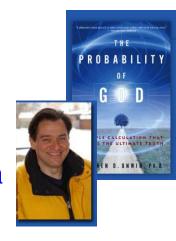
Chapter 13: Ranking Models

I apply some basic rules of probability theory to calculate the probability of God's existence – the odds of God, really. -- Stephen Unwin

God does not roll dice.

-- Albert Einstein

Not only does God play dice, but He sometimes confuses us by throwing them where they can't be seen. -- Stephen Hawking





Outline

- 13.1 IR Effectiveness Measures
- 13.2 Probabilistic IR
- 13.3 Statistical Language Model
- 13.4 Latent-Topic Models
- 13.5 Learning to Rank

following Büttcher/Clarke/Cormack Chapters 12, 8, 9 and/or Manning/Raghavan/Schuetze Chapters 8, 11, 12, 18 plus additional literature for 13.4 and 13.5

13.1 IR Effectivness Measures

ideal measure is user satisfaction heuristically approximated by benchmarking measures (on test corpora with query suite and relevance assessment by experts)

Capability to return **only** relevant documents:

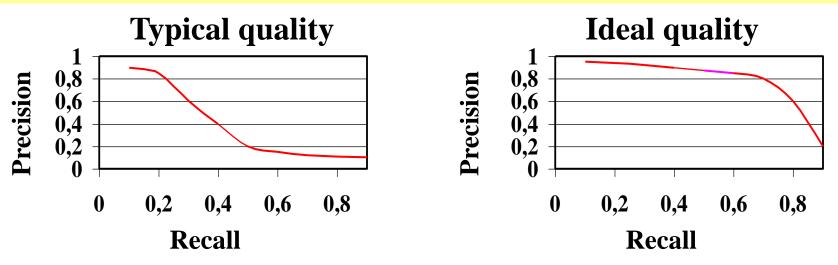
Precision (Präzision) = $\frac{\# relevant \ docs \ among \ top \ r}{r}$ typically for r = 10, 100, 1000

Capability to return **all** relevant documents:

Recall (Ausbeute) =

relevant docs among top r
relevant docs

typically for r = corpus size



IR Effectiveness: Aggregated Measures

 $\sum_{i=1} # relevant \& found docs for qi$

 \sum # found docs for qi

Combining precision and recall into **F measure** (e.g. with $\alpha = 0.5$: harmonic mean **F1**): $F = \frac{1}{\alpha \frac{1}{\frac{1}{precision} + (1 - \alpha) \frac{1}{recall}}}$

Precision-recall breakeven point of query q: point on precision-recall curve p = f(r) with p = r

for a set of n queries q1, ..., qn (e.g. TREC benchmark) *Macro evaluation* (user-oriented) = $\frac{1}{n} \sum_{i=1}^{n} precision(qi)$

analogous for recall and F1

of precision

Micro evaluation

(system-oriented) =

IR Effectivness: Integrated Measures

- Interpolated average precision of query q with precision p(x) at recall x and step width Δ (e.g. 0.1): $\frac{1}{1/\Delta} \sum_{i=1}^{1/\Delta} p(i\Delta)$
- Uninterpolated average precision of query q with top-m search result rank list $d_1, ..., d_m$, relevant results $d_i, ..., d_k$ ($k \le m, i_j \le i_{j+1} \le m$): $\frac{1}{k} \sum_{j=1}^k \frac{j}{i_j}$
- area under precisionrecall curve

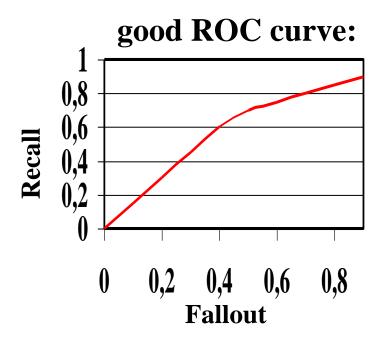
• Mean average precision (MAP) of query benchmark suite macro-average of per-query interpolated average precision for top-m results (usually with recall width 0.01)

$$\frac{1}{|Q|} \sum_{q \in Q} \frac{1}{1/\Delta} \sum_{i=1}^{1/\Delta} \operatorname{precision}(\operatorname{recall} = i\Delta)$$

IR Effectiveness: Integrated Measures

plot **ROC curve** (receiver operating characteristics): true-positives rate vs. false-positives rate corresponds to:

> Recall vs. Fallout where Fallout = $\frac{\# \text{ irrelevant docs among top } r}{\# \text{ irrelevant docs in corpus}}$



area under curve (AUC) is quality indicator

IR Effectiveness: Weighted Measures

Mean reciprocal rank (MRR) over query set Q:

$$MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{First Re levantRank(q)}$$

Variation: summand 0 if FirstRelevantRank > k

Discounted Cumulative Gain (DCG) for query q:

$$DCG = \sum_{i=1}^{k} \frac{2^{rating(i)} - 1}{\log_2(1+i)}$$

with finite set of result ratings: 0 (irrelevant), 1 (ok), 2(good), ...

Normalized Discounted Cumulative Gain (NDCG) for query q: NDCG = DCG / DCG (Perfect Re sult)

IR Effectiveness: Ordered List Measures

Consider top-k of two rankings $\tau 1$ and $\tau 2$ or full permutations of 1..n

- *overlap similarity OSim* $(\tau 1, \tau 2) = | top(k, \tau 1) \cap top(k, \tau 2) | / k$
- *Kendall's* τ *measure KDist* $(\tau 1, \tau 2) =$ $|\{(u,v) | u, v \in U, u \neq v, and \tau 1, \tau 2 \text{ disagree on relative order of } u, v\}$ $|U| \cdot (|U|-1)$

with $U = top(k,\tau 1) \cup top(k,\tau 2)$ (with missing items set to rank k+1)

with ties in one ranking and order in the other, count p with $0 \le p \le 1$ $\rightarrow p=0$: weak KDist, $\rightarrow p=1$: strict KDist

• *footrule distance Fdist* $(\tau 1, \tau 2) = \frac{1}{|U|} \sum_{u \in U} |\tau 1(u) - \tau 2(u)|$

(normalized) Fdist is upper bound for KDist and Fdist/2 is lower bound

Outline

13.1 IR Effectiveness Measures

13.2 Probabilistic IR

- 13.2.1 Prob. IR with the Binary Model
- 13.2.2 Prob. IR with Poisson Model (Okapi BM25)
- 13.2.3 Extensions with Term Dependencies
- 13.3 Statistical Language Model
- 13.4 Latent-Topic Models
- 13.5 Learning to Rank

13.2 Probabilistic IR

based on generative model:

probabilistic mechanism for producing document (or query)

usually with specific family of parameterized distribution

often with assumption of independence among words justified by "**curse of dimensionality**":

corpus with n docs and m terms has 2^m possible docs would have to estimate model parameters from n << 2^m (problems of sparseness & computational tractability)

13.2.1 Multivariate Bernoulli Model (aka. Multi-Bernoulli Model)

For generating doc x

- consider binary RVs: $x_w = 1$ if w occurs in x, 0 otherwise
- postulate independence among these RVs

$$P[x | \phi] = \prod_{w \in W} \phi_w^{X_w} (1 - \phi_w)^{1 - X_w}$$

with vocabulary W and parameters $\phi_w =$ P[randomly drawn word is w]

$$= \prod_{w \in X} \phi_w \prod_{w \in W, w \notin X} (1 - \phi_w)$$

- product for absent words underestimates prob. of likely docs
- too much prob. mass given to very unlikely word combinations

Probability Ranking Principle (PRP) [Robertson and Sparck Jones 1976]

Goal:

```
Ranking based on sim(doc d, query q) =

P[R|d] = P [ doc d is relevant for query q |

d has term vector X1, ..., Xm ]
```

<u>Probability Ranking Principle</u> (PRP) [Robertson 1977]: For a given retrieval task, the cost of retrieving d as the next result in a ranked list is:

 $cost(d) := C_R * P[R/d] + C_{notR} * P[not R/d]$ with cost constants

 $C_R = \text{cost of retrieving a relevant doc}$ $C_{\text{notR}} = \text{cost of retrieving an irrelevant doc}$ For $C_R < C_{\text{notR}}$, the cost is minimized by choosing *argmax_d P[R/d]*

Derivation of PRP

Consider doc d to be retrieved next, i.e., preferred over all other candidate docs d'

cost(d) = $C_R P[R|d] + C_{notR} P[notR|d] \leq C_R P[R|d'] + C_{notR} P[notR|d']$ $= \cot(d')$ $\Leftrightarrow C_{R} P[R|d] + C_{notR} (1 - P[R|d]) \leq C_{R} P[R|d'] + C_{notR} (1 - P[R|d'])$ $\Leftrightarrow C_{R} P[R|d] - C_{notR} P[R|d] \leq C_{R} P[R|d'] - C_{notR} P[R|d']$ $\Leftrightarrow (C_{R} - C_{notR}) P[R|d] \le (C_{R} - C_{notR}) P[R|d']$ $\ \ \text{as } \mathbf{C}_{\mathbf{R}} < \mathbf{C}_{\text{not}\mathbf{R}},$

 \Leftrightarrow P[R|d] \geq P[R|d']

for all d'

Probabilistic IR with Binary Independence Model [Robertson and Sparck Jones 1976]

based on Multi-Bernoulli generative model and Probability Ranking Principle

Assumptions:

- Relevant and irrelevant documents differ in their terms.
- Binary Independence Retrieval (BIR) Model:
 - Probabilities of term occurrence of **different terms** are pairwise **independent**
 - Term frequencies are binary $\in \{0,1\}$.
- for terms that do not occur in query q the probabilities for such a term occurring are the same for relevant and irrelevant documents.

