
Compositional Verification of Software Product Families

Ina Schaefer1 Dilian Gurov2 Siavash Soleimanifard2

1 Technische Universität Braunschweig, Germany

2 Kungliga Tekniska Högskolan, Stockholm, Sweden

Deduction at Scale 2011

Schloß Ringberg, 7 March 2011

http://www.hats-project.eu
http://cordis.europa.eu/fp7/home_en.html

Motivation

Product Family

Set of products with well–defined commonalities and variabilities

P1

P3

P2

P4

1

Hierarchical Variability Modelling for Product Families

@VP1

Product Family

V21

@VP2

Core

V22V11 V12

Variation
Point

Variant

2

Analysis of Product Families

Non-Compositional Analysis

Verification tasks bound by (#variants)(#VP)ND

Compositional Analysis

Verification tasks bound by (#variants ×#VP)ND

@VP1

Product Family

V21

@VP2

V22V11 V12

3

Compositional Analysis of Product Families

I Relativize Product Properties towards Variation Points

I Apply Compositional Analysis Technique

@VP1

Product Family

V21

@VP2

V22V11 V12

Local
Specification

of Core

Global Product
Specification

Variation Point
Specifications

4

Outline

I Compositional Verification of Control Flow Safety Properties

I Hierarchical Variability Modelling

I Modular Specification of Core and Variation Point Properties

I Compositional Reasoning using Variation Point Properties

5

Compositional Verification of Control Flow Safety Prop.

Compositional Verification Technique by D. Gurov and M. Huisman1

Program Model

I flow graphs (no data)

I method call edges, return nodes

I infinite–state behaviour

Logic

I temporal logic for safety properties

I legal sets of sequences of method invocations

1
Dilian Gurov, Marieke Huisman, and Christoph Sprenger: ”Compositional Verification of Sequential Programs with

Procedures”, Journal of Information and Computation, 2008

6

Simple Hierarchical Variability Model

Inductively defined as

(i) a ground model consisting of a core set of methods
MC = (Mpub,Mpriv), partitioned into public and private methods.

(ii) a pair (MC , {VP1, . . . ,VPN}), where MC is defined as above and
where {VP1, . . . ,VPN} is a non-empty set of variation points.

A variation point VP i is a non-empty set of SHVMs,
VP i = {Si ,j | 1 ≤ j ≤ ki}. The members of a variation point are
called variants.

7

Example: Cash Desk Product Family

CashDesk

Keyboard Scanner Cash Card

@EnterProducts @Payment

cardPay()
enterCard()cashPay()

enterProd()

useKeyboard() useScanner()

writeReceipt()
updateStock()

sale()

payment()payment()enterProd()

8

Why Simple Hierarchical Variability Model?

I At each variation point, select exactly one variant.

I No dependencies between variants and variation points.

I Same interface for all variants at a variation point.
(same set of public provided methods)

9

Specification for Compositional Reasoning

We have to provide

I a global product property at the top-most SHVM node.

I local specifications for every core method.

I variation point specifications for every variation point.

I each variant inherits the property of its variation point.

Specification Language sLTL

The formulae of sLTL are inductively defined by:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

10

Specification of Example

Global Product Property of Cash Desk

Entering of products must be completed before payment:

sale → (¬payment W (r ∧ enterProd ∧ X sale))

CashDesk

Keyboard Scanner Cash Card

@EnterProducts @Payment

cardPay()
enterCard()cashPay()

enterProd()

useKeyboard() useScanner()

writeReceipt()
updateStock()

sale()

payment()payment()enterProd()

11

Specification of Example (2)

Local Specification of sale()

sale() only calls payment() after returning from enterProd():

sale W′ enterProd W′ sale W′ payment W′ (G sale)

where φ W′ ψ abbreviates φ ∧ (φ W ψ).

CashDesk

Keyboard Scanner Cash Card

@EnterProducts @Payment

cardPay()
enterCard()cashPay()

enterProd()

useKeyboard() useScanner()

writeReceipt()
updateStock()

sale()

payment()payment()enterProd()

12

Specification of Example(3)

VP Specification of @EnterProducts

enterProd() never calls payment(): G (¬payment)

VP Specification of @Payment

payment() never calls enterProd(): G (¬enterProd)

CashDesk

Keyboard Scanner Cash Card

@EnterProducts @Payment

cardPay()
enterCard()cashPay()

enterProd()

useKeyboard() useScanner()

writeReceipt()
updateStock()

sale()

payment()payment()enterProd()

13

Compositional Verification Procedure

For every SHVM (MC , {VP1, . . . ,VPN}) :

I For each core method m ∈ MC , verify local specification.

I For every module, verify SHVM specification under the assumption of
core method specifications and variation point specifications.

@VP1

SHVM

@VPn

Local
Specification

SHVM Specification

Variation Point
Specifications

Core [...]

