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Chapter 3: Basics from Probability Theory

and Statistics

It is likely that unlikely things should happen.

-- Aristotle

The excitement that a gambler feels when making a bet  

is equal to the amount he might win 

times the probability of winning it.

-- Blaise Pascal

To understand God's thoughts we must study statistics, 

for these are the measure of his purpose. 

-- Florence Nightingale
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Outline

3.1 Probability Theory

Events, Probabilities, Bayes‘ Theorem,

Random Variables, Distributions, Moments, Tail Bounds, 

Central Limit Theorem, Entropy Measures

3.2 Statistical Inference

Sampling, Parameter Estimation, Maximum Likelihood,

Confidence Intervals, Hypothesis Testing, p-Values, 

Chi-Square Test, Linear and Logistic Regression

mostly following L. Wasserman Chapters 1-5
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Why All This Math?

3-3

• Ranking search results

• Estimating size, structure, dynamics of Web & social networks

(from samples)

• Inferring user intention (e.g. auto-completion)

• Predicting best advertisements

• Identifying patterns (over sampled and uncertain data)

• Explaining features/aspects of patterns

• Characterizing trends, outliers, etc.

• Analyzing properties of complex (uncertain) data

• Assessing the quality of IR and DM methods
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2.1 Basic Probability Theory

A probability space is a triple (, E, P) with

• a set  of elementary events (sample space),

• a family E of subsets of  with E which is closed under

, , and  with a countable number of operands

(with finite  usually E=2), and

• a probability measure P: E  [0,1] with P[]=1 and 

P[i Ai] = i P[Ai] for countably many, pairwise disjoint Ai

Properties of P:

P[A] + P[A] = 1

P[A  B] = P[A] + P[B] – P[A  B]             

P[] = 0 (null/impossible event)

P[ ] = 1 (true/certain event)

3-4



IRDM  WS 2015

Probability Spaces: Examples

Roll one dice, events are; 1, 2, 3, 4, 5 or 6

3-5

Roll 2 dice, events are: 

(1,1), (1,2), …, (1,6), (2,1), (2,2), … …, (6,5), (6,6)

Repeat rolling a dice until the first 6, events are

<6>, <o,6>, <o,o,6>, <o,o,o,6>, …

where o denotes 1,2,3,4 or 5.

Roll 2 dice and consider their sum,

events are: sum is even, sum is odd

Roll 2 dice and consider their sum,

events are: sum is 2, sum is 3, sum is 4, …, sum is 12
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Independence and Conditional Probabilities

Two events A, B of a prob. space are independent

if P[A  B] = P[A] P[B].

The conditional probability P[A | B] of A under the

condition (hypothesis) B is defined as:

][

][
]|[

BP

BAP
BAP




A finite set of events A={A1, ..., An} is independent

if for every subset S A the equation                             

holds.
i i

A SA S ii

P[ A ] P[A ]


 

Event A is conditionally independent of B given C

if P[A | BC] = P[A | C].
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Total Probability and Bayes’ Theorem

Total probability theorem:

For a partitioning of  into events B1, ..., Bn:

n

i i
i 1

P[ A] P[ A| B ] P[ B ]




Bayes‘ theorem:
][

][]|[
]|[

BP

APABP
BAP 

P[A|B] is called posterior probability

P[A] is called prior probability
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Bayes’ Theorem: Example 1

3-8

Events:

R = rain,  𝑅 = no rain, U = umbrella,  𝑈 = no umbrella

Observed data:

P[R] = 0.3 P[  𝑅]=0.7

P[U|  𝑅] = 0.1 P[U | R] = 0.6

Superstition deconstructed:

Does carrying an umbrella prevent rain?

Bayesian inference:

P[  𝑅 | U] = ?