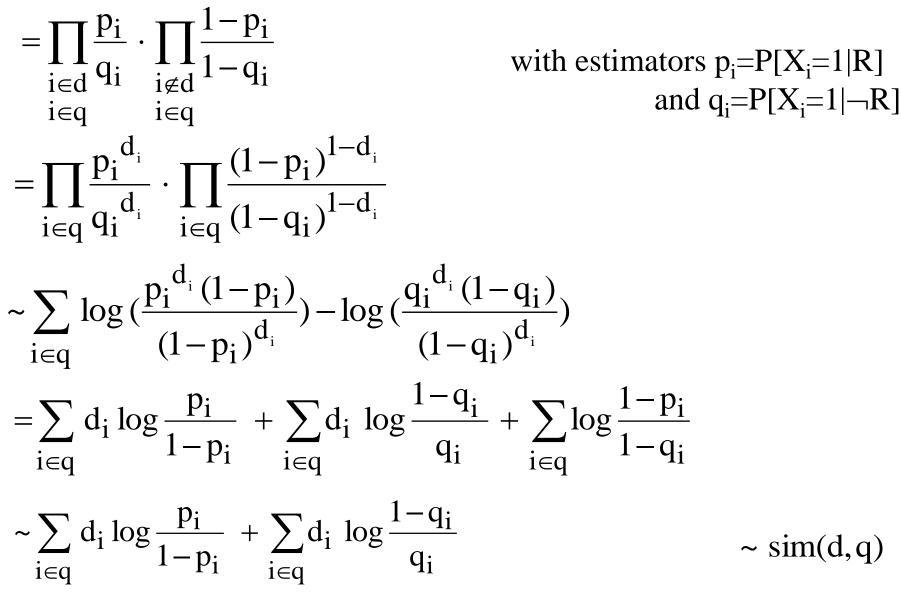
BIR principle analogous to Naive Bayes classifier

Ranking Proportional to Relevance Odds

$$sim(d,q) = O(R \mid d) = \frac{P[R \mid d]}{P[\neg R \mid d]}$$
(odds for relevance)
$$= \frac{P[d \mid R] \times P[R]}{P[d \mid \neg R] \times P[\neg R]}$$
(Bayes' theorem)
$$\sim \frac{P[d \mid R]}{P[d \mid \neg R]} = \prod_{i=1}^{m} \frac{P[d_i \mid R]}{P[d_i \mid \neg R]}$$
(independence or
linked dependence)
$$= \prod_{i \in q} \frac{P[d_i \mid R]}{P[d_i \mid \neg R]}$$
(P[d_i|R]=P[d_i|\neg R]
for i \notin q)
$$= \prod_{\substack{i \in q}} \frac{P[X_i = 1 \mid R]}{P[X_i = 1 \mid \neg R]} \cdot \prod_{\substack{i \notin d \\ i \in q}} \frac{P[X_i = 0 \mid \neg R]}{P[X_i = 0 \mid \neg R]}$$

 $d_i = 1$ if d includes term i, $X_i = 1$ if random doc includes term i, 0 otherwise 0 otherwise

Ranking Proportional to Relevance Odds



Estimating p_i and q_i values: Robertson / Sparck Jones Formula

Estimate p_i und q_i based on training sample (query q on small sample of corpus) or based on intellectual assessment of first round's results (*relevance feedback*):

Let N be #docs in sample, R be # relevant docs in sample n_i #docs in sample that contain term i, r_i # relevant docs in sample that contain term i

$$\Rightarrow \text{ Estimate: } p_{i} = \frac{r_{i}}{R} \qquad q_{i} = \frac{n_{i} - r_{i}}{N - R}$$
or: $p_{i} = \frac{r_{i} + 0.5}{R + 1} \qquad q_{i} = \frac{n_{i} - r_{i} + 0.5}{N - R + 1} \qquad \text{(Lidstone smoothing with } \lambda = 0.5)$

$$\Rightarrow \sin(d, q) = \sum_{i \in q} d_{i} \log \frac{r_{i} + 0.5}{R - r_{i} + 0.5} + \sum_{i \in q} d_{i} \log \frac{N - n_{i} - R + r_{i} + 0.5}{n_{i} - r_{i} + 0.5}$$

$$\Rightarrow \text{ Weight of term i in doc d: } \log \frac{(r_{i} + 0.5) (N - n_{i} - R + r_{i} + 0.5)}{(R - r_{i} + 0.5) (n_{i} - r_{i} + 0.5)}$$

$$\xrightarrow{\text{IRDM WS 2015}}$$

Example for Probabilistic Retrieval

Documents with relevance feedback:

q: t1 t2 t3 t4 t5 t6

	t1	t2	t3	t4	t5	t6	R	-
d 1	1	0	1	1	0	0	1	
d2	1	1	0	1	1	0	1	R=2, N=4
d3	0	0	0	1	1	0	0	\mathbf{K} -2, \mathbf{N} -4
d4	0	0	1	0	0	0	0	
ni	2	1	2	3	2	0		
ri	2	1	1	2	1	0		
pi	5/6	1/2	1/2	5/6	1/2	1/6		with Lidstone
qi	1/6	1/6	1/2	1/2	1/2	1/6		smoothing(λ =0.5)

Score of new document d5 (with Lidstone smoothing):

 $\begin{array}{rl} d5 \cap q : < 1 \ 1 \ 0 \ 0 \ 0 \ 1 > & \rightarrow sim(d5, q) = & \log 5 + \log 1 + \log 0.2 \\ & & + \log 5 + \log 5 + \log 5 \end{array}$

$$sim(d,q) = \sum_{i \in q} d_i \log \frac{p_i}{1 - p_i} + \sum_{i \in q} d_i \log \frac{1 - q_i}{q_i}$$
{IRDM WS 2015} + $\sum{i \in q} d_i \log \frac{1 - q_i}{q_i}$ (3-18)

Relationship to tf*idf Formula

Assumptions (without training sample or relevance feedback):

1

- p_i is the same for all i
- Most documents are irrelevant.
- Each individual term i is infrequent.

This implies:

•
$$\sum_{i \in q} d_i \log \frac{p_i}{1 - p_i} = c \sum_{i \in q} d_i \quad \text{with constant } c$$

•
$$q_i = P[X_i = 1 | \neg R] \approx \frac{df_i}{N}$$

•
$$\frac{1 - q_i}{q_i} = \frac{N - df_i}{df_i} \approx \frac{N}{df_i}$$

$$\Rightarrow \sin(d,q) = \sum_{i \in q} d_i \log \frac{p_i}{1-p_i} + \sum_{i \in q} d_i \log \frac{1-q_i}{q_i}$$
$$\approx c \sum_{i \in q} d_i + \sum_{i \in q} d_i \cdot \log i df_i$$

scalar product over the product of tf and dampend idf values for query terms

Laplace Smoothing (with Uniform Prior)

Probabilities p_i and q_i for term i are estimated by **MLE for binomial distribution**

(repeated coin tosses for relevant docs, showing term i with p_i , repeated coin tosses for irrelevant docs, showing term i with q_i)

To avoid overfitting to feedback/training, the estimates should be **smoothed** (e.g. **with uniform prior**):

Instead of estimating $p_i = k/n$ estimate (Laplace's law of succession): $p_i = (k+1) / (n+2)$

or with heuristic generalization (Lidstone's law of succession): $p_i = (k+\lambda) / (n+2\lambda)$ with $\lambda > 0$ (e.g. $\lambda=0.5$)

