TLAPS: The TLA⁺ Proof System

Stephan Merz

joint work with K. Chaudhuri, D. Cousineau, D. Doligez, L. Lamport

INRIA Nancy

Microsoft Research - INRIA Joint Centre Saclay

entre de recherche NANCY - GRAND-EST

http://www.msr-inria.inria.fr/Projects/tools-for-formal-specs

Deduction at Scale, Schloss Ringberg March 2011

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Deduction at Scale, 03/2011 1 / 23

Overview

- 1 The TLA⁺ Specification Language
- **2** Theorem Proving With TLAPS
- 3 The TLA⁺ Proof Language
 - 4 Conclusions

3

Euclid's Algorithm in TLA^+ (1/2)

• We start by defining divisibility and GCD

MODULE EuclidEXTENDS NaturalsPosInteger \triangleq Nat \ {0}Maximum(S) \triangleq CHOOSE $x \in S : \forall y \in S : x \ge y$ $d \mid q \triangleq \exists k \in 1 ...q : q = k * d$ * definition of divisibilityDivisors(q) \triangleq { $d \in 1 ...q : d \mid q$ } * set of divisors $GCD(p,q) \triangleq$ Maximum(Divisors(p) \cap Divisors(q))

• Standard mathematical definitions

- ► TLA⁺ is based on (untyped) set theory
- simple module language for structuring larger specification
- ▶ import TLA⁺ library module *Naturals* for basic arithmetic
- TLA⁺ module contains declarations, assertions, and definitions

Euclid's Algorithm in TLA^+ (2/2)

• Now model the algorithm and assert its correctness

CONSTANTS
$$M, N$$

ASSUME Positive $\stackrel{\Delta}{=} M \in PosInteger \land N \in PosInteger$
VARIABLES x, y
Init $\stackrel{\Delta}{=} x = M \land y = N$
SubX $\stackrel{\Delta}{=} x < y \land y' = y - x \land x' = x$
SubY $\stackrel{\Delta}{=} y < x \land x' = x - y \land y' = y$
Spec $\stackrel{\Delta}{=} Init \land \Box [SubX \lor SubY]_{\langle x, y \rangle}$
Correctness $\stackrel{\Delta}{=} x = y \Rightarrow x = GCD(M, N)$
THEOREM Spec $\Rightarrow \Box Correctness$

- Transitions represented by action formulas SubX, SubY
- Algorithm represented by initial condition and next-state relation
- Correctness expressed as TLA formula

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

イロト イヨト イヨト

Euclid's Algorithm in TLA^+ (2/2)

• Now model the algorithm and assert its correctness

- Transitions represented by action formulas SubX, SubY
- Algorithm represented by initial condition and next-state relation
- Correctness expressed as TLA formula

Stephan Merz (INRIA Nancy)

TLAPS: The TLA⁺ Proof System

Verification of Euclid's Algorithm: Model Checking

- TLC : explicit-state model checker
 - verify correctness properties for finite instances
 - Euclid: fix concrete values for *M* and *N*
 - check that the result is correct for these inputs
- Variation: verify correctness over fixed interval
- Invaluable for debugging TLA⁺ models
 - verify many seemingly trivial properties
 - type correctness, executability of every individual action, ...
 - absence of deadlock, eventual response to requests, ...
 - reveal corner cases before attempting full correctness proof

Overview

The TLA⁺ Specification Language

- **2** Theorem Proving With TLAPS
 - 3 The TLA⁺ Proof Language
 - 4 Conclusions

3

Using TLAPS to Prove Euclid's Algorithm Correct

- Verify correctness for all possible inputs
- TLAPS: proof assistant for verifying TLA⁺ specifications
 - interesting specifications cannot be verified fully automatically
 - user provides proof (skeleton) to guide verification
 - automatic back-end provers discharge leaf obligations

Using TLAPS to Prove Euclid's Algorithm Correct

- Verify correctness for all possible inputs
- TLAPS: proof assistant for verifying TLA⁺ specifications
 - interesting specifications cannot be verified fully automatically
 - user provides proof (skeleton) to guide verification
 - automatic back-end provers discharge leaf obligations

• Application to Euclid's algorithm

► first step: strengthen correctness property ~> inductive invariant

 $\begin{aligned} \textit{InductiveInvariant} & \stackrel{\vartriangle}{=} & \land x \in \textit{PosInteger} \\ & \land y \in \textit{PosInteger} \\ & \land \textit{GCD}(x, y) = \textit{GCD}(M, N) \end{aligned}$

