IRDM WS 2015

Chapter 3: Basics from Probability Theory and Statistics

It is likely that unlikely things should happen. -- Aristotle

The excitement that a gambler feels when making a bet is equal to the amount he might win times the probability of winning it.

To understand God's thoughts we must study statistics, for these are the measure of his purpose. -- Florence Nightingale

-- Blaise Pascal

Outline

3.1 Probability Theory

Events, Probabilities, Bayes' Theorem,

Random Variables, Distributions, Moments, Tail Bounds,

Central Limit Theorem, Entropy Measures

3.2 Statistical Inference

Sampling, Parameter Estimation, Maximum Likelihood, Confidence Intervals, Hypothesis Testing, p-Values, Chi-Square Test, Linear and Logistic Regression

mostly following L. Wasserman Chapters 1-5

Why All This Math?

- **Ranking** search results
- Estimating size, structure, dynamics of Web & social networks (from samples)
- **Inferring** user intention (e.g. auto-completion)
- **Predicting** best advertisements
- **Identifying** patterns (over sampled and uncertain data)
- **Explaining** features/aspects of patterns
- Characterizing trends, outliers, etc.
- Analyzing properties of complex (uncertain) data
- Assessing the quality of IR and DM methods

2.1 Basic Probability Theory

- A **probability space** is a triple (Ω, E, P) with
- a set Ω of elementary events (sample space),
- a family E of subsets of Ω with Ω∈E which is closed under ∩, ∪, and – with a countable number of operands (with finite Ω usually E=2^Ω), and
- a **probability measure P:** $\mathbf{E} \rightarrow [0,1]$ with P[Ω]=1 and P[$\cup_i A_i$] = $\sum_i P[A_i]$ for countably many, pairwise disjoint A_i

```
Properties of P:

P[A] + P[\neg A] = 1

P[A \cup B] = P[A] + P[B] - P[A \cap B]

P[\emptyset] = 0 (null/impossible event)

P[\Omega] = 1 (true/certain event)
```

Probability Spaces: Examples

Roll one dice, events are; 1, 2, 3, 4, 5 or 6

Roll 2 dice, events are: (1,1), (1,2), ..., (1,6), (2,1), (2,2), ..., (6,5), (6,6)

Repeat rolling a dice until the first 6, events are <6>, <0,6>, <0,0,6>, <0,0,0,6>, ... where o denotes 1,2,3,4 or 5.

Roll 2 dice and consider their sum, events are: sum is 2, sum is 3, sum is 4, ..., sum is 12

Roll 2 dice and consider their sum, events are: sum is even, sum is odd

Independence and Conditional Probabilities

Two events A, B of a prob. space are **independent** if $P[A \cap B] = P[A] P[B]$.

A finite set of events $A = \{A_1, ..., A_n\}$ is **independent** if for every subset $S \subseteq A$ the equation $P[\bigcap_{A_i \in S} A_i] = \prod_{A_i \in S} P[A_i]$ holds.

The **conditional probability** P[A | B] of A under the condition (hypothesis) B is defined as: $P[A | B] = \frac{P[A \cap B]}{P[B]}$

Event A is **conditionally independent** of B given C if P[A | BC] = P[A | C].

Total Probability and Bayes' Theorem

Total probability theorem:

For a partitioning of Ω into events $B_1, ..., B_n$:

$$P[A] = \sum_{i=1}^{n} P[A/B_i] P[B_i]$$

Bayes' theorem:
$$P[A | B] = \frac{P[B | A]P[A]}{P[B]}$$

P[A|B] is called *posterior probability* P[A] is called *prior probability*

Bayes' Theorem: Example 1

Events:

 $R = \operatorname{rain}, \overline{R} = \operatorname{no} \operatorname{rain}, U = \operatorname{umbrella}, \overline{U} = \operatorname{no} \operatorname{umbrella}$

Observed data:

P[R] = 0.3 $P[\overline{R}] = 0.7$ $P[U|\overline{R}] = 0.1$ P[U|R] = 0.6

Superstition deconstructed:

Does carrying an umbrella prevent rain?

Bayesian inference:

 $\mathbf{P}[\overline{R} \mid U] = ?$

$$P[\overline{R}|U] = \frac{P[U|\overline{R}]P[\overline{R}]}{P[U]} = \frac{P[U|\overline{R}]P[\overline{R}]}{P[U|\overline{R}]P[\overline{R}] + P[U|R]P[R]}$$
$$= 7/25 = 0.28$$

Bayes' Theorem: Example 2

Showmaster shuffles three cards (queen of hearts is big prize):

You choose a card on which you bet!

Showmaster opens one of the other cards

Showmaster offers you to change your choice!

Should you change?

Random Variables

A random variable (RV) X on the prob. space (Ω, E, P) is a function X: $\Omega \rightarrow M$ with $M \subseteq R$ s.t. $\{e \mid X(e) \le x\} \in E$ for all $x \in M$ (X is measurable).

 $F_X: M \to [0,1]$ with $F_X(x) = P[X \le x]$ is the *(cumulative) distribution function (cdf)* of X. With countable set M the function $f_X: M \to [0,1]$ with $f_X(x) = P[X = x]$ is called the *(probability) density function (pdf)* of X; in general $f_X(x)$ is $F'_X(x)$.

For a random variable X with distribution function F, the inverse function $F^{-1}(q) := \inf\{x \mid F(x) > q\}$ for $q \in [0,1]$ is called *quantile function* of X. (0.5 quantile (50th percentile) is called median)

Random variables with countable M are called *discrete*, otherwise they are called *continuous*. For discrete random variables the density function is also referred to as the *probability mass function*.