And for multinomial distribution (n times w-faceted dice) estimate: $p_i = (k_i + 1) / (n + w)$

Laplace Smoothing as Bayesian Parameter Estimation

posterior likelihood prior $P[param \theta | data d] = P[d|\theta]P[\theta] / P[d]$

consider: *binom(n,x)* with observation *k*

assume: uniform(x) as prior for param $x \in [0,1]$ $f_{uniform}(x) = 1$

13-21

$$P[x|k,n] = P[k,n|x]P[x] / P[k,n]$$

$$= \frac{P[k,n|x] f_{uniform}(x)}{\int_0^1 P[k,n|x] f_{uniform}(x) dx} = \frac{x^k (1-x)^{n-k}}{\int_0^1 x^k (1-x)^{n-k} dx}$$

$$E[x|k,n] = \int_0^1 P[x|k,n]dx = \int_0^1 \frac{x^k (1-x)^{n-k}}{\int_0^1 y^k (1-y)^{n-k} dy} dx$$

$$expectation = \frac{B(k+2,n-k+1)}{B(k+1,n-k+1)} = \frac{\Gamma(k+2)\Gamma(n+2)}{\Gamma(n+3)\Gamma(k+1)} = \frac{(k+1)!(n+1)!}{(n+2)!k!} = \frac{k+1}{n+2}$$

with Beta function
$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
 $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$
and Gamma function $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$ $\Gamma(z+1) = z!$ for $z \in \mathbb{N}$

13.2.2 Poisson Model

For generating doc x

- consider couting RVs: $x_w =$ number of occurrences of w in x
- still postulate independence among these RVs

Poisson model with word-specific parameters μ_w :

$$P[x | \mu] = \prod_{w \in W} \frac{e^{-\mu_w} \cdot \mu_w^{x_w}}{x_w!} = e^{-\sum_{w \in W} \mu_w} \prod_{w \in x} \frac{\mu_w^{x_w}}{x_w!}$$

MLE for μ_w is straightforward no likelihood penalty by absent words no control of doc length $\hat{\mu}_w = \frac{1}{n} \sum_{i=1}^{n} tf(w, d_i)$

Probabilistic IR with Poisson Model (Okapi BM25)

Generalize term weight $w = \log \frac{p(1-q)}{q(1-p)}$ into $w = \log \frac{p_{tf} q_0}{q_{tf} p_0}$ with p_i , q_i denoting prob. that term occurs j times

in relevant / irrelevant doc

Postulate Poisson distributions:

Okapi BM25 Scoring Function

Approximation of Poisson model by similarly-shaped function:

$$w \coloneqq \log \frac{p(1-q)}{q(1-p)} \cdot \frac{tf}{k_1 + tf}$$

finally leads to Okapi BM25 weights:

BM25 performs very well has won many benchmark competitions (TREC etc.)

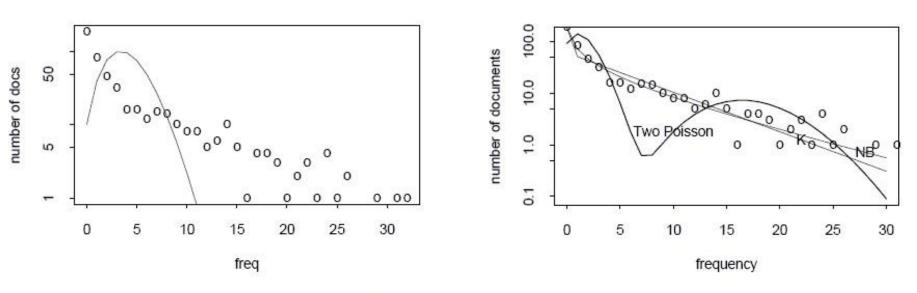
$$w_{j}(d) \coloneqq \frac{(k_{1}+1)tf_{j}}{k_{1}((1-b)+b\frac{length(d)}{avgdoclength})+tf_{j}} \cdot \log \frac{N-df_{j}+0.5}{df_{j}+0.5}$$

or in the most comprehensive, tunable form: $w_i(d) =$

$$\log \frac{N - df_{j} + 0.5}{df_{j} + 0.5} \cdot \frac{(k_{1} + 1)tf_{j}}{k_{1}((1 - b) + b\frac{len(d)}{\Delta}) + tf_{j}} \cdot \frac{(k_{3} + 1)qtf_{j}}{k_{3} + tf_{j}} + k_{2} |q| \frac{\Delta - len(d)}{\Delta + len(d)}$$

with Δ =avgdoclength and tuning parameters k_1 , k_2 , k_3 , b, sub-linear influence of tf (via k_1), consideration of doc length (via b)

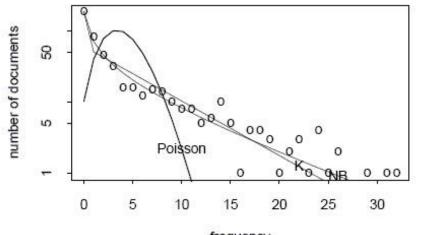
Poisson Mixtures for Capturing tf Distribution



Katz's K-mixture:

Poisson Doesn't Fit

Poisson Mixtures Fit Better



distribution of tf values for term ,,said"

Two Poissons Are Not Enough

Source: Church/Gale 1995

frequency

13.2.3 Extensions with Term Dependencies

Consider term correlations in documents (with binary X_i)

→ Problem of estimating m-dimensional prob. distribution $P[X_1=... \land X_2=... \land ... \land X_m=...] =: f_X(X_1, ..., X_m)$ (curse of dimensionality)

One possible approach: **Tree Dependence Model:**

a) Consider only 2-dimensional probabilities (for term pairs)

$$f_{ij}(X_i, X_j) = P[X_i = ... \land X_j = ...] = \sum_{X_1} \sum_{X_{i-1}} \sum_{X_{i+1}} ... \sum_{X_{j-1}} \sum_{X_{j+1}} ... \sum_{X_m} P[X_1 = ... \land ... \land X_m = ...]$$

b) For each term pair

estimate the error between independence and the actual correlation

c) Construct a tree with terms as nodes and the

m-1 highest error (or correlation) values as weighted edges

Considering Two-dimensional Term Correlation

Variant 1:

Error of approximating f by g (Kullback-Leibler divergence) with g assuming pairwise term independence:

$$\varepsilon(f,g) \coloneqq \sum_{\vec{X} \in \{0,1\}^m} f(\vec{X}) \log \frac{f(\vec{X})}{g(\vec{X})} = \sum_{\vec{X} \in \{0,1\}^m} f(\vec{X}) \log \frac{f(\vec{X})}{\prod_{i=1}^m g_i(X_i)}$$

Variant 2:

Correlation coefficient for term pairs:

$$\rho(Xi, Xj) \coloneqq \frac{Cov(Xi, Xj)}{\sqrt{Var(Xi)}\sqrt{Var(Xj)}}$$

 $\frac{Variant \ 3:}{level-\alpha \ values \ or \ p-values}$ of Chi-square independence test

Example for Approximation Error ε by KL Divergence

m=2:

given are documents:

d1=(1,1), d2(0,0), d3=(1,1), d4=(0,1)

estimation of 2-dimensional prob. distribution f:

$$f(1,1) = P[X1=1 \land X2=1] = 2/4$$

$$f(0,0) = 1/4, f(0,1) = 1/4, f(1,0) = 0$$

estimation of 1-dimensional marginal distributions g1 and g2:

$$g1(1) = P[X1=1] = 2/4, g1(0) = 2/4$$

$$g2(1) = P[X2=1] = 3/4, g2(0) = 1/4$$

estimation of 2-dim. distribution g with independent Xi:

$$g(1,1) = g1(1)*g2(1) = 3/8,$$

 $g(0,0) = 1/8, g(0,1) = 3/8, g(1,0) = 1/8$

approximation error ε (KL divergence):

 $\epsilon = 2/4 \, \log \, 4/3 \; + \; 1/4 \, \log \, 2 \; + \; 1/4 \, \log \, 2/3 \; + 0$

Constructing the Term Dependence Tree

Given:

complete graph (V, E) with m nodes $Xi \in V$ and m^2 undirected edges $\in E$ with weights ε (or ρ) Wanted:

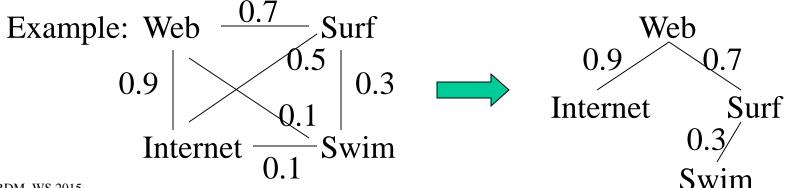
spanning tree (V, E[•]) with maximal sum of weights <u>Algorithm:</u>

Sort the m² edges of E in descending order of weight E' := \emptyset

Repeat until |E'| = m-1

 $E' := E' \cup \{(i,j) \in E \mid (i,j) \text{ has max. weight in } E\}$ provided that E' remains acyclic;

 $E := E - \{(i,j) \in E \mid (i,j) \text{ has max. weight in } E\}$



13-29

Estimation of Multidimensional Probabilities with Term Dependence Tree

Given is a term dependence tree ($V = \{X1, ..., Xm\}, E'$).

