Compositional Verification of Software Product Families

2

Ina Schaefer! Dilian Gurov Siavash Soleimanifard?

1 Technische Universitit Braunschweig, Germany

2 Kungliga Tekniska Hogskolan, Stockholm, Sweden

Deduction at Scale 2011

SchloB Ringberg, 7 March 2011

HATS _7;

zzzzzzzzzzzzzzzz

http://www.hats-project.eu
http://cordis.europa.eu/fp7/home_en.html

Motivation

Product Family

Set of products with well-defined commonalities and variabilities

. Pl . P2
H " B -

Hierarchical Variability Modelling for Product Families

Wl

Variant

Product Famlly

Variation
Point

(

vit) (

e

Analysis of Product Families

Non-Compositional Analysis

Verification tasks bound by (#variani.“s)(?é“/”)’vD

Compositional Analysis
Verification tasks bound by (#variants x #VP)NP

Product Family

Compositional Analysis of Product Families

» Relativize Product Properties towards Variation Points

» Apply Compositional Analysis Technique

. Global Product
Product Family Specification

Variation Point
Peciﬁcation

: Local
i Specification
of Core

Outline

Compositional Verification of Control Flow Safety Properties
Hierarchical Variability Modelling

Modular Specification of Core and Variation Point Properties

vV v v v

Compositional Reasoning using Variation Point Properties

Compositional Verification of Control Flow Safety Prop.

Compositional Verification Technique by D. Gurov and M. Huisman'

Program Model
» flow graphs (no data)
» method call edges, return nodes

» infinite—state behaviour

Logic
» temporal logic for safety properties

> legal sets of sequences of method invocations

... . . . " . P . .
Dilian Gurov, Marieke Huisman, and Christoph Sprenger: " Compositional Verification of Sequential Programs with
Procedures”, Journal of Information and Computation, 2008

Simple Hierarchical Variability Model

Inductively defined as
(i) a ground model consisting of a core set of methods
Mc = (Mpub, Mpriv), partitioned into public and private methods.

(ii) a pair (Mc,{VP1,...,VPn}), where Mc is defined as above and
where {VP1,..., VPy} is a non-empty set of variation points.

A variation point VP; is a non-empty set of SHVMs,
VP; ={Sij|1<j < ki}. The members of a variation point are
called variants.

Example: Cash Desk Product Family

e 8 @EnterProducts @Payment
1 updateStock

enterProd() enterProd() payment() 3 payment()

| enterCard|
useKeyboard() @ cad1F>¢1y(carer:iny()()

Why Simple Hierarchical Variability Model?

> At each variation point, select exactly one variant.
» No dependencies between variants and variation points.

» Same interface for all variants at a variation point.
(same set of public provided methods)

Specification for Compositional Reasoning

We have to provide

a global product property at the top-most SHVM node.

v

v

local specifications for every core method.

v

variation point specifications for every variation point.

» each variant inherits the property of its variation point.

Specification Language sLTL
The formulae of sLTL are inductively defined by:

pu=plop|loiAg2 | d1V 2 | XD |G| P1 W

10

Specification of Example

Global Product Property of Cash Desk
Entering of products must be completed before payment:

sale — (—payment W (r A enterProd A X sale))

CashDesk

3 @Payment i
| writeReceipt() I
| updateStock() \\ |

11

Specification of Example (2)

Local Specification of sale()

sale() only calls payment () after returning from enterProd():

sale W enterProd W sale W payment W (G sale)

where ¢ W 1) abbreviates ¢ A (¢ W).

CashDesk

i writeReceipt() cpEt |
! updateStock() \ 1

12

Specification of Example(3)

VP Specification of @EnterProducts

enterProd() never calls payment (): G (—payment)

VP Specification of @Payment

payment () never calls enterProd(): G (—enterProd)

CashDesk

\ writeReceipt()
| updateStock()

13

Compositional Verification Procedure

For every SHVM (Mc,{VP1,..., VPn}) :
» For each core method m € Mc, verify local specification.

» For every module, verify SHVM specification under the assumption of
core method specifications and variation point specifications.

SHVM SHVM Specification

Variation Point

Specifications
[.]

: Local
i Specification

14

Verification of Core Specifications

For every SHVM (M¢, {VP1,..., VPy}) and for every public
method m € Mpyp:

» extract the method graph G,, from the implementation of m
» inline the already extracted graphs for the private methods

» model check the resulting method graph against the specification v,
of m to establish G, = ¥, by standard finite—state model checking

15

Compositional Verification of SHVM

For every SHVM (Mc¢, {VP1,..., VPy}):

» for all public methods m € M, with specification v, construct the
maximal method graphs Max(¢m, Im) wrt. interface I,

» for all variation points VP; with specification 1)yp, construct the
maximal flow graphs Max(¢vp,, lvp,) wrt. interface lyp,

» compose the graphs, resulting in flow graph Gaax, and model check
the latter against the SHVM property ¢.