Important Discrete Distributions

- Bernoulli distribution with parameter p: $P[X = x] = p^{x}(1-p)^{1-x}$ for $x \in \{0,1\}$
- Uniform distribution over {1, 2, ..., m}: $P[X = k] = f_X(k) = \frac{1}{m} \quad for 1 \le k \le m$
- **Binomial** distribution (coin toss n times repeated; X: #heads): $P[X = k] = f_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$
- **Poisson** distribution (with rate λ): $P[X = k] = f_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$
- **Geometric** distribution (#coin tosses until first head):

$$P[X = k] = f_X(k) = (1 - p)^k p$$

• 2-Poisson mixture (with $a_1+a_2=1$): $P[X=k] = f_X(k) = a_1 e^{-\lambda_1} \frac{\lambda_1^k}{k!} + a_2 e^{-\lambda_2} \frac{\lambda_2^k}{k!}$ IRDM WS 2015

Important Continuous Distributions

• **Uniform** distribution in the interval [a,b]

$$f_X(x) = \frac{1}{b-a}$$
 for $a \le x \le b$ (0 otherwise)

- **Exponential** distribution (z.B. time until next event of a Poisson process) with rate $\lambda = \lim_{\Delta t \to 0} (\# \text{ events in } \Delta t) / \Delta t$: $f_X(x) = \lambda e^{-\lambda x} \quad \text{for } x \ge 0 (0 \text{ otherwise})$
- **Hyperexponential** distribution: $f_X(x) = p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x}$
- **Pareto** distribution: $f_X(x) \rightarrow \frac{a}{b} \left(\frac{b}{x}\right)^{a+1}$ for x > b, 0 otherwise

Example of a "heavy-tailed" distribution with $f_X(x) \rightarrow \frac{c}{\alpha+1}$

• **logistic** distribution:
$$F_X(x) = \frac{1}{1 + e^{-x}}$$

Normal Distribution (Gaussian Distribution)

- Normal distribution $N(\mu, \sigma^2)$ (Gauss distribution; approximates sums of independent, identically distributed random variables): $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Distribution function of N(0,1):

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Theorem:

Let X be normal distributed with expectation μ and variance σ^2 .

Then $Y := \frac{X - \mu}{\sigma}$ is normal distributed with expectation 0 and variance 1.

Normal Distribution Illustrated

3

3

3

a

-a

 $z \rightarrow$

 $z \rightarrow$

Multidimensional (Multivariate) Distributions

Let $X_1, ..., X_m$ be random variables over the same prob. space with domains dom(X_1), ..., dom(X_m). The *joint distribution* of $X_1, ..., X_m$ has a density function

$$\begin{aligned} f_{X_1,\dots,X_m}(x_1,\dots,x_m) \\ with & \sum_{x_1 \in dom(X_1)} \dots \sum_{x_m \in dom(X_m)} f_{X_1,\dots,X_m}(x_1,\dots,x_m) = 1 \\ or & \int \dots \int f_{X_1,\dots,X_m}(x_1,\dots,x_m) dx_m \dots dx_1 = 1 \\ dom(X_1) & dom(X_m) \end{aligned}$$

The *marginal distribution* of X_i in the joint distribution of X_1 , ..., X_m has the density function

$$\sum_{x_{1}} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_{m}} f_{X_{1},\dots,X_{m}}(x_{1},\dots,x_{m}) \text{ or }$$

$$\int_{x_{1}} \dots \int_{x_{i-1}} \int_{x_{i+1}} \dots \int_{x_{m}} f_{X_{1},\dots,X_{m}}(x_{1},\dots,x_{m}) dx_{m} \dots dx_{i+1} dx_{i-1} \dots dx_{1}$$

Important Multivariate Distributions

multinomial distribution (n, m) (n trials with m-sided dice):

$$P[X_{1} = k_{1} \land ... \land X_{m} = k_{m}] = f_{X_{1},...,X_{m}}(k_{1},...,k_{m}) = \binom{n}{k_{1}...k_{m}} p_{1}^{k_{1}}...p_{m}^{k_{m}}$$

with
$$\binom{n}{k_1 \dots k_m} := \frac{n}{k_1! \dots k_m!}$$

multidimensional normal distribution $(\vec{\mu}, \Sigma)$:

$$f_{X_{1},...,X_{m}}(\vec{x}) = \frac{1}{\sqrt{(2\pi)^{m} |\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}$$

with covariance matrix Σ with $\Sigma_{ii} := \text{Cov}(X_{i},X_{i})$

with covariance matrix Σ with $\Sigma_{ij} := Cov(X_i, X_j)$ and determinant $|\Sigma|$ of Σ

Moments

For a discrete random variable X with density f_X

 $E[X] = \sum_{k \in M} k f_X(k) \text{ is the expectation value (mean) of X}$ $E[X^i] = \sum_{k \in M} k^i f_X(k) \text{ is the } i\text{-th moment of X}$ $V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2 \text{ is the variance of X}$

For a continuous random variable X with density f_X

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx \text{ is the expectation value of X}$$

$$E[X^i] = \int_{-\infty}^{+\infty} x^i f_X(x) dx \text{ is the } i\text{-th moment of X}$$

$$V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2 \text{ is the variance of X}$$

<u>Theorem</u>: Expectation values are additive: E[X + Y] = E[X] + E[Y] (distributions are not)

IRDM WS 2015

Properties of Expectation and Variance

E[aX+b] = aE[X]+b for constants a, b

 $E[X_1+X_2+...+X_n] = E[X_1] + E[X_2] + ... + E[X_n]$

(i.e. expectation values are generally additive, but distributions are not!)