Let X1 be the root, nodes are preorder-numbered, and assume that Xi and Xj are independent for $(i,j) \notin E^{\prime}$. Then:

$$P[X1 = ... \land Xm = ..] = P[X1 = ..] P[X2 = ... \land Xm = ..| X1 = ..]$$
$$= \Pi_{i=1..m} P[Xi = ... | X1 = ... \land X(i-1) = ..]$$
$$= P[X1] \cdot \prod_{(i,j) \in E'} P[Xj | Xi]$$
$$= P[X1] \cdot \prod_{(i,j) \in E'} \frac{P[Xi, Xj]}{P[Xi]}$$
Example:
New Web
Internet Surf P[Web, Internet, Surf, Swim] =

$$P[Web] \frac{P[Web, Internet]}{P[Web]} \frac{P[Web, Surf]}{P[Web]} \frac{P[Surf, Swim]}{P[Surf]}$$
Swim

Digression: Bayesian Networks

Bayesian network (BN) is a directed, acyclic graph (V, E) with the following properties:

- Nodes \in V representing random variables and
- Edges \in E representing dependencies.
- For a root $R \in V$ the BN captures the prior probability P[R = ...].
- For a node $X \in V$ with parents parents $(X) = \{P1, ..., Pk\}$ the BN captures the conditional probability P[X=... | P1, ..., Pk].
- Node X is conditionally independent of a non-parent node Y given its parents parents(X) = $\{P1, ..., Pk\}$: P[X | P1, ..., Pk, Y] = P[X | P1, ..., Pk].

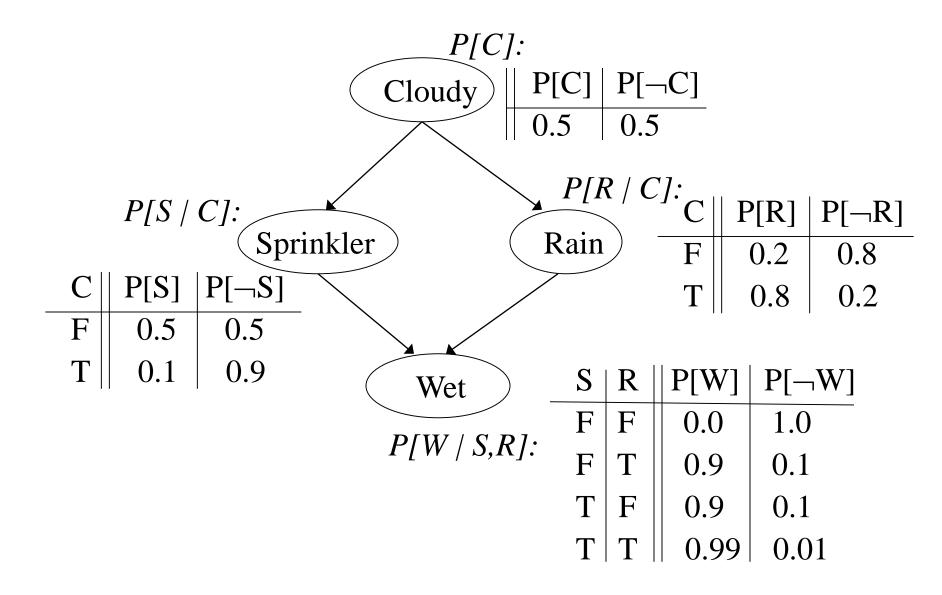
This implies: P[X1...Xn] = P[X1/X2...Xn] P[X2...Xn] $= \prod P[Xi/X(i+1)...Xn]$

• by the chain rule:

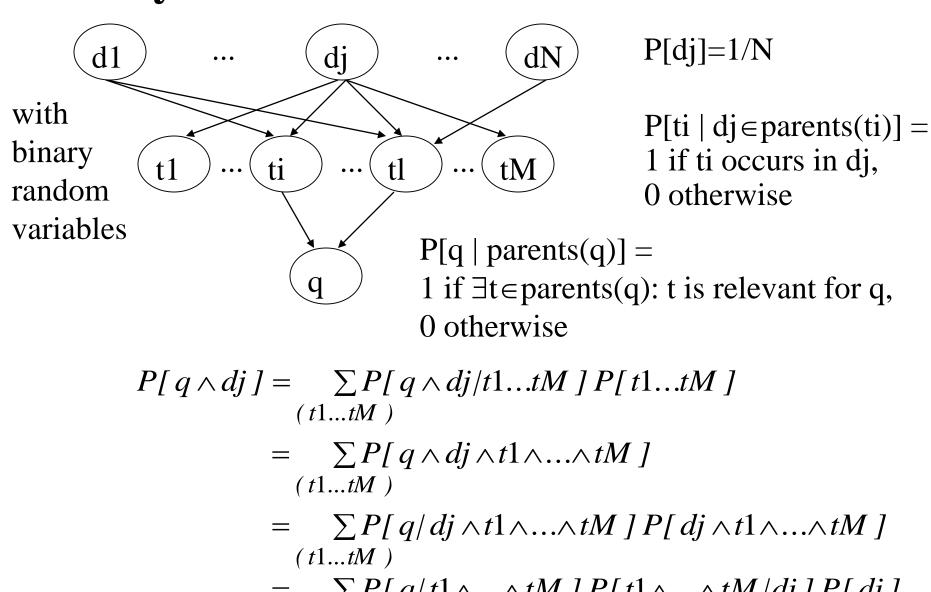
• by cond. independence:

i=1 $= \prod P[Xi | parents(Xi), other nodes]$ i=1n $= \prod P[Xi | parents(Xi)]$ i=1

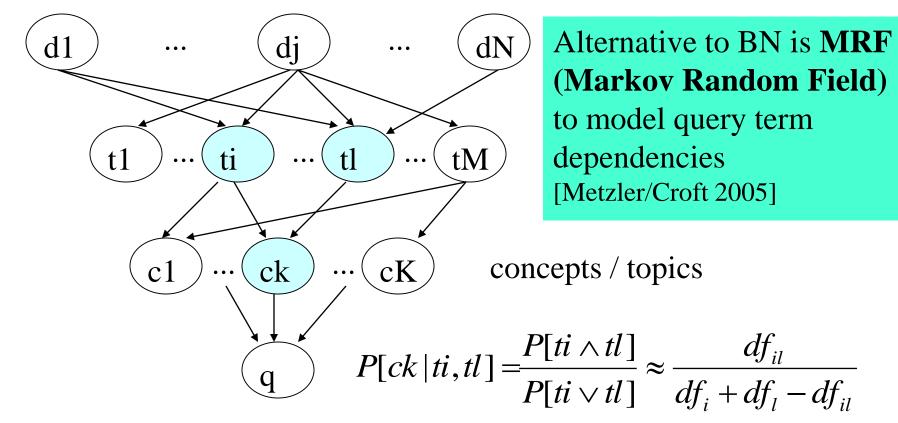
Example of Bayesian Network



Bayesian Inference Networks for IR



Advanced Bayesian Network for IR



Problems:

- parameter estimation (sampling / training)
- (non-) scalable representation
- (in-) efficient prediction
- lack of fully convincing experiments

Summary of Section 13.2

- **Probabilistic IR** reconciles principled foundations with practically effective ranking
- **Binary Independence Retrieval** (Multi-Bernoulli model) can be thought of as a Naive Bayes classifier: simple but effective
- Parameter estimation requires **smoothing**
- **Poisson-model**-based **Okapi BM25** often performs best
- Extensions with **term dependencies** (e.g. **Bayesian Networks**) are (too) expensive for Web IR but may be interesting for specific apps

Additional Literature for Section 13.2

- K. van Rijsbergen: Information Retrieval, Chapter 6: Probabilistic Retrieval, 1979, http://www.dcs.gla.ac.uk/Keith/Preface.html
- R. Madsen, D. Kauchak, C. Elkan: Modeling Word Burstiness Using the Dirichlet Distribution, ICML 2005
- S.E. Robertson, K. Sparck Jones: Relevance Weighting of Search Terms, JASIS 27(3), 1976
- S.E. Robertson, S. Walker: Some Simple Effective Approximations to the 2-Poisson Model for Probabilistic Weighted Retrieval, SIGIR 1994
- A. Singhal: Modern Information Retrieval a Brief Overview, IEEE CS Data Engineering Bulletin 24(4), 2001
- K.W. Church, W.A. Gale: Poisson Mixtures, Natural Language Engineering 1(2), 1995
- C.T. Yu, W. Meng: Principles of Database Query Processing for Advanced Applications, Morgan Kaufmann, 1997, Chapter 9
- D. Heckerman: A Tutorial on Learning with Bayesian Networks, Technical Report MSR-TR-95-06, Microsoft Research, 1995
- D. Metzler, W.B. Croft: A Markov Random Field Model for Term Dependencies. SIGIR 2005

Outline

Ì

13.1 IR Effectiveness Measures13.2 Probabilistic IR

13.3 Statistical Language Model

13.3.1 Principles of LMs

13.3.2 LMs with Smoothing

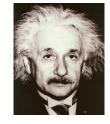
13.3.3 Extended LMs

13.4 Latent-Topic Models

13.5 Learning to Rank

God does not roll dice.

