose topic-probability params  ~ Dirichlet()

• for each of the N word occurrences in d (at position n):

• choose one of k topics zn ~ multinomial(, k)

• choose one of M words wn from per-topic distribution 

~ multinomial(, M)
latent
(hidden) RV
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LDA Instance-Level Model





z1 z2 zN...

w1 w2 wN...

hypergenerator for

topic distribution

doc 1 doc D...

topics 
of words

words



z1 z2 zN...

w1 w2 wN...

 

topic 1 topic k

... per-topic
word distr.‘s
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Comparison to Other Latent-Topic Models

multinomial (, M)

Dirichlet () multinomial (, k) topic z word w

LDA

doc d topic z word w

pLSI
aspect model

topic z word w

single-cause
mixture of
unigramsword w

simple
unigram
model

discrete
univariate
distributionIRDM  WS 2015 13-97



LDA Parameter Estimation
for doc x

(if  were

known):

  

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1z znn
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  
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N
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k

1z x,zz
n nnn

with 

unknown :     






  d]|[P],|x[P

N

1n

k

1z x,zz
n nnn

  



  










 




 d

)(

)(
],|x[P

N

1n

k

1z x,zz

1k

1y y

y y

y y

n nnn

y



log-likelihood function (for corpus of D docs) is analytically intractable
EM algorithm or other variational methods or MCMC sampling
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LDA Experimental Results: Example

Source: 

D.M. Blei, A.Y. Ng, M.I. Jordan: 

Latent Dirichlet Allocation, Journal 

of Machine Learning Research 2003
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13.4.4 Word2Vec: Latent Model
for Term-Term Similarity

• view distributional representation (latent aspects)

as a machine learning problem

• focus on term vectors for term-term similarity

(terms: words, phrases, perhaps paragraphs)

Learn from text windows C of Web-scale corpora

Example: once upon  a  time  in  the west

Aim to predict

P[w|C] = P[wt | wt-j, …, wt+j with 1  j  |C|/2] 

or

P[C|w] = P[wt-j, …, wt+j for 1  j  |C|/2 | wt]

https://code.google.com/p/word2vec/

window C of size 4

CBOW model
(continuous
bag of words)

continuous
Skip-Gram model
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Word2Vec: Learning Task

Objective: represent term w as vector 𝑤 such that 

for training corpus with term sequence w1 … wT:

1

𝑇
 𝑡=1

𝑇  𝑗∈𝐶(𝑡) log
𝑒𝑥𝑝 ( 𝑤𝑗

𝑇
𝑤𝑡 )

 𝑣∈𝑉 𝑒𝑥𝑝(𝑣𝑇 𝑤𝑡)
= max!

softmax function based on (shallow) neural network

Approximate solution:

advanced machine learning methods (non-convex optimization)

Output:

distributional vector 𝑤 for each term w (word or phrase or …) 
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Word2Vec: Examples
for given term w with vector 𝑤 find closest 𝑢 (e.g using cos)

 u is interpreted as most related term of w

2 term vectors nearest vectors

Czech + currency koruna, Czech crown, Polish zloty, CTK

Vietnam + capital Hanoi, Ho Chi Minh City, Viet Nam, Vietnamese

German + airlines airline Lufthansa, carrier Lufthansa

Russian + river Moscow, Volga River, upriver, Russia

French + actress Juliette Binoche, Charlotte Gainsbourg

term vector nearest vectors

Redmond Redmond Washington, Microsoft

graffiti spray paint, grafitti, taggers

San_Francisco Los_Angeles, Golden_Gate, Oakland, Seattle

Chinese_river Yangtze_River, Yangtze, Yangtze_tributary
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Word2Vec: Compositionality
Simply use linear algebra: vector addition and subtraction

Can also be used to automatically mine linguistic regularities, e.g.:
vec(woman)  vec(man) = vec(queen)  vec(king) = vec(aunt) )  vec(uncle)

X is to X‘ like Y to Y‘

 vec(X)  vec(X‘) = vec(Y)  vec(Y‘) 

 given Y, Y‘, X, solve for X‘:  vec(X‘) = vec(Y)  vec(Y‘) +vec(X)

Y:Y‘ X:X‘                                                                        

France:Paris Italy:Rome, Japan:Tokyo

big:bigger small:larger, cold:colder, quick:quicker

Einstein:scientist Messi:midfielder, Mozart:violinist, Picasso:painter

Microsoft:Windows Google:Android, IBM:Linux, Apple:iPhone

Sarkozy:France Berlusconi:Italy, Merkel:Germany

Japan:sushi Germany:bratwurst, France:tapas, USA:pizza

Word2vec power

largely comes from data
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Summary of Section 13.4

• Latent-Topic Models can capture word correlations

like synonymy in an implicit manner:

• docs belong to (mixes of) latent topics, topics create words

• LSI is based on spectral decomposition (SVD) of term-doc matrix

• elegant, effective, not scalable to Web size

• pLSI and LDA use non-negative, probabilistic decomposition

• parameter estimation and query processing complex & expensive

• Other interesting models: co-clustering, word2vec, …

• none of these scales to Bios. of docs and Web workload

• all have a model selection issue: # topics (aspects)
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13.5 Learning to Rank

Why?

• Increasing complexity of combining all feature groups:

doc contents, source authority, freshness, geo-location,

language style, author‘s online behavior, etc. etc.