𝑃  𝑅 𝑈 =
𝑃 𝑈  𝑅 𝑃[  𝑅]

𝑃[𝑈]
=

𝑃 𝑈  𝑅 𝑃[  𝑅]

𝑃 𝑈  𝑅 𝑃  𝑅 + 𝑃 𝑈 𝑅 𝑃[𝑅]

= 7/25 = 0.28
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Bayes’ Theorem: Example 2

3-9

Showmaster shuffles three cards

(queen of hearts is big prize):

You choose a card

on which you bet!

Showmaster opens

one of the other cards

Showmaster offers you

to change your choice! Should you change?

?
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Random Variables

A random variable (RV) X on the prob. space (, E, P) is a function

X:  M with M  R s.t. {e | X(e) x} E for all x M 
(X is measurable).

Random variables with countable M are called discrete,

otherwise they are called continuous.

For discrete random variables the density function is also

referred to as the probability mass function.

For a random variable X with distribution function F, the inverse function

F-1(q) := inf{x | F(x) > q} for q  [0,1] is called quantile function of X.

(0.5 quantile (50th percentile) is called median)

FX: M  [0,1] with FX(x) = P[X  x] is the 

(cumulative) distribution function (cdf) of X.

With countable set M the function fX: M  [0,1] with fX(x) = P[X = x] 

is called the (probability) density function (pdf) of X; 

in general fX(x) is F‘X(x).
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Important Discrete Distributions

knk
X pp

k

n
kfkXP 








 )1()(][

• Binomial distribution (coin toss n times repeated; X: #heads):

• Poisson distribution (with rate ):

!
)(][

k
ekfkXP

k

X


mkfor
m

kfkXP X  1
1

)(][

• Uniform distribution over {1, 2, ..., m}:

• Geometric distribution (#coin tosses until first head):

ppkfkXP k
X )1()(][ 

• 2-Poisson mixture (with a1+a2=1):

!k
ea

!k
ea)k(f]kX[P

kk

X
22

2
11

1
  



• Bernoulli distribution with parameter p: x 1 xP[ X x ] p (1 p )   

for x {0,1}
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Important Continuous Distributions

• Exponential distribution (z.B. time until next event of a  

Poisson process) with rate  = limt0 (# events in t) / t :

)otherwise(xfore)x(f x
X 00 

• Uniform distribution in the interval [a,b]

)otherwise(bxafor
ab

)x(f X 0
1






• Hyperexponential distribution:

• Pareto distribution:

Example of a „heavy-tailed“ distribution with 1


x

c
X )x(f

otherwise,bxfor
x

b

b

a
)x(f

a

X 0

1













xx
X e)p(ep)x(f 2

2
1

1 1
  



• logistic distribution: X x

1
F ( x )

1 e
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Normal Distribution (Gaussian Distribution)

• Normal distribution N(,2) (Gauss distribution; 

approximates sums of independent, 

identically distributed random variables):
2

2

2
2

)(

2

1)( 










x

X exf

• Distribution function of N(0,1):




z
x

dxe)z( 2

2

2

1



Theorem:

Let X be normal distributed with 

expectation  and variance 2.

Then                    

is normal distributed with expectation 0 and variance 1.





X
:Y
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Normal Distribution Illustrated

3-14

pdf of Normal distributions

with different parameters
cdf of Normal distributions

with different parameters

standard Normal N(0;1)

area:

2(a)1

area:

(a)

-a a

a
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Multidimensional (Multivariate) Distributions
Let X1, ..., Xm be random variables over the same prob. space

with domains dom(X1), ..., dom(Xm). 

The joint distribution of X1, ..., Xm has a density function 

)x...,,x(f mmX...,,X 11

1

11

11
 

 )X(domx )mX(dommx
mmX...,,X )x...,,x(f...with

1 m

X 1,...,Xm 1 m m 1

dom( X ) dom( X )

or ... f ( x ,...,x ) dx ...dx 1 

The marginal distribution of Xi in the joint distribution 

of X1, ..., Xm has the density function

   
 1 1 1

11
x ix ix mx

mmX...,,X or)x...,,x(f......

