
Leonardo de Moura

Online demo at the Z3 website.

Models as functional programs.

Quantified SMT formulas.
Applications: synthesis, software verification, ...

forall x. f(x, x) >= x+a,

f(a, b) < a, a > 0

f (x1, x2) = if (x1 = 1 and x2 = 2) then 0 else x1 + 1

Leonardo de Moura and Grant Passmore

Theorem Prover/
Satisfiability Checker

F Satisfiable

(model)

Unsatisfiable

(proof)
Config

Z3 has more than
300 options

Current SMT solvers provide

a combination

of different engines

DPLL

Simplex

Grobner
Basis

-
elimination

Superposition

Simplification

Congruence
Closure

KB
Completion

SMT

…

Actual feedback provided by Z3 users:

“Could you send me your CNF converter?”

“I want to implement my own search strategy.”

“I want to include these rewriting rules in Z3.”

“I want to apply a substitution to term t.”

“I want to compute the set of implied equalities.”

Popularized by SMT solvers such as: Simplify.
Part of SMT-LIB 2.0 standard.

push, assert(F1), push, assert(F2), check, pop, assert(F3), check

Is
F1 and F2

Sat?

Is
F1 and F3

Sat?

Popularized by SMT solvers such as: Simplify.
Part of SMT-LIB 2.0 standard.

push, assert(F1), push, assert(F2), check, pop, assert(F3), check

Is
F1 and F2

Sat?

Is
F1 and F3

Sat?

Users need more
than that!

Different Strategies for Different Domains.

Different Strategies for Different Domains.

From timeout to 0.05 secs…

Hardware Fixpoint Checks.

Given: and

Ranking function synthesis.

Join work with C. Wintersteiger and Y. Hamadi

FMCAD 2010

QBVF = Quantifiers + Bit-vectors + uninterpreted functions

Z3 is using different engines:

rewriting, simplification, model checking, SAT, …

Z3 is using a customized strategy.

We could do it because

we have access to the source code.

SMT solvers are collections of little engines.

They should provide access to these engines.

Users should be able to define their own strategies.

Inspired by ideas from:

Interactive Theorem Proving: Tactics, Goals, …

Rushby’s Tool Bus.

Simplifier

Rewriter

CNF, NNF, SKNF converters

Procedures for:

Quantifier Elimination

Gaussian Elimination

Grobner Basis

Polynomial Factorization

….

… …

A tactic splits a goal in sub-goals.

It also provides a model-builder and a proof-builder.

Goal = set of formulas.

A tactic splits a goal in a “stream” of sub-goals.

The “stream” may be produced on-demand.

It is easy to support over/under approximations.

In most cases it is not feasible to manually inspect
the state of a goal.

Probes provide statistics or abstract views of goals.

Or tactics that receive other tactics as arguments.

It opens so many possibilities.

Example: Abstract Partial CAD in RAHD

More about that in Paul Jackson’s talk.

It is based on the “Boolean-Abstraction” Tactic.

AKA (Lazy DNF converter)

(a < 2  a > 3)  (not (a < 2))  b = a  (b < 2  b > 4)

produces the “stream”:

a > 3  (not (a < 2))  b = a  b < 2

a > 3  (not (a < 2))  b = a  b > 4

A common idiom in SMT is:

Perform “cheap” theory reasoning during the search.

Perform “expensive” theory reasoning after a full
Boolean assignment is produced.

These should be parameters to a more general
strategy.

Communication based on SMT-LIB 2.0 format.

+ extensions

Basic capability:

 “naming” of formulas, goals, tactics, ... (any entity)

Working in progress: Z3 ↔ RAHD demo.

Different domains need different strategies.

We must expose the little engines in SMT solvers.

Interaction between different engines is a must.

Users can try their little engines in the context of a much
bigger infrastructure.

More transparency.