E[XY] = E[X]E[Y] if X and Y are independent

 $Var[aX+b] = a^{2} Var[X] \text{ for constants a, b}$ $Var[X_{1}+X_{2}+...+X_{n}] = Var[X_{1}] + Var[X_{2}] + ... + Var[X_{n}]$ if X₁, X₂, ..., X_n are independent RVs

Caution: distribution of *sums of independent RVs* given by *convolution*:

$$Z = X+Y \text{ (non-negative)}$$

$$F_{Z}(z) = P[r(x,y) \le z] = \int_{x=0}^{z} f_{X}(x)F_{Y}(z-x) dx$$

$$f_{Z}(z) = P[r(x,y) \le z] = \sum_{x=0}^{z} f_{X}(x)F_{Y}(z-x)$$

Correlation of Random Variables

Covariance of random variables Xi and Xj:: $Cov(Xi, Xj) \coloneqq E[(Xi - E[Xi])(Xj - E[Xj])]$ $Var(Xi) = Cov(Xi, Xi) = E[X^2] - E[X]^2$

Correlation coefficient of Xi and Xj $\rho(Xi, Xj) \coloneqq \frac{Cov(Xi, Xj)}{\sqrt{Var(Xi)}}$ Examples: Xi: height, Xj: weight Xi: km/day, Xj: weight Xi: € car, Xj: income

Conditional expectation of X given Y=y: $E[X | Y = y] = \begin{cases} \sum x f_{X|Y}(x | y) \\ \int x f_{X|Y}(x | y) dx \end{cases}$ discrete case continuous case

IRDM WS 2015

Generating Functions and Transforms

X, Y, ...: continuous random variables with non-negative real values

A, B, ...: discrete random variables with non-negative integer values

$$M_X(s) = \int_0^\infty e^{sx} f_X(x) dx = E[e^{sX}]:$$

moment-generating function of X (~ *Laplace-Stieltjes transform*)

$$G_A(z) = \sum_{i=0}^{\infty} z^i f_A(i) = E[z^A]:$$

generating function of A (z transform)

$$M_A(s) = G_A(e^s)$$

Examples:

exponential:
$$f_X(x) = \alpha e^{-\alpha x} \rightarrow M_A(s) = \frac{\alpha}{\alpha - s}$$

Poisson: $f_A(k) = e^{-\alpha} \frac{\alpha^k}{k!} \rightarrow G_A(z) = e^{\alpha(z-1)}$

Convolution easy with M or G: product! Moments easy to derive from M or G

Inequalities and Tail Bounds

Markov inequality: $P[X \ge t] \le E[X] / t$ for t > 0 and non-neg. RV X *Chebyshev inequality:* $P[|X-E[X]| \ge t] \le Var[X] / t^2$ for t > 0 and RV X **Chernoff-Hoeffding bound**: $P[X \ge t] \le \inf \left\{ e^{-\theta t} M_X(\theta) / \theta \ge 0 \right\}$ Corollary: :P $\begin{bmatrix} \frac{1}{n} \sum X_i - p \\ n \end{bmatrix} \ge t \end{bmatrix} \le 2e^{-2nt^2}$ for Bernoulli(p) iid. RVs $X_1, ..., X_n$ and any t > 0*Mill's inequality:* $P[|Z| > t] \le \frac{\sqrt{2}}{\pi} \frac{e^{-t^2/2}}{t}$ for N(0,1) distr. RV Z and t > 0*Cauchy-Schwarz inequality:* $E[XY] \le \sqrt{E[X^2]E[Y^2]}$ *Jensen's inequality:* $E[g(X)] \ge g(E[X])$ for convex function g $E[g(X)] \le g(E[X])$ for concave function g (g is convex if for all $c \in [0,1]$ and x_1, x_2 : $g(cx_1 + (1-c)x_2) \le cg(x_1) + (1-c)g(x_2)$) 3-21 IRDM WS 2015

Example: Tail Bounds

Repeat coin tosses 100 times: n=100 Assume fair coin: p=0.5 Observe many heads: k=90 Random variable X: #heads

Markov inequality: $P[X \ge k] \le \frac{E[X]}{k} = \frac{50}{90}$

Chebyshev inequality: $P[X \ge k] \le P[|X - E[X]| \ge k - E[X]]$ $\le \frac{Var[X]}{(k - E[X])^2} = \frac{np(1-p)}{(k - E[X])^2} = \frac{25}{1600} \approx 0.016$

Convergence of Random Variables

Let X_1, X_2 , ... be a sequence of RVs with cdf's F_1, F_2 , ..., and let X be another RV with cdf F.

