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Euclid’s Algorithm in TLA+ (1/2)

We start by defining divisibility and GCD

MODULE Euclid
EXTENDS Naturals
PosInteger ∆

= Nat \ {0}
Maximum(S) ∆

= CHOOSE x ∈ S : ∀y ∈ S : x ≥ y
d | q ∆

= ∃k ∈ 1 .. q : q = k ∗ d \* definition of divisibility
Divisors(q) ∆

= {d ∈ 1 .. q : d | q} \* set of divisors
GCD(p, q) ∆

= Maximum(Divisors(p) ∩Divisors(q))

Standard mathematical definitions

I TLA+ is based on (untyped) set theory
I simple module language for structuring larger specification
I import TLA+ library module Naturals for basic arithmetic
I TLA+ module contains declarations, assertions, and definitions

Stephan Merz (INRIA Nancy) TLAPS: The TLA+ Proof System Deduction at Scale, 03/2011 3 / 23



Euclid’s Algorithm in TLA+ (2/2)

Now model the algorithm and assert its correctness

CONSTANTS M, N
ASSUME Positive ∆

= M ∈ PosInteger∧N ∈ PosInteger
VARIABLES x, y

Init ∆
= x = M∧ y = N

SubX ∆
= x < y∧ y′ = y− x∧ x′ = x

SubY ∆
= y < x∧ x′ = x− y∧ y′ = y

Spec ∆
= Init∧�[SubX ∨ SubY]〈x,y〉

Correctness ∆
= x = y⇒ x = GCD(M, N)

THEOREM Spec⇒ �Correctness

Transitions represented by action formulas SubX, SubY

Algorithm represented by initial condition and next-state relation

Correctness expressed as TLA formula
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Verification of Euclid’s Algorithm: Model Checking

TLC : explicit-state model checker

I verify correctness properties for finite instances

I Euclid: fix concrete values for M and N

I check that the result is correct for these inputs

Variation: verify correctness over fixed interval

Invaluable for debugging TLA+ models

I verify many seemingly trivial properties

I type correctness, executability of every individual action, . . .

I absence of deadlock, eventual response to requests, . . .

I reveal corner cases before attempting full correctness proof
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Using TLAPS to Prove Euclid’s Algorithm Correct

Verify correctness for all possible inputs

TLAPS: proof assistant for verifying TLA+ specifications

I interesting specifications cannot be verified fully automatically
I user provides proof (skeleton) to guide verification
I automatic back-end provers discharge leaf obligations

Application to Euclid’s algorithm

I first step: strengthen correctness property inductive invariant

InductiveInvariant ∆
= ∧ x ∈ PosInteger
∧ y ∈ PosInteger
∧ GCD(x, y) = GCD(M, N)
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Underlying Data Properties

The algorithm relies on the following properties of GCD

THEOREM GCDSelf ∆
= ASSUME NEW p ∈ PosInteger

PROVE GCD(p, p) = p

THEOREM GCDSymm ∆
= ASSUME NEW p ∈ PosInteger,

NEW q ∈ PosInteger
PROVE GCD(p, q) = GCD(q, p)

THEOREM GCDDiff ∆
= ASSUME NEW p ∈ PosInteger,

NEW q ∈ PosInteger,
p < q

PROVE GCD(p, q) = GCD(p, q− p)

ASSUME . . . PROVE : TLA+ notation for sequents

We won’t bother proving these properties here
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Proving an Invariant in TLA+

Init⇒ Inv Inv∧ [Next]v ⇒ Inv′ Inv⇒ Corr
Init∧�[Next]v ⇒ �Corr

Representation as a TLA+ sequent

THEOREM ProveInv ∆
= ASSUME STATE Init, STATE Inv, STATE Corr,

ACTION Next, STATE v,
Init⇒ Inv,
Inv∧ [Next]v ⇒ Inv′,
Inv⇒ Corr

PROVE Init∧�[Next]v ⇒ �Corr

Currently, TLAPS doesn’t handle temporal logic

We’ll prove the non-temporal hypotheses
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Simple Proofs

Prove that InductiveInvariant implies Correctness

LEMMA InductiveInvariant⇒ Correctness
OBVIOUS

I by default, definitions and facts must be cited explicitly

I this helps manage the size of the search space for backend provers

Prove that Init implies InductiveInvariant

LEMMA Init⇒ InductiveInvariant
BY Positive DEFS Init, InductiveInvariant

To prove simple theorems, expand definitions and cite facts
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Hierarchical Proofs

Complex proofs consist of a sequence of claims, ending with QED

Prove that all transitions preserve InductiveInvariant

LEMMA InductiveInvariant∧ [SubX ∨ SubY]〈x,y〉 ⇒ InductiveInvariant′

〈1〉 USE DEF InductiveInvariant
〈1〉1. ASSUME InductiveInvariant, SubX

PROVE InductiveInvariant′

〈1〉2. ASSUME InductiveInvariant, SubY
PROVE InductiveInvariant′

〈1〉q. QED

BY 〈1〉1, 〈1〉2

I
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Hierarchical Proofs

Complex proofs consist of a sequence of claims, ending with QED

Prove that all transitions preserve InductiveInvariant
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I QED step verifies that the lemma follows from above steps —
includes trivial case UNCHANGED〈x, y〉
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Hierarchical Proofs: Sublevels

(...)
〈1〉1. ASSUME InductiveInvariant, SubX

PROVE InductiveInvariant′

〈2〉1. x′ ∈ PosInteger∧ y′ ∈ PosInteger
BY 〈1〉1, SimpleArithmetic DEF PosInteger, SubX
〈2〉2. QED

BY 〈1〉1, 〈2〉1, GCDDiff DEF SubX

〈1〉2. ASSUME InductiveInvariant, SubY
PROVE InductiveInvariant′

(...)