14

Verification of Core Specifications

For every SHVM (MC , {VP1, . . . ,VPN}) and for every public
method m ∈ Mpub:

I extract the method graph Gm from the implementation of m

I inline the already extracted graphs for the private methods

I model check the resulting method graph against the specification ψm

of m to establish Gm |= ψm by standard finite–state model checking

15

Compositional Verification of SHVM

For every SHVM (MC , {VP1, . . . ,VPN}):

I for all public methods m ∈ Mpub with specification ψm, construct the
maximal method graphs Max(ψm, Im) wrt. interface Im

I for all variation points VP i with specification ψVP i
construct the

maximal flow graphs Max(ψVPi
, IVPi

) wrt. interface IVP i

I compose the graphs, resulting in flow graph GMax , and model check
the latter against the SHVM property φ. ⊎

m∈Mpub

Max(ψm, Im)]
⊎

VP i∈{VP1,...,VPN}

Max(ψVP i
, IVP i

)

 |= φ

16

Correctness

Theorem

Let S be an SHVM with global property φ. If the verification procedure
succeeds for S, then p |= φ for all its products p ∈ products(S).

Proof.

The proof is by induction on the nesting depth of S.

17

Tool Support: ProMoVer for ProductFamilies

18

Tool Support: ProMoVer for ProductFamilies

18

Input for Cash Desk Example

Variant Annotations:

/**

* @variant: CashDesk

*

* @variant_interface: required

* provided sale ,enterProd ,payment

*

* @variant_prop:

* sale --> (!payment W (r && enterProd && X sale))

*

* @variation_points: EnterProducts , Payment

*/

public c la s s CashDesk{ ...

19

Input for Cash Desk Example (2)

Core Annotations:

/**

* @core: CashDesk

*

* @local_interface: required enterProd ,payment

*

* @local_prop:

* (sale W enterProd W sale W payment W (G sale))

*/

public void sale(){
int i = 0;
while (i < 10){

enterProd ();
i++;

}
payment ();
updateStock ();
writeReceipt ();

}
20

Input for Cash Desk Example (3)

Variation Point Annotations:

/**

* @variation_point: EnterProducts_CashDesk

*

* @variation_point_interface: required

* provided enterProd

*

* @variation_point_prop: G !payment

*

* @variants: Keyboard ,Scanner

**/

21

Analysis Result for Cash Desk Example

PREPROCESSOR TIME IS: 1.52 seconds

FLOW GRAPH EXTRACTOR TIME IS: 3.12 seconds

the method sale.CashDesk matches its implementation

the method enterProd.Keyboard-EnterProducts matches its implementation

the method enterProd.Scanner-EnterProducts matches its implementation

[...]

FIRST TASK TIME IS: 3.58 seconds // for verification of local specifications

Verifying variant Keybord-EnterProducts

THE VERIFICATION RESULT IS: YES.

Verifying variant Scanner-EnterProducts

THE VERIFICATION RESULT IS: YES.

[...]

Verifying variant CashDesk

THE VERIFICATION RESULT IS: YES.

THE WHOLE VERIFICATION TIME IS: 25.37 seconds

22

Evaluation

We compositionally verified different product families:

I CD - Simple Cash Desks

I CD/CH - Cash Desks with Coupon Handling

I CD/CT - Cash Desks with Credit Cards

I CD/CT/CH - Cash Desks with Credit Cards and Coupon Handling

Analysis Results:

provided by annotations. Figure 3 shows in the left column the annotation for
the @EnterProd variation point, while the annotations for its Keyboard variant
with core method enterProd are shown in the right column. ProMoVer fully
automatically extracts the SHVM modules and the corresponding flow graphs
from the annotated source code and performs the associated model checking
tasks.

/**
* @variation_point:
* EnterProd
* @variation_point_interface:
* provided enterProd ()
* @variation_point_ltl_prop:
* G ! payment
* @variants: Keyboard , Scanner
*/

/** @variant: Keyboard
* @variant_interface:
* provided enterProd ()
* @variation_points:
*/

/** @core: Keyboard
* @local_interface:
* required
* @local_ltl_prop: G ! payment
*/
public int enterProd (){
...

Fig. 3: Annotations for variation point @EnterProd and its variant Keyboard

For evaluating our compositional verification approach, we considered the
verification of the safety property explained in Example 5 for different versions
of the trading system product line [20]. The product lines of cash desks were
described as SHVMs with different hierarchical depths and different total num-
bers of modules. As a basis, we used the product line described in Example 1
and extended it by an optional coupon handling functionality within the sale
method, and a variation point for accepting different card types as a hierarchical
refinement of variant Card. For each product line, we compared the time required
to verify all induced products individually with the time for compositional veri-
fication. The experiments were performed on a SUN SPARC machine.

The results are summarized in Table 1 where CD denotes the product line of
Example 1, CD/CH the version with coupon handling, CD/CH the version with dif-
ferent card types and CD/CH/CT the version with coupon handling and different
card types. As it can be observed from the table, the processing time tind for
verifying every product individually grows dramatically when new modules and
levels of hierarchy are added to the SHVM. This is easily explained by the ana-

Product Line Depth # Modules # Products tind[s] tcomp[s]

CD 1 5 4 101 26
CD/CH 1 7 8 206 28
CD/CT 2 9 11 281 29
CD/CH/CT 2 11 20 518 30

Table 1: Evaluation Results

12 23

Conclusion

Summary

I Compositional analysis of product families defined by HVM

I Verification of control flow safety properties for SHVM

Future Work

I Relax restrictions of SHVM

I Improvements of ProMoVer tool

I Use approach with other compositional reasoning techniques

24

	Titlepage