• High dynamics of contents and user interests

How?

• exploit user feedback on search-result quality

• train a machine-learning predictor:

scoring function f (query features, doc features)

• use the learned scoring function (weights) to

rank the answers of new queries

• re-train the scoring function periodically
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Learning-to-Rank (LTR) Framework
Treat scoring as a function of different m input signals

(feature families) xi with weights (hyper-parameters) i

score (d,q) = f ( x1, …, xm, 1, …, m )

where the weights i need to be learned and

the xi are derived from d and q and the context

(e.g. tokens and bigrams of d and q, 

last update of d, age of d‘s Internet domain, 

user‘s preceding query, last clicked doc, etc. etc.)

Training data: set of queries each with info about docs

• pointwise: set of (q,d) points with relevant and irrelevant docs

• pairwise: set of (d,d‘) pairs where d is preferred over d‘

• listwise: list of ranked docs in desc. order of relevance

Objective function for learning task varies with setting

and quality measure to optimize (e.g. precision, F1, NDCG, …)
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Regression for Parameter Fitting

Estimate r(x) = E[Y | X1=x1  ... Xm=xm] using a linear model
m

0 i ii 1
Y r( x ) x   


     with error  with E[]=0

given n sample points (x1
(i) , ..., xm

(i), y(i)), i=1..n, the

least-squares estimator (LSE) minimizes the quadratic error:

2

( i ) ( i )
k 0 mk

i 1..n k 0..m

x y : E( ,..., )  
 

  
     

  
  (with xo

(i)=1)

Solve linear equation system:
k

E
0







for k=0, ..., m

equivalent to MLE T 1 T( X X ) X Y 

with Y = (y(1) ... y(n))T   and 

( 1 ) ( 1 ) ( 1 )
m1 2

( 2 ) ( 2 ) ( 2 )
m1 2

( n ) ( n ) ( n )
m1 2

1 x x ... x

1 x x ... x
X

...

1 x x ... x

 
 
 

  
 
 
 
 

Linear Regression
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Estimate r(x) = E[Y | X=x] for Bernoulli Y using a logistic model

m
0 i ii 1

m
0 i ii 1

x

x

e
Y r( x )

1 e

 

 
 

 

 




   



with error  with E[]=0

 solution for MLE for i values

based on numerical gradient-descent methods

log-linear

Regression for Parameter Fitting
Logistic Regression
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Pointwise LTR with Linear Regression

given n samples (x1,y1), (x2,y2), …

find linear function f(x) with smallest L2 error ~ i (f(xi)-yi)
2

(method of least squares)

solve linear equation system (or SVD) over (xi,yi) matrix

generalizes to m-dimensional input (xi1, xi2, …, xim, yi), …

x1 x2 x3 x4 x5

f(x1) = 0.4

f(x2) = 0.6

f(x3) = 0.9

f(x4) = 0.5

f(x5) = 0.8

x

f(x)
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Pointwise LTR with Logistic Regression

x1 x2 x3 x4 x5

f(x1) =  𝑅 = 0

f(x2) =  𝑅 = 0

f(x3) =  𝑅 = 0

f(x4) = R = 1

f(x5) = R = 1

x

f(x)

given n m-dim. samples (xi1,xi2, …, xim, yi) with yi  {0,1}

find coefficient vector  of logistic function f(x) with

smallest log-linear error ~ i=1..n (yi
Txi  log (1+𝒆𝜷𝑻𝒙𝒊)) + ||||1

solve numerically by iterative gradient-descent methods

data error
(log-likelihood)

model complexity
(regularizer)
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Pairwise LTR with Ordinal Regression

given x1, x2, x3, … and preferences xi <p xj („xi is better than xj“)

find function f(x) with low violation of preference inequalities

 minimize ranking loss ~ i,j L(xi,xj) + … where

L(xi,xj)=1 if xi <p xj and f(xi) > f(xj) or xi >p xj and f(xi) < f(xj), 0 else

 advanced optimization methods (e.g. SVM-Rank [T. Joachims et al. 2005] ) 

x1 x2 x3 x4 x5

x1 <p x2
x1 <p x3
x4 <p x2
x3 <p x5
x4 <p x5

x

f(x)
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Additional Literature for Section 13.5
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also in:  Foundations and Trends in Information Retrieval 3 (3): 225–331, 2009

• R. Herbrich, T. Graepel, K. Obermayer: Large margin rank boundaries for ordinal 

regression. In: Advances in Large Margin Classifiers, MIT Press, 1999

• T. Joachims: Optimizing Search Engines using Clickthrough Data, KDD 2002

• T. Joachims, F. Radlinski: Query Chains: Learning to Rank from Implicit 

Feedback, KDD 2005

• T. Joachims et al.: Accurately Interpreting Clickthrough Data as Implicit Feedback,

SIGIR 2005

• C.J.C. Burges et al.: Learning to rank using gradient descent. ICML 2005
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Summary of Chapter 13

• Learning-to-Rank is very powerful and used for Web search,

for training hyper-parameters of different

feature groups and scoring models

• Probabilistic IR and Statistical Language Models are

the state-of-the-art ranking methods

• LMs are very versatile and composable

• Latent Topic Models (LSI, LDA) are powerful for

consideration of term-term (cor)relations, but do not scale to Web
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