Cited fact SimpleArithmetic

I theorem from the standard module TLAPS

I invokes decision procedure for Presburger arithmetic
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Assertions (in Modules or Proofs)

Assertions state validity of formulas in current context

AXIOM and ASSUME assert unproved facts

I TLAPS handles ASSUME and AXIOM identically
I TLC checks ASSUMEd facts

THEOREM asserts that a fact is provable in the current context

I proofs can be filled in later
I GUI reflects proof status (missing, incomplete, finished)

Facts can be named for future reference

THEOREM Fermat ∆
= ∀n ∈ Nat \ (0..2) : ∀a, b, c ∈ Nat \ {0} : an + bn 6= cn
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Shape of Non-Temporal Assertions

A TLA+ assertion can be a formula or a logical sequent

F or
ASSUME A1, . . . , An

PROVE F

Shape of a sequent ASSUME . . . PROVE

I the conclusion F is always a formula

I the assumptions Ai can be

declarations NEW msg ∈ Msgs

formulas msg.type = “alert”

sequents ASSUME NEW P( ),
ASSUME NEW y PROVE P(y)

PROVE ∀x : P(x)
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The Proof Language

Hierarchical and declarative: nested lists of assertions

I forward-style presentation of natural deduction proofs
I final QED step proves enclosing assertion

SUFFICES steps for backward reasoning

I SUFFICES ϕ : show that ϕ implies current goal
I make ϕ current goal for the remainder of current scope

Using and hiding definitions and facts

I in BY proof or for remainder of current scope

A few derived forms for convenience

I reasoning patterns for basic connectives: ⇒, ∀, ∃
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Architecture of TLAPS

TLA Proof System

Proof manager

Isabelle/
TLA+

Zenon
SMT

prover

TLA+
module

with
proofs

interpret module,
compute proof obligations

convert to
constant level formulas

call backends
to attempt proof

certify proof
(when possible)
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Proof Manager

Interprets TLA+ proof language, computes proof obligations

I track module structure (imports and instantiations)
I manage context: known and usable facts and definitions
I expand operator definitions if they are usable

Rewrites proof obligations to constant level

I handle primed expressions such as Inv′

I distribute prime over (constant-level) operators
I introduce distinct symbols e and e′ for atomic state expression e

Invokes backend provers

I user may explicitly indicate which proof method to apply
I optionally: certify backend proof using Isabelle/TLA+
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Temporal Proofs (1)

The problem with modal and temporal logic

I formulas are interpreted at current (implicit) “world”

I F ` G deduce validity of G from validity of F

F ` �F

I ` F⇒ G implication holds in current behavior

` F⇒ �F
XXXXXX���

���

I standard calculi rely on identification of these sequents

Possible solution: introduce explicit parameters

I distinguish σ |= F⇒ G and (∀σ : σ |= F) ` (∀τ : τ |= G)

I also need relation σ v τ for “transferring” temporal formulas

Sound, but clumsy and defeats the purpose of temporal logic
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Temporal Proofs (2)

Key observations

I implicit behavior at lower levels is a suffix of that at higher levels
I an assumption �F is usable throughout the entire subproof
I �F ` G coincides with ` �F⇒ G

Distinguish temporal sequents in TLA+ proofs

� ASSUME F assume that F is true for all suffixes . . .
� PROVE G . . . then prove G for a fresh suffix

Proof structure

I upper levels state temporal sequents, lower levels ordinary ones
I temporal sequents never occur in the scope of ordinary ones
I all assumptions remain usable throughout the subproof
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Temporal Proof Rules

THEOREM Inv1 ∆
= � ASSUME STATE Inv,

Inv⇒ Inv′

� PROVE Inv⇒ �Inv

Use of this rule
I hypothesis �[N]v should be present in the context
I Inv⇒ Inv′ proved as shown before, using [N]v
I also prove Init⇒ Inv in order to derive Spec⇒ �Inv

Substantial simplification of temporal verification rules

THEOREM SF1 ∆
= � ASSUME STATE P, STATE Q, STATE f , ACTION A,

SFf (A),
P⇒ P′ ∨Q′,
P∧ 〈A〉f ⇒ Q′,
�P⇒ ♦ENABLED 〈A〉f

� PROVE P Q
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Present and future of the TLAPS

Current release: october 2010
I releases (source and binary) include back-end provers
I Eclipse-based GUI supports non-linear interaction

Restricted to proving non-temporal properties
I invariant and step simulation (refinement) proofs
I carried out several case studies, some contained in distribution
I proofs of Byzantine Paxos and Memoir (security architecture)

Support for temporal logic (liveness properties)
I implement support for temporal sequents in proof manager
I encode semantics of temporal logic in Isabelle/TLA+

More backend provers
I SMT solver, eventually with proof reconstruction
I better support for standard theories (arithmetic, sequences, . . . )

Looking forward to user feedback
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