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Inference

* Probabilistic Graphical Models:
Marginal and conditional probabilities
Most likely instantiations...

* Propositional Knowledge Bases:
Logical entailment
Existential quantification
Model counting...



Two Main Themes

* Exact inference as:
Enforcing decomposability and determinism on
propositional knowledge bases

 Approximate inference as:
Relaxing, compensating for, and recovering
equivalence constraints (equalities)
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Decomposability (DNNF)
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Determinism (d-DNNF)
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OBDD:

d-DNNF + Additional Properties
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Queries and Transformations

* Queries
SAT, MAXSAT, logical entailment, equivalence testing,
model counting,...

* Transformations:
Existential quantification, conjunction, disjunction,
negation...

* More properties imply more polytime queries and
transformations, but less succinctness



Counting Models (d-DNNF)

a d/Ol\a d
N N

or 0 or r

and and and and and and and and




Counting Graph




Counting Graph
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Probabilistic Inference by
Weighted Model Counting
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Probabilistic Inference by
Weighted Model Counting

AACeQCIA A B C Pr(.)
AN- Cegch T |T |T |99
e . T T F HAHB|AH—|C|A
Q T |IF |T |00
ANB <= HB|A T F F HAQ—-B|AH—|C|A
A = HA r A A A

=

R T
T Pr(a) = wme(A A o)

A8 = C =20 o 010 a0 L e = L
3 6 .

8 1 1




Weighted Model Counting
(Arithmetic Circuits)
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Why Logic?

* Encoding local structure is easy:

— Zero-parameters encoded by adding clauses:

6 ol—-Av -C
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— Context-specific independence encoded by collapsing
variables:
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Relational networks (251 networks)

* Average clique size is 50
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Alchemy - Open Source Al

Welcome to the Alchemy system! Alchemy is a software package providing a series of algorithms for statistical relational learning and probabilistic logic
inference, based on the Markov logic representation. Alchemy allows you to easily develop a wide range of Al applications, including:

¢ Collective classification
¢ Link prediction

¢ Entity resolution

¢ Social network modeling
¢ Information extraction

If you are not already familiar with Markov logic, we recommend that you first read the paper Unifying Logical and Statistical AL

Runi Alchemy is a software package providing a series of algorithms for statistical relational

Req

Dowl l€arning and probabilistic logic inference, based on Markov logic representations.

Mailing Lists
Alchemy
Alchemy-announce
Alchemy-update
Alchemy-discuss

Repositories
Code
Datasets

MLNs
Publications

Contributors

o (enerative weight learning

¢ Structure learning

o MAP/MPE inference (including memory efficient)

¢ Probabilistic inference: MC-SAT, Gibbs Sampling, Simulated Tempering, Belief Propagation (including lifted)
¢ Support for native and linked-in functions

¢ Block inference and learning over variables with mutually exclusive and exhaustive values

¢ EM (to handle ground atoms with unknown truth values during learning)

o Specification of indivisible formulas (i.e. formulas that should not be broken up into separate clauses)
« Support of continuous features and domains

¢ Online inference

¢ Decision Theory

In the next release we plan to include:

¢ Online learning
¢ Exact inference for small domains



Current Challenges

* Incremental compilation:
— What? Current compilers monolithic: c2d (UCLA) and DSharp (Toronto)
— Need:
* Logic: planning and verification applications
* Probability: approximate inference
— Main insight:
e Structured decomposability & vtrees (AAAI-08, AAAI-10)

* Guarantees and Complexity results:
— Upper & lower bounds on size of compilation (AAAI-10, ECAI-10)
— Main insights:
* The notion of a decomposition (AAAI-10)
* The notion of an interaction function (ECAI-10)
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OBDD: DNNF that Respects Linear vtree
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Decomposition of Boolean Functions (AAAI-10)

* Examples: f= (X vX,)A(Y,VX)A X VY, )A (Y VY,)V(X,AY,)
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Lower Bounds (AAAI-10)
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The Interaction Function (ECAI-10)

f(X,Y)= g(X) aAh(Y) Al(X)Y)
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The Interaction Function (ECAI-10)
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Current Research

Searching for good vtrees (on-going)
Characterizing and searching for optimal decompositions
Upper and lower bounds on size of DNNF

Key objective: incremental compiler for DNNF and d-DNNF

277



Two Main Themes

* Exact inference as:
Enforcing decomposability and determinism on
propositional knowledge bases