-- Albert Einstein



13.3.1 Key Idea of Statistical Language Models

generative model for word sequence

(generates probability distribution of word sequences, or bag-of-words, or set-of-words, or structured doc, or ...)

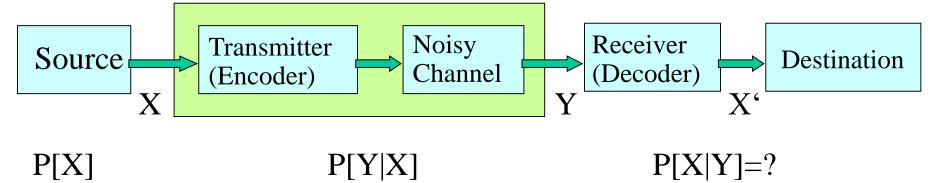
Example: P[,,Today is Tuesday"] = 0.001 P[,,Today Wednesday is"] = 0.00000000001 P[,,The Eigenvalue is positive"] = 0.000001

LM itself highly context- / application-dependent

Examples:

- **speech recognition**: given that we heard "Julia" and "feels", how likely will we next hear "happy" or "habit"?
- text classification: given that we saw "soccer" 3 times and "game" 2 times, how likely is the news about sports?
- **information retrieval**: given that the user is interested in math, how likely would the user use ,,distribution" in a query?

Historical Background: Source-Channel Framework [Shannon 1948]



 $\hat{X} = \arg \max_{X} P[X | Y] = \arg \max_{X} P[Y | X] P[X]$ X is text \rightarrow P[X] is language model

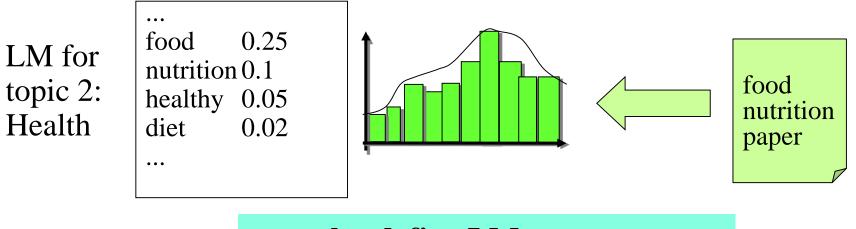
Applications: speech recognition machine translation OCR error correction summarization information retrieval

- X: word sequence
- X: English sentence
- X: correct word
- X: document
- X: document

- Y: speech signal Y: German sentence
- Y: erroneous word
- Y: summary
- Y: query

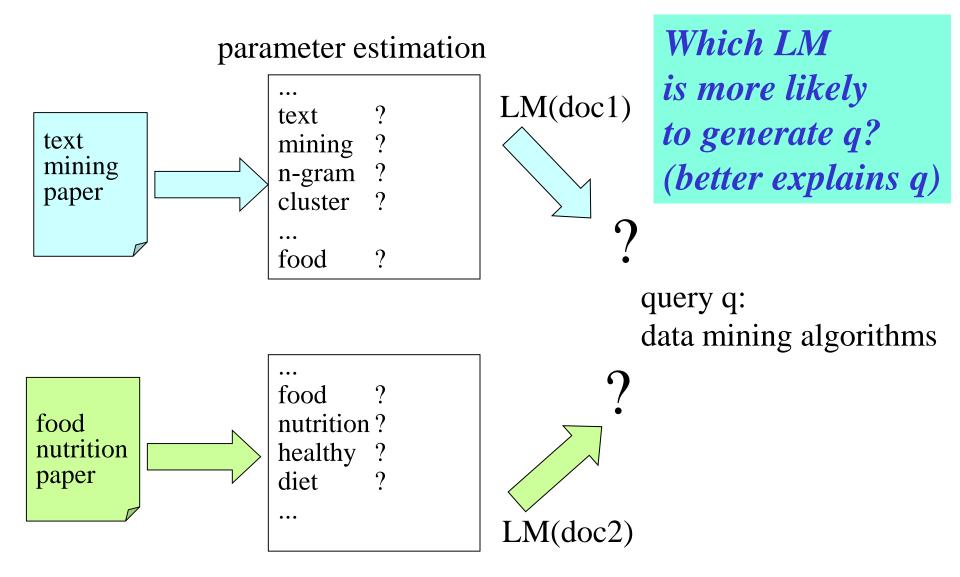
Text Generation with (Unigram) LMs LM θ : **P**[word | θ] \leftarrow sample --- document d ... 0.2 text LM for mining 0.1 text topic 1: 0.01 n-gram mining IR&DM paper 0.02 cluster • • • 0.000001 food