- X_n *converges* to X *in probability*, $X_n \rightarrow_P X$, if for every $\varepsilon > 0$ $P[|X_n - X| > \varepsilon] \rightarrow 0$ as $n \rightarrow \infty$
- X_n *converges* to X *in distribution*, $X_n \rightarrow_D X$, if $\lim_{n \to \infty} F_n(x) = F(x)$ at all x for which F is continuous
- X_n *converges* to X *almost surely*, $X_n \rightarrow_{as} X$, if $P[X_n \rightarrow X] = 1$

converges almost surely \Rightarrow converges in probability converges in probability \Rightarrow converges in distribution

Laws of Large Numbers

weak law of large numbers (for $\overline{X}_n = \sum_{i=1..n} X_i / n$) if $X_1, X_2, ..., X_n, ...$ are iid RVs with mean E[X], then $\overline{X}_n \rightarrow_P E[X]$ that is: $\lim_{n\to\infty} P[|\overline{X}_n - E[X]| > \varepsilon] = 0$ *strong law of large numbers:* if $X_1, X_2, ..., X_n, ...$ are iid RVs with mean E[X], then $\overline{X}_n \rightarrow_{as} E[X]$ that is: $P[\lim_{n\to\infty} |\overline{X}_n - E[X]| > \varepsilon] = 0$

Poisson Approximates Binomial

Theorem:

Let X be a random variable with binomial distribution with parameters n and p := α/n with large n and small constant $\alpha \ll 1$.

Then
$$\lim_{n \to \infty} f_X(k) = e^{-\alpha} \frac{\alpha^k}{k!}$$

Central Limit Theorem

Theorem:

Let $X_1, ..., X_n$ be independent, identically distributed random variables with expectation μ and variance σ^2 . The distribution function Fn of the random variable $Z_n := X_1 + ... + X_n$ converges to a normal distribution N(n μ , n σ^2) with expectation n μ and variance n σ^2 :

$$\lim_{n \to \infty} P[a \le \frac{Z_n - n\mu}{\sqrt{n\sigma}} \le b] = \Phi(b) - \Phi(a)$$

Corollary:

 $\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$ converges to a normal distribution N(μ , σ^2/n) with expectation μ and variance σ^2/n .

Example: Use of Central Limit Theorem

X_i: iid Bernoulli trials with p=0.5 E[X_i]=p, Var[X_i]=p(1-p) Z_n: sum of the X_i, i=1..100

 Z_n is approximately Normal distributed with $E[Z_n] = pn = 50$ and $Var[Z_n] = p(1-p)n = 25$

$$Z := \frac{Z_n - E[Z_n]}{\sqrt{Var[Z_n]}} \text{ is approx. } \sim N(0;1)$$

$$P[Z_n \ge 90] = P[Z \ge 8] = 1 - \Phi(8) \rightarrow P[Z_n \ge 60] = P[Z \ge 2] = 1 - \Phi(2) \rightarrow P[Z_n \ge 55] = P[Z \ge 1] = 1 - \Phi(1) \rightarrow P[Z_n \ge 56.8] = P[Z \ge 1.36] = 1 - \Phi(1.36)$$

A.3 Statistical Tables

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	. 62930	.63307	. \$3683	. 64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.40092	.68439	.68793
0.5	.69146	.69497	. 69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73991	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	,78230	.78524
0.8	.78814	.79103	.79387	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.8289%	.93147	.83398	.83646	. 53691
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	,86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87699	.87900	.88100	.88298
1.2	.88493	.88486	.88877	.89065	.87251	,89435	,89617	.89796	.89973	.90147
1.3	.90320	. 70490	.90458	.90824	.90938	.91149	.91308	.91466	.91621	.91774
1.4	.91924	,92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.9599%	.96080	.96164	,96246	.96327
1.8	.96407	.96485	.96562	85339.	.96712	.96784	.96856	.96926	.96995	.97962
1.0	97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
20	97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	98214	98257	.98300	.99391	.78382	.98422	.98461	.98590	. 28537	.98574
2.2	98610	.98645	,98679	.98713	.98745	.98778	.98809	.99840	.78870	.98899
2 3	99008	.28256	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.1	99180	99202	.99224	.99245	.99266	.99286	.97305	.99324	.99343	.99361
3.6	09779	40500	99413	.99430	.99446	.99461	,99477	.99492	.99506	.99520
36	00570	90547	.99560	.99573	.99585	.99598	.99689	.99621	.99632	. 79643
0.7	DOAST	44499	97674	.99683	.09693	.99702	.99711	.97720	.99728	.99736
0.8	99766	90757	99768	.99767	.99774	.99781	99788	.00795	.79801	.99907
2.0	00817	90919	99925	.99831	.99834	.999911	.99846	.99851	.99856	.99861
2.0	00945	90049	99874	99878	99882	.99995	.79887	.99893	.99896	.99900
2.0	CODON	0000A	99910	99913	99916	.99918	.99921	.99924	.99926	.99929
2.1	00071	00074	AFPOD	99938	.00048	99942		. 29946	.99948	.99950
3.6	00052	00051	00055	00057	00058	00007.0	99941	.99962	29964	.99965
3+3	000//	000/0	99940	99970	00971	.09972	.99977	.99774	.99975	.99976
2.4	00037	00070	00070	99970	99000	90901	.99981	.00982	.99983	.99983
3.2	00000	00004	00005	00004	99994	20087	00087	00988	99998	00989
3.0	00000	00000	00000	00000	90991	00001	00000	90707	00000	00007
3.8	00003	60003	00003	.99994	.99994	99994	99994	.99995	99995	.99995

$$\rightarrow P[40 \le Z_n \le 45] = P[-2 \le Z \le -1] = P[Z \le -1] - P[Z \le -2]$$

IRDM WS 2015
$$= \Phi(-1) - \Phi(-2) = (1 - \Phi(1)) - (1 - \Phi(2))$$
3-27

Elementary Information Theory

Let f(x) be the probability (or relative frequency) of the x-th symbol in some text d. The **entropy** of the text (or the underlying prob. distribution f) is: $H(d) = \sum_{x} f(x) \log_2 \frac{1}{f(x)}$ H(d) is a lower bound for the bits per symbol needed with optimal coding.