   
 



1 1 1

11111
X iX iX mX

iimmmX...,,X dx...dxdx...dx)x...,,x(f......
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multinomial distribution (n, m) (n trials with m-sided dice):

Important Multivariate Distributions

mk
m

k

m
mmX...,,Xmm p...p

k...k

n
)k...,,k(f]kX...kX[P 1

1
1

1111 









!k...!k

!n
:

k...k

n
with

mm 11










multidimensional normal distribution (       ):

with covariance matrix  with ij := Cov(Xi,Xj)

and determinant || of 

)x(T)x(

mmX...,,X e

)(

)x(f





 





1

2

1

1
2

1
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Moments

For a discrete random variable X with density fX 





Mk

X kfkXE )(][ is the expectation value (mean) of X





Mk

X
ii kfkXE )(][ is the i-th moment of X

222 ][][]])[[(][ XEXEXEXEXV  is the variance of X

For a continuous random variable X with density fX 







 dxxfxXE X )(][ is the expectation value of X

is the i-th moment of X

222 ][][]])[[(][ XEXEXEXEXV  is the variance of X







 dxxfxXE X
ii )(][

Theorem: Expectation values are additive:
(distributions are not)

]Y[E]X[E]YX[E 
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Properties of Expectation and Variance

Var[aX+b] = a2 Var[X] for constants a, b

Var[X1+X2+...+Xn] = Var[X1] + Var[X2] + ... + Var[Xn]

if X1, X2, ..., Xn are independent RVs

E[aX+b] = aE[X]+b for constants a, b

E[X1+X2+...+Xn] = E[X1] + E[X2] + ... + E[Xn]

(i.e. expectation values are generally additive, but distributions are not!)

E[XY] = E[X]E[Y] if X and Y are independent
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Caution: distribution of sums of independent RVs given by convolution:

Z = X+Y (non-negative)

FZ(z) = P[r(x,y)  z]

FZ(z) = P[r(x,y)  z]

z

X Yx 0
f (x)F (z x) dx


 

 


z

x YX xzFxf
0

)()(

continuous

distribution

discrete

distribution
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Correlation of Random Variables

Correlation coefficient of Xi and Xj

)()(

),(
:),(

XjVarXiVar

XjXiCov
XjXi 

Covariance of random variables Xi and Xj::

]])[(])[([:),( XjEXjXiEXiEXjXiCov 

22 ]X[E]X[E)Xi,Xi(Cov)Xi(Var 

Conditional expectation of X given Y=y:

X|Y

X|Y

x f (x | y)
E[X | Y y]

x f (x | y)dx


  







discrete case

continuous case
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Examples:

Xi: height, Xj: weight

Xi: km/day, Xj: weight

Xi: € car, Xj: income
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Generating Functions and Transforms

X, Y, ...: continuous random variables 

with non-negative real values
A, B, ...: discrete random variables with

non-negative integer values

sx sX
X X

0

M ( s ) e f ( x )dx E [ e ] :


 
i A

A A
i 0

G ( z ) z f ( i ) E[ z ] :




 

moment-generating function of X

(~ Laplace-Stieltjes transform) 

generating function of A
(z transform) 

Examples:
x

Xf ( x ) e  
k

Af ( k ) e
k !

 Poisson: ( z 1 )
AG ( z ) e 

exponential:
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Convolution easy with M or G: product!