different θ_d for different d

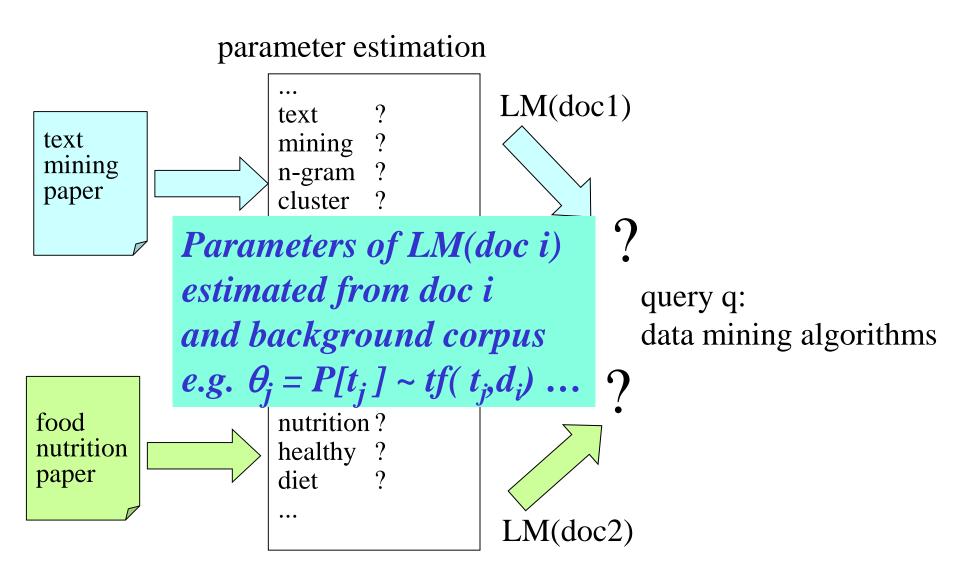


may also define LMs over n-grams

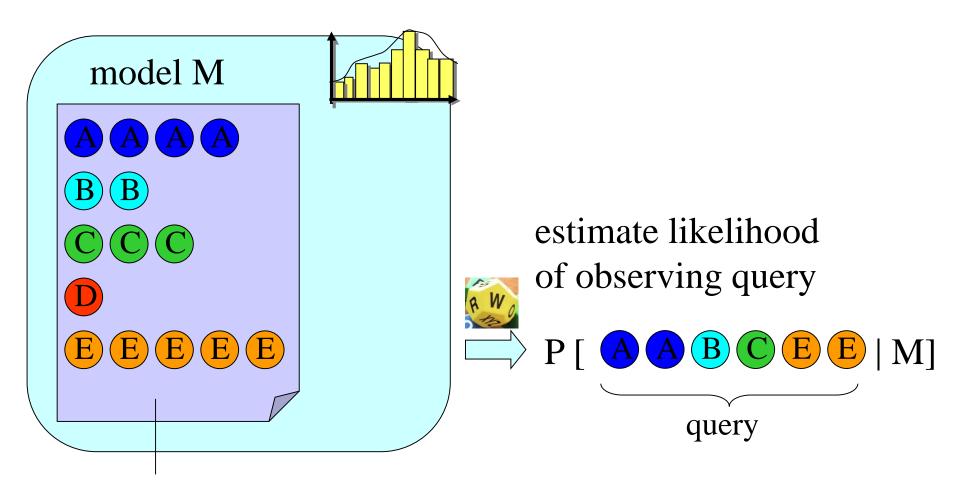
LMs for Ranked Retrieval



LM Parameter Estimation

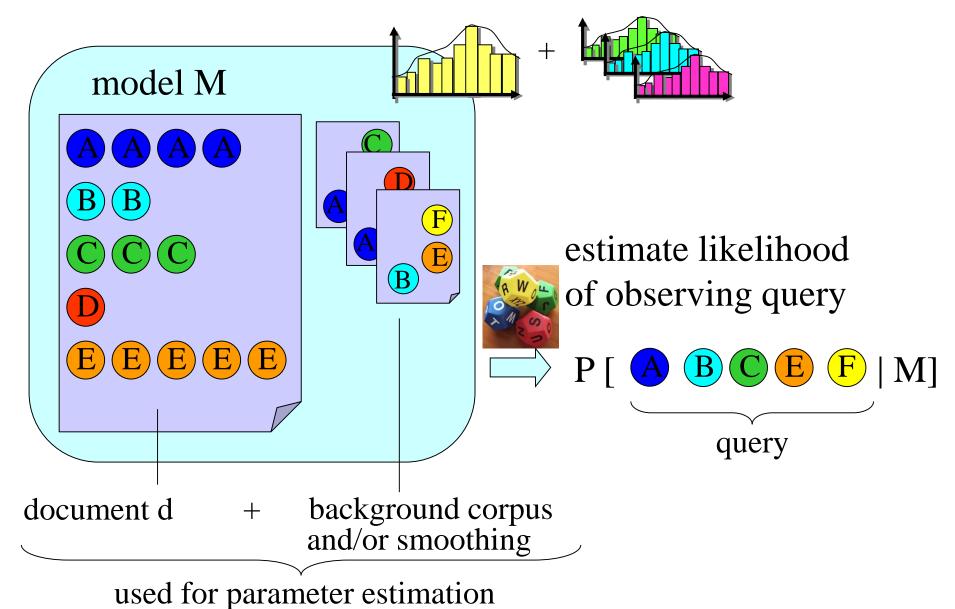


LM Illustration: Document as Model and Query as Sample



document d: sample of M used for parameter estimation

LM Illustration: Need for Smoothing



Probabilistic IR vs. Language Models

 $P[R \mid d, q]$

user considers doc relevant given that it has features d and user has posed query q

$$\sim \frac{P[d \mid R, q]}{P[d \mid \overline{R}, q]}$$

Prob. IR ranks according to **relevance odds**

$$\sum_{\substack{P[q,d|R]\\P[q,d|\overline{R}]}}$$

$$= \frac{P[q|R,d]}{P[q|\overline{R},d]} \frac{P[R|d]}{P[\overline{R}|d]} = \dots \sim \dots$$

~ P[q|R,d]

Statistical LMs rank according to **query likelihood**

13.3.2 Query Likelihood Model with Multi-Bernoulli LM

Query is set of terms generated by d by tossing coin for every term in vocabulary V

 $P[q \mid d] = \prod_{t \in V} p_t(d)^{X_t(q)} \cdot (1 - p_t(d))^{1 - X_t(q)}$ with $X_t(q) = 1$ if $t \in q, 0$ otherwise

 $= \prod_{t \in q} P[t|d] \sim \sum_{t \in q} \log P[t|d]$

Parameters θ of LM(d) are P[t|d] MLE is tf(t,d) / len(d), but model works better with smoothing \rightarrow MAP: Maximum Posterior Likelihood given a prior for parameters

Query Likelihood Model with Multinomial LM

Query is bag of terms generated by d by rolling a dice for every term in vocabulary V → can capture relevance feedback and user context (relative importance of terms)

$$P[q | d] = \begin{pmatrix} |q| \\ f(t_1) f(t_2) \dots f(t_{|q|}) \end{pmatrix} \Pi_{t \in q} p_t(d)^{f_t(q)}$$

with $f_t(q) =$ frequency of t in q

Parameters θ of LM(d) are P[t|d] and P[t|q]

Multinomial LM more expressive as a generative model and thus usually preferred over Multi-Bernoulli LM

Alternative Form of Multinomial LM: Ranking by Kullback-Leibler Divergence

$$\log_2 P[q | d] = \log_2 \left(\frac{|q|}{f(j_1) f(j_2) \dots f(j_{|q|})} \right) \Pi_{j \in q} p_j(d)^{f_j(q)}$$

$$\sim \sum_{j \in q} f_j(q) \log_2 p_j(d)$$

= $-H(f(q), p(d))$ neg. cross-entropy

$$\sim -H(f(q), p(d)) + H(f(q))$$
$$= -D(f(q) \parallel p(d))$$

makes **query LM** explicit

 $= -\sum_{j} f_{j}(q) \log_{2} \frac{f_{j}(q)}{p_{i}(d)} \quad \text{neg. KL divergence}$

Smoothing Methods

absolutely crucial to avoid overfitting and make LMs useful (one LM per doc, one LM per query !)

possible methods:

- Laplace smoothing
- Absolute Discouting
- Jelinek-Mercer smoothing
- Dirichlet-prior smoothing
- Katz smoothing
- Good-Turing smoothing

• ...

most with their own parameters

choice and parameter setting still pretty much black art (or empirical)

Laplace Smoothing and Absolute Discounting

estimation of θ_d : $p_i(d)$ by MLE would yield

$$\frac{freq(j,d)}{|d|}$$

where
$$|d| = \sum_{j} freq(j,d)$$

Additive Laplace smoothing:

$$\hat{p}_{j}(d) = \frac{\text{freq}(j,d) + 1}{|d| + m}$$

for multinomial over vocabulary W with |W|=m

Absolute discounting:

$$\hat{p}_{j}(d) = \frac{\max(freq(j,d) - \delta, 0)}{|d|} + \sigma \frac{freq(j,C)}{|C|} \quad \text{with corpus C,} \\ \delta \in [0,1]$$
where $\sigma = \frac{\delta \cdot \# distinct \ terms \ in \ d}{|d|}$

Jelinek-Mercer Smoothing

Idea:

use linear combination of doc LM with **background LM** (corpus LM, common language);

$$\hat{p}_{j}(d) = \lambda \frac{freq(j,d)}{|d|} + (1-\lambda) \frac{freq(j,C)}{|C|}$$

could also consider query log as background LM for query

parameter tuning of λ by **cross-validation** with held-out data:

- divide set of relevant (d,q) pairs into n partitions
- build LM on the pairs from n-1 partitions
- choose λ to maximize precision (or recall or F1) on n^{th} partition
- iterate with different choice of nth partition and average

Jelinek-Mercer Smoothing: Relationship to tf*idf

 $P[q | \theta] = \lambda P[q | d] + (1 - \lambda)P[q]$

$$\sim \frac{\lambda}{1 - \lambda} \frac{P[q \mid d]}{P[q]} + 1$$

$$\sim \sum_{i \in q} \log P[q_i \mid d] + \log \frac{1}{P[q_i]}$$

$$\sim \sum_{i \in q} \log \frac{tf(i,d)}{\sum_{k} tf(k,d)} + \log \frac{\sum_{k} df(k)}{df(i)}$$

Burstiness and the Dirichlet Model

Problem:

- Poisson/multinomial underestimate likelihood of doc with high tf
- **bursty word occurrences** are not unlikely:
 - rare term may be frequent in doc
 - P[tf>0] is low, but P[tf=10 | tf>0] is high

Solution: two-level model

• hypergenerator:

to generate doc, first generate **word distribution in corpus** (parameters of doc-specific generative model)