For two prob. distributions f(x) and g(x) the **relative entropy (Kullback-Leibler divergence)** of f to g is

$$D(f \| g) := \sum_{x} f(x) \log_2 \frac{f(x)}{g(x)}$$

relative entropy measures (dis-)similarity of probability or frequency distributions

D is the average number of additional bits for coding events of f when using optimal code for g

Jensen-Shannon divergence of f(x) and g(x): $\frac{1}{2}D(f||g) + \frac{1}{2}D(g||f)$

Cross entropy of f(x) to g(x): $H(f,g) := H(f) + D(f || g) = -\sum f(x) log g(x)$

IRDM WS 2015

Compression

- Text is sequence of symbols (with specific frequencies)
- Symbols can be
 - letters or other characters from some alphabet Σ
 - strings of fixed length (e.g. trigrams)
 - or words, bits, syllables, phrases, etc.

Limits of compression:

Let p_i be the probability (or relative frequency) of the i-th symbol in text d Then the *entropy* of the text: $H(d) = \sum_i p_i \log_2 \frac{1}{p_i}$ is a *lower bound* for the average number of bits per symbol in any compression (e.g. Huffman codes)

Note:

compression schemes such as *Ziv-Lempel* (used in zip) are better because they consider context beyond single symbols; with appropriately generalized notions of entropy the lower-bound theorem does still hold

Example Entropy and Compression

Text in alphabet $\Sigma = \{A, B, C, D\}$ P[A] = 1/2, P[B] = 1/4, P[C] = 1/8, P[D] = 1/8

```
H(\Sigma) = 1/2*1 + 1/4*2 + 1/8*3 + 1/8*3 = 7/8
```

Optimal (prefix-free) code from Huffman tree:

Summary of Section 3.1

- **Bayes Theorem**: very simple, very powerful
- **RVs** as a fundamental, sometimes subtle concept
- rich variety of well-studied **distribution functions**
- moments and moment-generating functions capture distributions
- tail bounds useful for non-tractable distributions
- Normal distribution: limit of sum of iid RVs
- **Entropy** measures (incl. **KL divergence**) capture complexity and similarity of prob. distributions

Additional Literature for Section 3.1

- A. Allen: Probability, Statistics, and Queueing Theory With Computer Science Applications, Wiley 1978
- R. Nelson: Probability, Stochastic Processes, and Queueing Theory, Springer 1995
- M. Mitzenmacher, E. Upfal: Probability and Computing, Cambridge University Press, 2005
- R. Duda, P. Hart, D. Stork: Pattern Classification, Wiley 2000, Appendix A
- M. Greiner, G. Tinhofer: Stochastik für Studienanfänger der Informatik, Carl Hanser Verlag, 1996
- G. Hübner: Stochastik: Eine Anwendungsorientierte Einführung für Informatiker, Ingenieure und Mathematiker, Vieweg & Teubner 2009

Reference Tables on Probability Distributions and Statistics (1)

Appendix A

Statistical Tables

A.1 Discrete Random Variables

Table 1A. Properties of Some Common Discrete Random Variables¹

Random Variable	Parameters	$p(\cdot)$
Bernoulli	0	$p(k) = p^k q^{1-k}$ k = 0, 1
Binomial	n 0	$p(k) = \binom{n}{k} p^k q^{n-k},$ k = 0, 1,, n
Multinomial	n, r, p_i, k_i $\sum_{i=1}^{r} n_i = 1$	$p(\overline{k}) = \frac{n!}{k_1!k_2!\cdots k_r!} p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$
	$\sum_{i=1}^{r} k_i = n,$	where $\overline{k} = (k_1, k_2, \dots, k_r)$

Table 1A. (contin	ued)	
Random Variable	Parameters	$p(\cdot)$
Hypergeometric	N > 0	$p(k) = rac{{\binom{r}{k}\binom{N-r}{n-k}}}{{\binom{N}{k}}},$
	$n,k \ge 0$	$\binom{n}{k=0,1,\ldots,n}$, where $k \leq r$ and $n-k \leq N-r$.
Multivariate	$\sum_{i=1}^{l} r_i = N$	$p(k_1, k_2, \dots, k_l) = \frac{\binom{r_1}{k_1}\binom{r_2}{k_2}\cdots\binom{r_l}{k_l}}{\binom{N}{k_l}}$
Hypergeometric		for $k_i \in \{0, 1, \dots, n\}, k_i \leq r_i \forall i$ and $\sum_{i=1}^{l} k_i = n.$
Geometric	0	$p(k) = q^k p, k = 0, 1, \dots$
Pascal	0	$p(k) = \binom{r+k-1}{k} p^r q^k,$
(negative binomial)	r positive integer	$k = 0, 1, \cdots$
Poisson	$\alpha > 0$	$p(k) = e^{-lpha} rac{lpha^k}{k!}, k = 0, 1, \cdots$

 $^{1}q=1-p.$

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

IRDM WS 2015

Reference Tables on Probability Distributions and Statistics (2)