Moments easy to derive from M or G

𝑀𝐴 𝑠 = 𝐺𝐴(𝑒
𝑠)



 𝑀𝐴 𝑠 =
𝛼

𝛼 − 𝑠
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Inequalities and Tail Bounds

 t
XP [ X t ] inf e M ( ) | 0    Chernoff-Hoeffding bound:

Markov inequality: P[X  t]  E[X] / t      for t > 0 and non-neg. RV X

Chebyshev inequality: P[ |XE[X]|  t]  Var[X] / t2

for t > 0 and RV X

Corollary: :
22nt

i

1
P X p t 2e

n

 
   

 


Mill‘s inequality:

2t / 22 e
P Z t

t



    
for N(0,1) distr. RV Z 

and t > 0

for Bernoulli(p) iid. RVs 

X1, ..., Xn and any t > 0

Jensen‘s inequality: E[g(X)]  g(E[X]) for convex function g

E[g(X)]  g(E[X]) for concave function g
(g is convex if for all c[0,1] and x1, x2: g(cx1 + (1-c)x2)  cg(x1) + (1-c)g(x2))

Cauchy-Schwarz inequality:
2 2E[XY] E[X ]E[Y ]
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Example: Tail Bounds

3-22

Repeat coin tosses 100 times: n=100

Assume fair coin: p=0.5

Observe many heads: k=90

Markov inequality:

𝑃 𝑋 ≥ 𝑘 ≤
𝐸 𝑋

𝑘
=
50

90

Chebyshev inequality:

𝑃 𝑋 ≥ 𝑘 ≤ 𝑃 𝑋 − 𝐸 𝑋 ≥ 𝑘 − 𝐸 𝑋

≤
𝑉𝑎𝑟[𝑋]

𝑘−𝐸 𝑋 2 = 
𝑛𝑝(1−𝑝)

𝑘−𝐸 𝑋 2 =
25

1600
 0.016

Random variable

X: #heads
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Convergence of Random Variables

Let X1, X2, ...be a sequence of RVs with cdf‘s F1, F2, ...,

and let X be another RV with cdf F.

• Xn converges to X in probability, Xn P X, if for every  > 0

P[|XnX| > ]  0 as n 

• Xn converges to X in distribution, Xn D X, if

lim n Fn(x) = F(x) at all x for which F is continuous

• Xn converges to X almost surely, Xn as X, if P[Xn X] = 1

3-23

converges almost surely  converges in probability

converges in probability  converges in distribution
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Laws of Large Numbers

weak law of large numbers (for )

if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then

that is: 

strong law of large numbers:

if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then

that is:   

n PX E[X]

n nlim P[| X E[X] | ] 0   

n ii 1..nX X / n

n asX E[X]

n nP[lim | X E[X] | ] 0   
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Poisson Approximates Binomial

Theorem: 

Let X be a random variable with binomial distribution with

parameters n and p := /n with large n and small constant  << 1.

Then

k

n Xlim f ( k ) e
k !
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Central Limit Theorem

Theorem: 

Let X1, ..., Xn be independent, identically distributed random variables

with expectation  and variance 2.

The distribution function Fn of the random variable Zn := X1 + ... + Xn

converges to a normal distribution N(n, n2)

with expectation n and variance n2:

)a()b(]b
n

nZ
a[Plim n

n 







Corollary: 

converges to a normal distribution N(, 2/n)

with expectation  and variance 2/n .




n

i
iX

n
:X

1

1
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Example: Use of Central Limit Theorem

3-27

Xi: iid Bernoulli trials with p=0.5

E[Xi]=p, Var[Xi]=p(1-p)

Zn: sum of the Xi, i=1..100

Zn is approximately Normal distributed

with E[Zn] = pn = 50 and

Var[Zn] = p(1-p)n = 25

Z:= 
𝑍𝑛−𝐸[𝑍𝑛]

𝑉𝑎𝑟[𝑍𝑛]
is approx. ~ N(0;1)

 𝑃 𝑍𝑛 ≥ 90 = 𝑃[𝑍 ≥ 8] = 1 − 8
 𝑃 𝑍𝑛 ≥ 60 = 𝑃[𝑍 ≥ 2] = 1 −(2)
 𝑃 𝑍𝑛 ≥ 55 = 𝑃[𝑍 ≥ 1] = 1 − 1
 𝑃 𝑍𝑛 ≥ 56.8 = 𝑃[𝑍 ≥ 1.36] = 1 − 1.36