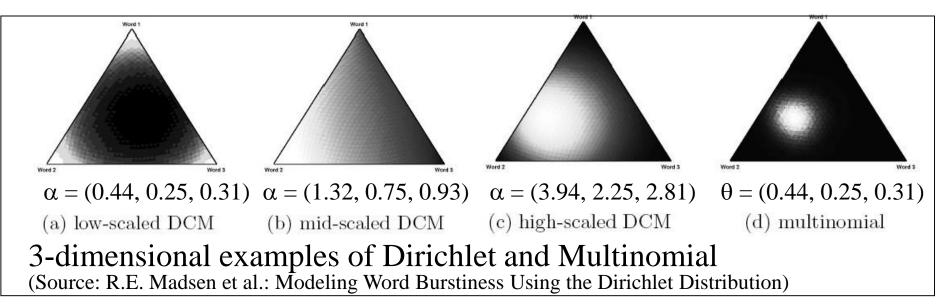
• generator:

then generate word frequencies in doc, using doc-specific model

Dirichlet Distribution as Hypergenerator for Two-Level Multinomial Model

$$P[\theta \mid \alpha] = \frac{\Gamma(\sum_{w} \alpha_{w})}{\prod_{w} \Gamma(\alpha_{w})} \prod_{w} \theta_{w}^{\alpha_{w}-1} \quad \text{with} \quad \Gamma(x) = \int_{0}^{\infty} z^{x-1} e^{-z} dz$$

where $\Sigma_w \theta_w = 1$ and $\theta_w \ge 0$ and $\alpha_w \ge 0$ for all w



MAP (Maximum Posterior) of Multinomial with Dirichlet prior is again Dirichlet (with different parameter values) ("Dirichlet is the conjugate prior of Multinomial")

IRDM WS 2015

Bayesian Viewpoint of Parameter Estimation

- assume **prior distribution** $g(\theta)$ of parameter θ
- choose statistical model (generative model) f (x / θ) that reflects our beliefs about RV X
- given RVs X_1 , ..., X_n for observed data, the **posterior distribution** is $h(\theta/x_1, ..., x_n)$

for $X_1 = x_1, ..., X_n = x_n$ the likelihood is $L(x_1...x_n, \theta) = \prod_{i=1}^n f(x_i/\theta) = \prod_{i=1}^n \frac{h(\theta/x_i) \cdot \sum_{\theta'} f(x_i/\theta')g(\theta')}{g(\theta)}$ which implies $h(\theta/x_1...x_n) \sim L(x_1...x_n, \theta) \cdot g(\theta)$ (posterior is proportional to likelihood times prior)

MAP estimator (maximum a posteriori):

compute θ that maximizes $h(\theta | x_1, ..., x_n)$ given a prior for θ

Dirichlet-Prior Smoothing

$$M(\theta) \coloneqq P[\theta \mid x] = \frac{P[x \mid \theta] \cdot P[\theta]}{\int_{\theta} P[x \mid \theta][\theta] d\theta}$$
$$= Dirichlet(x + \alpha)$$

Posterior for θ with Dirichlet distribution as prior

with term frequencies x in document d

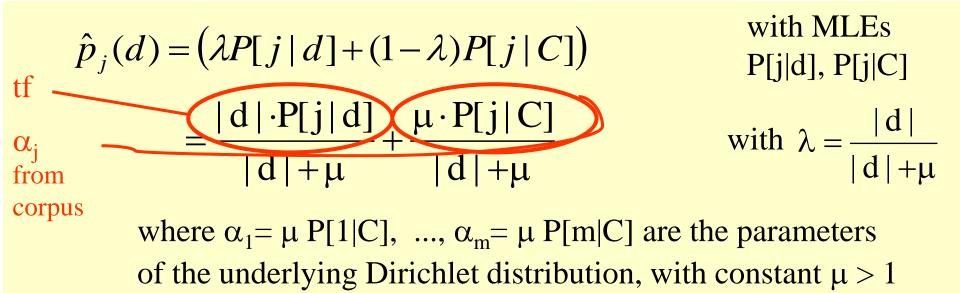
$$\hat{\mathbf{MAP estimator}} \\ \hat{\mathbf{p}}_{j}(\mathbf{d}) = \hat{\mathbf{\theta}}_{j} = \arg \max \mathbf{M}(\mathbf{\theta}) = \frac{x_{i} + \alpha_{i} - 1}{n + \sum \alpha_{i} - m} = \frac{|d| \cdot P[j|d]}{|d| + \mu} + \frac{\mu \cdot P[j|C]}{|d| + \mu}$$

with α_i set to μ P[i|C]+1 for the Dirichlet hypergenerator and $\mu > 1$ set to multiple of average document length

Dirichlet (
$$\alpha$$
): $f(\theta_1,...,\theta_m) = \frac{\prod_{j=1..m} \Gamma(\alpha_j)}{\Gamma(\sum_{j=1..m} \alpha_j)} \prod_{j=1..m} \theta_j^{\alpha_j - 1} \sum_{j=1..m} \theta_j = 1$

(Dirichlet is conjugate prior for parameters of multinomial distribution: Dirichlet prior implies Dirichlet posterior, only with different parameters)

Dirichlet-Prior Smoothing (cont'd)



typically set to multiple of average document length

Note 1: conceptually extend d by μ terms randomly drawn from corpus

Note 2: Dirichlet smoothing thus takes the syntactic form of Jelinek-Mercer smoothing

Multinomial LM with Dirichlet Smoothing (Final Wrap-Up)

$$score(d,q) = P[q | d] = \sum_{j \in q} \left(\lambda P[j | d] + (1 - \lambda) P[j | C] \right)$$
$$= \sum_{j \in q} \left(\frac{|d| \cdot P[j | d]}{|d| + \mu} + \frac{\mu \cdot P[j | C]}{|d| + \mu} \right) \qquad \text{setting}$$
$$\lambda = \frac{|d|}{|d| + \mu}$$

Can also integrate P[j|R] with **relevance feedback LM** or P[j|U] with **user (context) LM**

Multinomial LMs with Dirichlet smoothing the - often best performing – **method of choice** for ranking

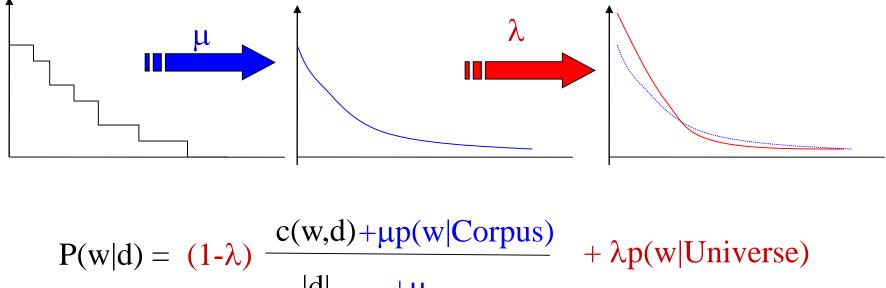
LMs of this kind are **composable building blocks** (via probabilistic mixture models)

Two-Stage Smoothing [Zhai/Lafferty, TOIS 2004]

Stage-1

Stage-2

-Explain unseen words -Explain noise in query -Dirichlet prior(Bayesian) -2-component mixture



 $|\mathbf{d}|$ $+\mu$

Source: Manning/Raghavan/Schütze, lecture12-lmodels.ppt

13.3.3 Extended LMs

large variety of extensions and combinations:

- N-gram (Sequence) Models and Mixture Models
- Semantic) Translation Models
- Cross-Lingual Models
- Query-Log- and Click-Stream-based LM
- Temporal Search
- LMs for Entity Search
- LMs for Passage Retrieval for Question Answering

N-Gram and Mixture Models

Mixture of LM for **bigrams** and LM for **unigrams** for both docs and queries,

aiming to capture query phrases / term dependencies,

e.g.: Bob Dylan cover songs by African singers

 \rightarrow query segmentation / query understanding

HMM-style models to capture **informative N-grams** $\rightarrow P[t_i | d] \sim P[t_i | t_{i-1}] P[t_{i-1} | d] \dots$

Mixture models with LMs for unigrams, bigrams, ordered term pairs in window, unordered term pairs in window, ...

Parameter estimation needs Big Data
→ tap n-gram web/book collections, query logs, dictionaries, etc.
→ data mining to obtain most informative correlations

(Semantic) Translation Model

$$P[q \mid d] = \prod_{j \in q} \sum_{w} P[j \mid w] \cdot P[w \mid d]$$

with word-word translation model P[j|w]

Opportunities and difficulties:

- synonymy, hypernymy/hyponymy, etc.
- efficiency
- training

estimate P[j|w] by overlap statistics on background corpus (Dice coefficients, Jaccard coefficients, etc.)