Random Variable	z-transform $g[z]$	E[X]	$\operatorname{Var}[X]$
Bernoulli	q + pz	p	pq
Binomial	$(q+pz)^n$	np	npq
Multinomial	$(p_1z_1+p_2z_2+\cdots+p_rz_r)^n$	$\begin{array}{l} E[X_i] = \\ np_i \end{array}$	$\operatorname{Var}[X_i] = np_iq_i$
Hypergeometric		$\frac{nr}{N}$	$\frac{nr(N-r)(N-n)}{N^2(N-1)}$
Multivariate Hypergeometric		_	_
Geometric	$\frac{p}{1-qz}$	$\frac{q}{p}$	$\frac{q}{p^2}$
Pascal (negative binomial)	$p^r(1-qz)^{-r}$	$\frac{rq}{p}$	$\frac{rq}{p^2}$
Poisson	$e^{\alpha(z-1)}$	α	α

Table 1B. Properties of Some Common Discrete Random Variables²

Table 2A. Properties of Some Common Continuous Random Variables						
Random						
Variable	Parameters	Density $f(\cdot)$				
Uniform	a < b	$\frac{1}{b-a}, a \le x \le b, 0$ otherwise				
Exponential	$\alpha > 0$	$f(x) = \alpha e^{-\alpha x}, \ x > 0, 0 \text{ if } x \le 0$				
Gamma	$\beta, \alpha > 0$	$f(x) = \frac{\alpha(\alpha x)^{\beta-1}}{\Gamma(\beta)} e^{-\alpha x}, \ x > 0$ 0, $x \le 0$				
Erlang-k	k > 0 $\mu > 0$	$f(x) = \frac{\mu k (\mu k x)^{k-1}}{(k-1)!} e^{-\mu k x}, \ x > 0$ 0, $x \le 0$				
H_k ³	$q_i, \mu_i > 0$	$f(x) = \sum_{i=1}^{k} q_i \mu_i e^{-\mu_i x}, \ x > 0$				
	$\sum_{i=1}^{k} \frac{q_i}{\mu_i} = \frac{1}{\mu}$	$0, x \leq 0$				
Chi-square	n > 0	$f(x) = \frac{x^{((n/2)-1)}e^{-x/2}}{2^{n/2}\Gamma(n/2)}, \ x > 0, 0 \text{ if } x \le 0$				
Normal	$\sigma > 0$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right)$				
Student's t	n	$f(x) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$				
F	n,m	$f(x) = \frac{(n/m)^{n/2} \Gamma[(n+m)/2] x^{((n/2)-1)}}{\Gamma(n/2) \Gamma(m/2) (1+(n/m)x)^{(n+m)/2}}, \ x > 0$				

³Hyperexponential with k stages.

 $^{2}q_{i}=1-p_{i}.$

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

Reference Tables on Probability Distributions and Statistics (3)

Table 2B. Properties of Some Common Continuous Random Variables							
Random			Laplace-Stieltjes				
Variable	E[X]	$\operatorname{Var}[X]$	Transform $X^*[\theta]$				
Uniform	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{-b\theta}-e^{-a\theta}}{\theta(a-b)}$				
Exponential	$\frac{1}{\alpha}$	$\frac{1}{\alpha^2}$	$\frac{\alpha}{\alpha + \theta}$				
Gamma	$\frac{\beta}{\alpha}$	$\frac{\beta}{\alpha^2}$	$\left(\frac{\alpha}{\alpha+\theta}\right)^{\beta}$				
Erlang-k	$\frac{1}{\mu}$	$\frac{1}{k\mu^2}$	$\left(\frac{k\mu}{k\mu+\theta}\right)^k$				
H_k ⁴	$\frac{1}{\mu}$	$\left(2\sum_{i=1}^k \frac{q_i}{\mu_i^2}\right) - \frac{1}{\mu^2}$	$\sum_{i=1}^k \frac{q_i \mu_i}{\mu_i + \theta}$				
Chi-square	n	2n	$\left(\frac{1}{1+2\theta}\right)^{n/2}$				
Normal	μ	σ^2	$\exp\left(- heta\mu-rac{1}{2} heta^2\sigma^2 ight)$				
Student's t	0 for $n > 1$	$\frac{n}{n-2} \text{ for } n > 2$	does not exist				
F	$\frac{m}{m-2} \text{ if } m > 2$	$\frac{m^2(2n+2m-4)}{n(m-2)^2(m-4)} \text{ if } m > 4$	does not exist				

A.3 Statistical Tables

	The Normal Distribution Functions $\Phi(z) = \int_{-\infty}^{z} \frac{e^{-t^2/2}}{\sqrt{2\pi}} dt$									
	×				ATT	N				
				1						
				10	(z)'					
					0	z	12			
2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	. 56749	.57142	.57535
.2	.57926	.58317	.58706	. 59095	. 59483	.59871	.60257	. 60642	.61026	. 51409
3	.61791	.62172	.62552	. 62930	. 63307	. 33683	. 64058	.04431	. 64603	40707
4	.65542	.63910	40017	70100	70540	70000	71224	715.44	71904	72740
2	77575	77007	77077	73545	73991	74215	74537	74857	75175	75490
.0	75000	74115	76424	76730	77035	77337	77637	77935	78230	78524
6	70010	70103	70399	79473	79955	80234	80511	80785	81057	81327
0	8159L	81859	82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
.9	94174	84375	84614	84849	.85083	.85314	.85543	.85769	.85993	.86214
1	86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
2	88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
3	90320	.90490	.90658	,90824	.90988	.91149	.91308	.91466	.91621	.91774
. 1	.91924	,92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
.6	.94520	,94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
.9	.97128	.97193	,97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
.1	.98214	.98257	.98300	.95341	.98382	,98422	.98461	.98590	. 28537	.98574
.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.99840	.98870	.98899
.3	,98928	.98956	.98983	.99010	.99036	.99031	.99086	.99111	.991.34	.99158
• 4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
.6	.99534	,99547	.99560	,99573	.99585	.99598	.99609	.99621	.77032	99774
.7	.99653	. 99664	.99674	.99683	. 99693	. 77702	. 77711	.77720	. 77720	. 77730
.8	.99744	.99752	.997000	.77/0/	00074	. 77701	00014	00051	00054	00041
.9	.99813	.99819	. 99823	.77031	00000	00004	00000	00007	00004	00000
.0	.99865	. 99859	00010	00017	00014	00010	00001	99974	99976	99929
.1	00074	00071	00074	00070	00040	000000	99944	99944	99948	99950
.2	00050	90057	00055	09957	99958	.99960	99961	99962	. 99964	.99965
• 5	000/4	00040	09940	99970	99971	99972	09977	99974	99975	.99976
5	00077	99979	99978	99979	99980	99981	99981	.99982	.99983	.99983
6	99994	99985	99985	99986	99986	,99987	.99987	.99988	.99998	.99989
.7	99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
.8	.99993	, 90903	.99993	.99994	. 99994	. 99994	. 99994	.99995	.99995	.99995