W Max(¥m, Im)) Max(ve;, lve;) | E ¢

meEMpup VP,e{VPy,..,VPy}

16

Correctness

Theorem

Let S be an SHVM with global property ¢. If the verification procedure
succeeds for S, then p = ¢ for all its products p € products(S).

Proof.
The proof is by induction on the nesting depth of S.

17

Tool Support: ProMoVer

for ProductFamilies

000

Mozilla Firefox

(=)
@D @ GO @ @ wwimmmsteiay v (L of e page))
Most Visited ~ Getting Started ~ Latest Headlines 3
™=
0 buck to ProMoV A
partially adapted to verify
pas
problems away.
Usage
ply paste your Th a IDKL6, package. Yy buton.,
cequized nothing
o provided sale.s ment.
+ tvarianc_prop: (1 payaent U
- son_pointa:
o
e
while (i< 10)(
At Serbonrdons
)
cospant);
Payment Cash()
P m——
lcorer gaspmenk
 Hlocal intertace: zequised sothing v
* Slocal prop: 55 5
9
:Tcasnoes 4
4

18

Tool Support: ProMoVer for ProductFamilies

Program:

+ variant_ interface: required nothing
provided sale,gnterProd, payment

« gvariant_prop: (! payment U (gf

./

public class

=

* #local_interface: required

. hou:_pmp: i

pubhc void zale(){
nt

while u < 100

pes)

payment ()
R

¥

=

+ gvariation_point_interface: required nothing
. provided gnterPred
* gvariation_point_prop: [...]

* gvariants: Keyboard,Scanner

* variant: Keyboard-E;

* Wveriant_intesfaces remired mothing

. provided en

<«

18

Input for Cash Desk Example

Variant Annotations:
/% %

* Q@uariant: CashDesk

*

* Quariant_interface: required

* provided sale,enterProd,payment
*

* Quartant_prop:

* sale --> (!payment W (r &8 enterProd &6 X sale))
*

* Quartation_points: EnterProducts, Payment

*/

public class CashDesk{

19

In

put for Cash Desk Example (2)

Core Annotations:

/%

*
*
*
*
*
*

*/

*
@core: CashDesk
@local_interface: required enterProd,payment
@local_prop:
(sale W enterProd W sale W payment W (G sale))

public void sale(){

int i = 0;

while (i < 10){
enterProd () ;
i++;

}

payment () ;

updateStock () ;

writeReceipt ();

20

Input for Cash Desk Example (3)

Variation Point Annotations:

J k%

@variation_point: EnterProducts_CashDesk

Ouariation_point_interface: required
provided enterProd

@uvariation_point_prop: G !payment

@uariants: Keyboard, Scanner

*/

*
*
*
*
*
*
*
*
*

21

Analysis Result for Cash Desk Example

PREPROCESSOR TIME IS: 1.52 seconds
FLOW GRAPH EXTRACTOR TIME IS: 3.12 seconds

the method sale.CashDesk matches its implementation
the method enterProd.Keyboard-EnterProducts matches its implementation
the method enterProd.Scanner-EnterProducts matches its implementation

[...]

FIRST TASK TIME IS: 3.58 seconds // for verification of local specifications
Verifying variant Keybord-EnterProducts

THE VERIFICATION RESULT IS: YES.

Verifying variant Scanner-EnterProducts
THE VERIFICATION RESULT IS: YES.

[...]

Verifying variant CashDesk
THE VERIFICATION RESULT IS: YES.

THE WHOLE VERIFICATION TIME IS: 25.37 seconds

22

Evaluation

We compositionally verified different product families:
» CD - Simple Cash Desks
» CD/CH - Cash Desks with Coupon Handling
» CD/CT - Cash Desks with Credit Cards
» CD/CT/CH - Cash Desks with Credit Cards and Coupon Handling

Analysis Results:

Product Line Depth # Modules # Products tindls] teompl|s]
CD 1 5 4 101 26
CD/CH 1 7 8 206 28
CD/CT 2 9 11 281 29
CD/CH/CT 2 11 20 518 30

Conclusion

Summary

» Compositional analysis of product families defined by HVM

» Verification of control flow safety properties for SHVM

Future Work
> Relax restrictions of SHVM

> Improvements of ProMoVer tool

» Use approach with other compositional reasoning techniques

24

	Titlepage