Translation Models for Cross-Lingual IR

 $P[q | d] = \prod_{j \in q} \sum_{w} P[j | w] \cdot P[w | d] \quad \text{with q in language F (e.g. French)} \\ \text{and d in language E (e.g. English)}$

can rank docs in E (or F) for queries in F Example: q: "moteur de recherche" returns d: "Quaero is a French initiative for developing a search engine that can serve as a European alternative to Google …"

needs estimations of P[j|w] from parallel corpora (docs available in both F and E)

see also benchmark CLEF: http://www.clef-campaign.org/

Query-Log-Based LM (User LM)

Idea:

for current query q_k leverage prior **query history** $H_q = q_1 \dots q_{k-1}$ and prior **click stream** $H_c = d_1 \dots d_{k-1}$ as background LMs <u>Example:</u>

 $q_k = ,,java library$ benefits from $q_{k-1} = ,,python programming$

Mixture Model with Fixed Coefficient Interpolation:

$$\begin{split} P[w|q_{i}] &= \frac{freq(w,q_{i})}{|q_{i}|} & P[w|H_{q}] = \frac{1}{k-1} \sum_{i=1..k-1} P[w|q_{i}] \\ P[w|d_{i}] &= \frac{freq(w,d_{i})}{|d_{i}|} & P[w|H_{c}] = \frac{1}{k-1} \sum_{i=1..k-1} P[w|d_{i}] \\ P[w|H_{q},H_{c}] &= \beta P[w|H_{q}] + (1-\beta) P[w|H_{c}] \\ P[w|\theta_{k}] &= \alpha P[w|q_{k}] + (1-\alpha) P[w|H_{q},H_{c}] \end{split}$$

LM for Temporal Search [K. Berberich et al.: ECIR 2010]

keyword queries that express temporal interest example: q ="FIFA world cup 1990s"

 \rightarrow would not retrieve doc

d = "France won the FIFA world cup in 1998"

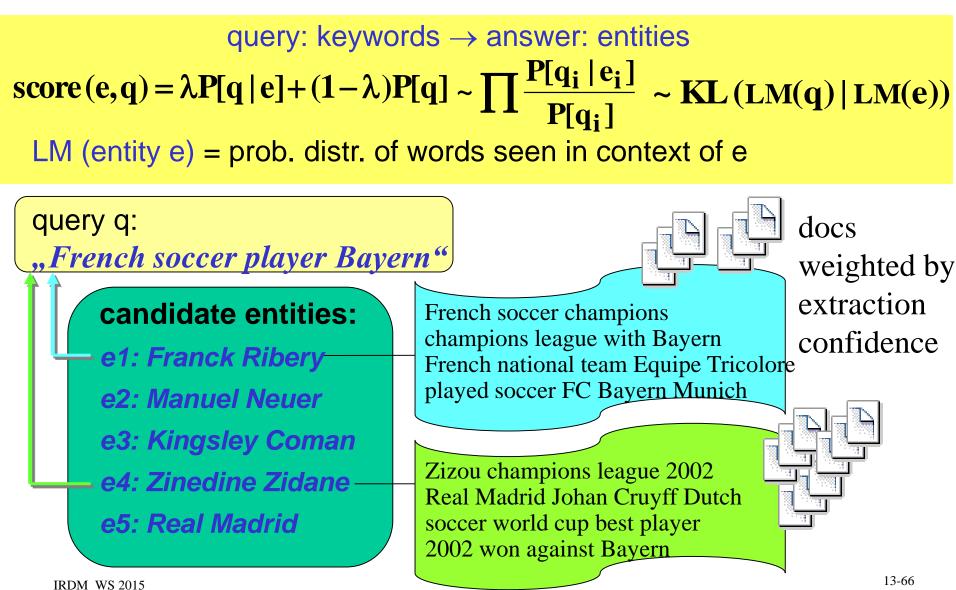
Approach:

- extract temporal phrases from docs
- normalize temporal expressions
- split query and docs into text × time

 $P[q/d] = P[text(q)/text(d)] \cdot P[time(q)/time(d)]$ $P[time(q)/time(d)] = \prod_{temp \ exp \ r \ x \in q} \sum_{temp \ exp \ r \ y \in d} P[x/y]$ $plus \ smoothing$ $P[x/y] \sim \frac{|x \cap y|}{|x| \cdot |y|} \quad with \ |x| = end(x) - begin(x)$

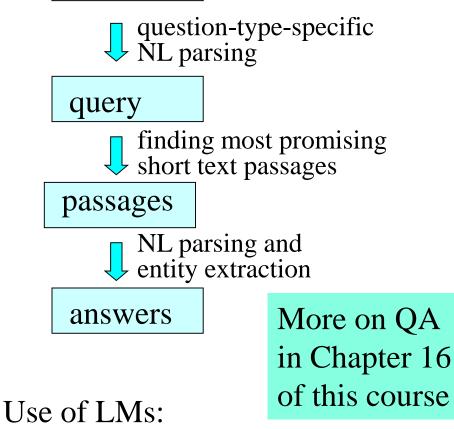
Entity Search with LM [Nie et al.: WWW'07]

Assume entities marked in docs by information extraction methods



Language Models for Question Answering (QA)

question



e.g. factoid questions: who? where? when? ... example: Where is the Louvre museum located?

Louvre museum location

The Louvre is the most visited and one of the oldest, largest, and most famous art galleries and museums in the world. It is located in Paris, France. Its address is Musée du Louvre, 75058 Paris cedex 01. ...

The Louvre museum is in Paris.

- **Passage retrieval**: likelihood of passage generating question
- **Translation model**: likelihood of answer generating question with param. estim. from manually compiled **question-answer corpus**

Summary of Section 13.3

- LMs are a clean form of **generative models** for docs, corpora, queries:
 - one LM per doc (with doc itself for parameter estimation)
 - likelihood of LM generating query yields ranking of docs
 - for **multinomial model**: equivalent to ranking by KL ($q \parallel d$)
- parameter smoothing is essential:
 - use **background corpus**, query&click log, etc.
 - Jelinek-Mercer and **Dirichlet smoothing** perform very well
- LMs very useful for advanced IR:

cross-lingual, passages for QA, entity search, etc.

Additional Literature for Section 13.3

Statistical Language Models in General:

- Djoerd Hiemstra: Language Models, Smoothing, and N-grams, in: Encyclopedia of Database Systems, Springer, 2009
- ChengXiang Zhai, Statistical Language Models for Information Retrieval, Morgan & Claypool Publishers, 2008
- ChengXiang Zhai, Statistical Language Models for Information Retrieval: A Critical Review, Foundations and Trends in Information Retrieval 2(3), 2008
- X. Liu, W.B. Croft: Statistical Language Modeling for Information Retrieval, Annual Review of Information Science and Technology 39, 2004
- J. Ponte, W.B. Croft: A Language Modeling Approach to Information Retrieval, SIGIR 1998
- C. Zhai, J. Lafferty: A Study of Smoothing Methods for Language Models Applied to Information Retrieval, TOIS 22(2), 2004
- C. Zhai, J. Lafferty: A Risk Minimization Framework for Information Retrieval, Information Processing and Management 42, 2006
- M.E. Maron, J.L. Kuhns: On Relevance, Probabilistic Indexing, and Information Retrieval, Journal of the ACM 7, 1960

Additional Literature for Section 13.3

LMs for Specific Retrieval Tasks:

- X. Shen, B. Tan, C. Zhai: Context-Sensitive Information Retrieval Using Implicit Feedback, SIGIR 2005
- Y. Lv, C. Zhai, Positonal Language Models for Information Retrieval, SIGIR 2009
- V. Lavrenko, M. Choquette, W.B. Croft: Cross-lingual relevance models. SIGIR'02
- D. Nguyen, A. Overwijk, C. Hauff, D. Trieschnigg, D. Hiemstra, F. de Jong: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval Using Only Wikipedia. CLEF 2008
- C. Clarke, E.L. Terra: Passage retrieval vs. document retrieval for factoid question answering. SIGIR 2003
- Ž. Nie, Y. Ma, S. Shi, J.-R. Wen, W.-Y. Ma: Web object retrieval. WWW 2007
- H. Zaragoza et al.: Ranking very many typed entities on wikipedia. CIKM 2007
- P. Serdyukov, D. Hiemstra: Modeling Documents as Mixtures of Persons for Expert Finding. ECIR 2008
- S. Elbassuoni, M. Ramanath, R. Schenkel, M. Sydow, G. Weikum: Language-model-based Ranking for Queries on RDF-Graphs. CIKM 2009
- K. Berberich, O. Alonso, S. Bedathur, G. Weikum: A Language Modeling Approach for Temporal Information Needs. ECIR 2010
- D. Metzler, W.B. Croft: A Markov Random Field Model for Term Dependencies. SIGIR 2005
- S. Huston, W.B. Croft: A Comparison of Retrieval Models using Term Dependencies. CIKM 2014