⁴Hyperexponential with k stages.

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

IRDM WS 2015

Table 3

Reference Tables on Probability Distributions and Statistics (4)

Table 4

Table 5

Critical Values of the Student-t Distribution

no	0.995	0.990	0.975	0.950	0.05	0.025	0.010	0.005
1	0.0*393°	0.0°157°	0.03982°	0.0*393°	3.8415	5.0239	6.6349	7.8794
2	0.0100	0.0201	0.0506	0.1026	5.9915	7.3778	9.2103	10.597
3	0.0717	0.1148	0.2158	0.3518	7.8147	9.3484	11.345	12.838
4	0.2070	0.2971	0.4844	0.7107	9.4877	11.143	13.277	14.860
5	0.4117	0.5543	0.8312	1.1455	11.071	12.833	15.086	16.750
6	0.6757	0.8721	1.2373	1.6354	12.592	14.449	16.812	18.548
7	0.9893	1.2390	1.6899	2.1674	14.067	16.013	18.475	20.278
8	1.3444	1.6465	2.1797	2.7326	15.507	17.535	20.090	21.955
9	1.7350	2.0879	2.7004	3.3251	16.920	19.023	21.666	23.589
10	2.1559	2.5582	3.2470	3.9403	18.307	20.483	23.209	25.188
11	2.6032	3.0535	3.8158	4.5748	19.675	21.920	24.725	26.757
12	3.0738	3.5706	4.4038	5.2260	21.026	23.337	26.217	28.300
13	3.5650	4.1069	5.0087	5.8919	22.362	24.736	27.688	29.819
14	4.0747	4.6604	5.6287	6.5706	23.685	26.119	29.141	31.319
15	4.6009	5.2294	6.2621	7.2609	24.996	27.488	30.578	32.801
16	5.1422	5.8122	6.9077	7.9616	26.296	28.845	32.000	34.267
17	5.6972	6.4078	7.5642	8.6718	27.587	30.191	33.409	35.719
18	6.2648	7.0149	8.2308	9.3905	28.869	31.526	34.805	37.156
19	6.8440	7.6327	8.9066	10.117	30.144	32.852	36.191	38.582
20	7.4339	8.2604	9.5908	10.851	31.410	34.170	37.566	39.997
21	8.0337	8.8972	10.283	11.591	32.671	35.479	38.932	41.401
22	8.6427	9.5425	10.982	12.338	33.924	36.781	40.289	42.796
23	9.2604	10.196	11.689	13.091	35.173	38.076	41.638	44.181
24	9.8862	10.856	12.401	13.848	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	37.653	40.647	44.314	46.928
26	11.160	12.198	13.844	15.379	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	40.113	43.194	46.963	49.645
28	12.461	13.565	15.308	16.928	41.337	44.461	48.278	50.993
29	13.121	14.257	16.047	17.708	42.557	45.722	49.588	52.336
30	13.787	14.954	16.791	18.493	43.773	46.980	50.892	53.672
40	20.707	22.164	24.433	26.509	55.759	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	67.505	71.420	76.154	79.490
60	35.535	37.485	40.482	43.188	79.082	83.298	88.380	91.952
70	43.275	45.442	48.758	51.739	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.392	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.930	124.342	129.561	135.807	140.169
Ζ.	-2.5758	-2.3263	- 1.9600	- 1.6449	+ 1.6449	+ 1.9600	+ 2.3263	+ 2.5758

Adapted from Biometrika Tables for Statisticians, (E. S. Pearson and H. O. Hartley, eds.), Vol. 1, 4th
 ed. Cambridge University Press, Cambridge, 1966, by permission of Biometrika Trustees.

 $\frac{2}{9n}$

^b For
$$n > 100$$
 use

$$\chi_a^2 = n \left\{ 1 - \frac{2}{9n} + z_a \right\}$$

where z_a is given on the bottom line of the table. ^c The expression 0.0⁴393 means 0.0000393, etc.