 Approximate inference as:
Relaxing, compensating for, and recovering
equivalence constraints (equalities)
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Two Main Themes

* Exact inference as:
Enforcing decomposability and determinism on
propositional knowledge bases

 Approximate inference as:
Relaxing, compensating for, and recovering
equivalence constraints (equalities)
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Equivalence Constraints
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Relaxing Equivalence Constraints
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Relaxing Equivalence Constraints
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Relaxing Equivalence Constraints
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Relaxing Equivalence Constraints
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Relaxing Equivalence Constraints

* Model + Eq.
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Relaxing Equivalence Constraints
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Model + Eq
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Model + Eq
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Compensating for an Equivalence
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Compensating for an Equivalence
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Compensating for an Equivalence
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Parametrizing Edges lteratively

Iteration t =0
Initialization



Parametrizing Edges lteratively

% &
g8
kol

Iteration r =1



Parametrizing Edges lteratively
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Parametrizing Edges lteratively
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Characterizing Loopy Belief Propagation
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Which Edges to Delete?

exact

B = B
17— 17

?

o—0—@




Edge Recovery
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Edge Recovery
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Evaluation Benchmarks
Benchmark | PR | MAR | MPE
CSP 8 8 55

Grids 20 20 40
Image Alignment 10
Medical Diagnosis 26 26

Object Detection 96 96 92
Pedigree 4 4

Protein Folding 21
Protein-Protein Interaction 8
Segmentation 50 50 50

TOTAL 204 204 287



Overall Results

PR Task: 20 Seconds MAR Task: 20 Seconds

Solver Score Solver Score

edbr 1.7146 edbq 0.2390
vgogate 2.1620 libDai2 0.3064
libDai 2.2775 vgogate 0.4409




Ideally...

* Exact inference based on compiling CNFs

* Edge recovery using incremental compilation:

— conjoin recovered equivalence constraint with
current compilation

* Not there yet: more engineering needed!



Key ldeas

Approximate inference: formulated as exact
inference in an approximate model

Approximate models: obtained by relaxing
and compensating for equivalence constraints

Anytime inference: selective recovery of
equivalence constraints

Exact inference: formulated in terms of
enforcing decomposability and determinism of
propositional knowledge bases
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I@ Samlam: Sensitivity Analysis, Modeling, Inference and More

BEX]

File Edit Mode Cuery Tools View Preferences Window Help

OB D% OOXTA BP [ [v] " cix [75%  [v] E
%

in-out degree

3
3
£
E
3
£
E
3
E
3
£
3

£
E
3
£
3
3
E
3
£
3
3
£
E
3

froot

H-ANAPHYLAXIS
H-DISCONMECT
H-ERRCAUTER
H-ERRLOWOUTPUT
H-FI02
H-HYPOYOLEMIA
H-INSUFFANESTH
H-INTUBATION
+-KINKEDTUBE
H-LYFAILURE
H-MINYVOLSET
t-PULMEMBOLUS

nternal

H-ARTCOZ
H-CATECHOL
H-CO

F-HR.
+-LVYEDYOLUME
H-PYSAT
H-SA02
H-SHUMNT
H-STROKEVOLUME
t-TPR
H-VENTALY
H-VENTLUNG
H-VENTMACH
H-VENTTUBE

eaf

-BP
- CYP

- EXPCO2
- HISTORY
¢ HREP

- HREKG
- HRSAT
F-MINYOL

T 2o TR oy TRy TR s DO o JOON o OO o O W §

S PAn

UBATION =
lueld

5

automatic edge-deletion belief-propagation | sub-algarithm: zc—hugin'

Bound, maximum iterations |1°° {0 = unbounded)

|
Time out {milliseconds) |10000 | {0 = no time out)
|

Termination tolerance |0-0001

Edge ranking heuristic |_

(0 <= tolerance)

™
Edge recovery count (- v Coon o tree ., full network
Random seed |1 l
Report exact values Ctri+E approx overfexact under
Sub-algorithm | zc-hugin partial derivatives
ENER R EN
luel = HREBP = value?2 HR = value?2 - =

HREKG = value2 HRSAT = walue2 ) CO = value2 BP = valuel

RRCAUTER = valuel

ue

LMEMBOLUS =

luel

lueld

ue2

PAP = valuel

BPREIO® EF
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