 𝑃 40 ≤ 𝑍𝑛 ≤ 45 = 𝑃[−2 ≤ 𝑍 ≤ −1] = 𝑃 𝑍 ≤ −1 − 𝑃 𝑍 ≤ −2

= Φ −1 − Φ −2 = 1 − Φ 1 − (1 − Φ 2 )
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Elementary Information Theory

For two prob. distributions f(x) and g(x) the
relative entropy (Kullback-Leibler divergence) of f to g is

2
x

f ( x )
D( f g ) : f ( x )log

g( x )


Let f(x) be the probability (or relative frequency) of the x-th symbol

in some text d. The entropy of the text

(or the underlying prob. distribution f) is:

H(d) is a lower bound for the bits per symbol needed with optimal coding.


x )x(f

log)x(f)d(H
1

2

D is the average number of additional bits for coding
events of f when using optimal code for g

Cross entropy of f(x) to g(x):


x

)x(glog)x(f)gf(D)f(H:)g,f(H
3-28

relative entropy measures
(dis-)similarity of probability
or frequency distributions

Jensen-Shannon divergence of f(x) and g(x):   
1

2
𝐷(𝑓| 𝑔 +

1

2
𝐷(𝑔||𝑓)



IRDM  WS 2015

Compression
• Text is sequence of symbols (with specific frequencies)
• Symbols can be

• letters or other characters from some alphabet 
• strings of fixed length (e.g. trigrams)
• or words, bits, syllables, phrases, etc.

Limits of compression:

Let pi be the probability (or relative frequency)

of the i-th symbol in text d

Then the entropy of the text:

is a lower bound for the average number of bits per symbol 

in any compression (e.g. Huffman codes)


i i

i
p

pdH
1

log)( 2

Note:
compression schemes such as Ziv-Lempel (used in zip)
are better because they consider context beyond single symbols;
with appropriately generalized notions of entropy
the lower-bound theorem does still hold

3-29



IRDM  WS 2015

Example Entropy and Compression

Text in alphabet  = {A, B, C, D}
P[A] = 1/2,  P[B] = 1/4,  P[C] = 1/8,  P[D] = 1/8

3-30

H() = 1/2*1 +1/4*2 + 1/8*3 + 1/8*3 = 7/8

Optimal (prefix-free) code from Huffman tree:
A  0
B  10
C  110
D  111

A: 1/2 B: 1/4 C: 1/8 D: 1/8

0 1

1

1

0

0
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Summary of Section 3.1

• Bayes‘ Theorem: very simple, very powerful

• RVs as a fundamental, sometimes subtle concept

• rich variety of well-studied distribution functions

• moments and moment-generating functions capture distributions

• tail bounds useful for non-tractable distributions

• Normal distribution: limit of sum of iid RVs

• Entropy measures (incl. KL divergence)

capture complexity and similarity of prob. distributions
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Additional Literature for Section 3.1

• A. Allen: Probability, Statistics, and Queueing Theory

With Computer Science Applications, Wiley 1978

• R. Nelson: Probability, Stochastic Processes, and Queueing Theory,

Springer 1995

• M. Mitzenmacher, E. Upfal: Probability and Computing, 

Cambridge University Press, 2005

• R. Duda, P. Hart, D. Stork: Pattern Classification, Wiley 2000, 

Appendix A

• M. Greiner, G. Tinhofer: Stochastik für Studienanfänger 

der Informatik, Carl Hanser Verlag, 1996

• G. Hübner: Stochastik: Eine Anwendungsorientierte Einführung für 

Informatiker, Ingenieure und Mathematiker, Vieweg & Teubner 2009
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (1)
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (2)
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (3)
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (4)
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (5)
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Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory 

with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (6)
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