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

0 ta 0.10 0.05 0.025 0.01 0.005 3.078 6.314 12.706 31.821 63.657 1 2.920 4.303 6.965 9.925 2 1.886 2.353 3.182 4.541 5.841 3 1.638 4.604 2.776 3.747 4 1.533 2.132 2.015 2.571 3.365 4.032 5 1.476 1.440 1.943 2.447 3.143 3.707 6 7 1.895 2.365 2.998 3.499 1.415 1.397 1.860 2.306 2.896 3.355 8 9 1.383 1.833 2.262 2.821 3.250 10 1.372 1.812 2.228 2.764 3.169 11 1.363 1.796 2.201 2.718 3.106 12 1.356 1.782 2.179 2.681 3.055 13 1.350 1.771 2.160 2.650 3.012 14 1.345 1.761 2.145 2.624 2.977 1.341 1.753 2.131 2.602 2.947 15 16 1.337 1.746 2.120 2.583 2.921 1.333 1.740 2.567 2.898 17 2.110 1.734 2.552 2.878 18 1.330 2.101 1.729 2.093 2.539 2.861 19 1.328 1.725 2.086 2.528 2.845 20 1.325 2.080 1.721 2.518 2.831 21 1.323 22 1.321 1.717 2.074 2.508 2.819 23 1.319 1.714 2.069 2.500 2.807 24 1.318 1.711 2.064 2.492 2.797 25 1.708 2.060 2.485 2.787 1.316 1.706 2.056 2.479 2.779 26 1.315 2.771 1.703 2.052 2.473 27 1.314 1.701 2.048 2.467 2.763 28 1.313 1.699 2.045 2.462 2.756 29 1.311 1.697 2.042 2.457 2.750 30 1.310 1.303 1.684 2.021 2.423 2.704 40 1.296 1.671 2.000 2.390 2.660 60 1.658 1.980 2.358 2.617 120 1.289 œ 1.282 1.645 1.960 2.326 2.576

^e Adapted from Biometrika Tables for Statisticians (E. S. Pearson and H. O. Hartley, eds.), Vol. 1, 4th ed. Cambridge University Press, Cambridge, 1966, by permission of Biometrika Trustees.

Reference Tables on Probability Distributions and Statistics (5)

Table 6

Critical Values of the F Distribution

⁴ Adapted from Biometrika Tables for Statisticians (E. S. Pearson and H. O. Hartley, eds.), Vol. 1, 4th ed. Cambridge University Press, Cambridge, 1966, by permission of Biometrika Trustees.

Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

IRDM WS 2015

Reference Tables on Probability Distributions and Statistics (6)

A.4	The	Laplace-S	Stieltjes	Transform
-----	-----	-----------	-----------	-----------

Table 10. Laplace Transform Properties and Identities ⁵					Function	Transform
	Function	Transform	-	1.	f(t)	$f^*[\theta] = \int_{0^-}^{\infty} e^{-\theta t} f(t) dt$
1.	f(t)	$f^*[\theta] = \int_{0^-}^{\infty} e^{-\theta t} f(t) dt$		2.	f(t) = c	$\frac{c}{\theta}$
2.	af(t) + bg(t)	$af^*[\theta] + bg^*[\theta]$		3.	t^n , $n=1,2,3,\cdots$	$rac{n!}{ heta^{n+1}}$
3.	$f\left(\frac{t}{a}\right), a > 0$	$af^*[a heta]$		4.	$t^a, a > 0$	$\frac{\Gamma(a+1)}{a+1}$
4.	$f(t-a)$ for $t \ge a$	$e^{-a heta}f^*[heta]$				θ^{a+1}
5.	$e^{-at}f(t)$	$f^*[heta+a]$		5.	e^{at}	$\frac{1}{ heta-a}, heta > a$
6.	tf(t)	$-rac{df^*[heta]}{d heta}$		6.	te^{at}	$\frac{1}{(\theta-a)^2}, \theta>a$
7.	$t^n f(t)$	$(-1)^n \frac{d^n f^*[\theta]}{d\theta^n}$		7.	$t^n e^{at}$	$\frac{n!}{(\theta-a)^{n+1}}, \theta > a$
8.	$\int_0^t f(u)g(t-u)du$	$f^*[heta]g^*[heta]$		8. ⁶	$\delta(t)$	1
9.	$rac{df(t)}{dt}$	$\theta f^*[\theta] - f(0)$		9.	$\delta(t-a)$	$e^{-a\theta}$
10.	$rac{d^n f(t)}{dt^n}$	$\theta^n f^*[\theta] - \sum_{i=1}^n \theta^{n-i} f^{(i-1)}(0)$		10. ⁷	U(t-a)	$\frac{e^{-a\theta}}{\theta}$
11.	$\int_0^t f(x)dx$	$\frac{f^*[\theta]}{\theta}$ $i=1$		11.	f(t-a)U(t-a)	$e^{-a\theta}f^*[\theta]$
12.	$rac{\partial f(t)}{\partial a}$ a a parameter	$rac{\partial f^*[heta]}{\partial a}$			-	

•	ST	T	D	200	1.1	
	I aniace	ransform	Properties	and	Identities	

⁶The Dirac delta function $\delta(\cdot)$ is defined by $\delta(t) = 0$ for $t \neq 0$ but $\int_{a-\epsilon}^{a+\epsilon} \delta(t - t) dt = 0$

a)f(t) dt = f(a) for each f and each $\epsilon > 0$.

⁷The unit step function $U(\cdot)$ is defined by

 $U(t-a) = \begin{cases} 0 & \text{for } t < a \\ 1 & \text{for } t > a. \end{cases}$

⁵All functions f are assumed to be piecewise continuous and of exponential order. That is, there exist positive constants M and a such that $|f(t)| \leq Me^{at}$ for $t \geq 0$.

> Source: Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications, Academic Press, 1990

IRDM WS 2015

Table 11. Laplace Transform Pairs