Stephan Merz (INRIA Nancy)

TLAPS: The TLA⁺ Proof System

Underlying Data Properties

• The algorithm relies on the following properties of GCD

THEOREM GCDSelf \triangleq ASSUMENEW $p \in PosInteger$
PROVE<math>GCD(p,p) = pTHEOREM GCDSymm \triangleq ASSUMENEW $p \in PosInteger$,
 $NEW <math>q \in PosInteger$
 $PROVENEW <math>p \in PosInteger$
GCD(p,q) = GCD(q,p)THEOREM GCDDiff \triangleq ASSUMENEW $p \in PosInteger$,
 $NEW <math>q \in PosInteger$,
 $NEW <math>q \in PosInteger$,
 $NEW <math>q \in PosInteger$,
PROVE

- ASSUME ... PROVE : TLA⁺ notation for sequents
- We won't bother proving these properties here

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Proving an Invariant in TLA⁺

<ロ> (四) (四) (三) (三) (三)

Proving an Invariant in TLA⁺

Representation as a TLA⁺ sequent

THEOREM ProveInv \triangleq ASSUME STATE Init, STATE Inv, STATE Corr, ACTION Next, STATE v, Init \Rightarrow Inv, Inv \land [Next]_v \Rightarrow Inv', Inv \Rightarrow Corr PROVE Init $\land \Box$ [Next]_v \Rightarrow \Box Corr

- Currently, TLAPS doesn't handle temporal logic
- We'll prove the non-temporal hypotheses

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Simple Proofs

• Prove that InductiveInvariant implies Correctness

LEMMA InductiveInvariant \Rightarrow Correctness OBVIOUS

Simple Proofs

• Prove that InductiveInvariant implies Correctness

LEMMA InductiveInvariant ⇒ Correctness BY GCDSelf DEFS InductiveInvariant, Correctness

- by default, definitions and facts must be cited explicitly
- this helps manage the size of the search space for backend provers

イロト イロト イヨト イヨト

Simple Proofs

• Prove that InductiveInvariant implies Correctness

LEMMA InductiveInvariant ⇒ Correctness By GCDSelf DEFS InductiveInvariant, Correctness

- by default, definitions and facts must be cited explicitly
- this helps manage the size of the search space for backend provers
- Prove that Init implies InductiveInvariant

LEMMA Init \Rightarrow InductiveInvariant By Positive DEFS Init, InductiveInvariant

• To prove simple theorems, expand definitions and cite facts

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Deduction at Scale, 03/2011 10 / 23

イロト 不得 とくほ とくほとう

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve InductiveInvariant

LEMMA InductiveInvariant $\land [SubX \lor SubY]_{\langle x,y \rangle} \Rightarrow InductiveInvariant'$

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve InductiveInvariant

LEMMA InductiveInvariant $\land [SubX \lor SubY]_{\langle x,y \rangle} \Rightarrow$ InductiveInvariant' $\langle 1 \rangle$ USE DEF InductiveInvariant

▶ (scoped) USE DEF causes TLAPS to silently expand definitions

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Deduction at Scale, 03/2011 11 / 23

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve InductiveInvariant

LEMMA InductiveInvariant $\land [SubX \lor SubY]_{\langle x,y \rangle} \Rightarrow$ InductiveInvariant' $\langle 1 \rangle$ USE DEF InductiveInvariant $\langle 1 \rangle$ 1. ASSUME InductiveInvariant, SubX PROVE InductiveInvariant' $\langle 1 \rangle$ 2. ASSUME InductiveInvariant, SubY PROVE InductiveInvariant'

• The steps $\langle 1 \rangle 1$ and $\langle 1 \rangle 2$ will be proved subsequently

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Deduction at Scale, 03/2011 11 / 23

- Complex proofs consist of a sequence of claims, ending with QED
- Prove that all transitions preserve InductiveInvariant

LEMMA InductiveInvariant $\land [SubX \lor SubY]_{\langle x,y \rangle} \Rightarrow$ InductiveInvariant' $\langle 1 \rangle$ USE DEF InductiveInvariant $\langle 1 \rangle$ 1. ASSUME InductiveInvariant, SubX PROVE InductiveInvariant' $\langle 1 \rangle$ 2. ASSUME InductiveInvariant, SubY PROVE InductiveInvariant' $\langle 1 \rangle q$. QED BY $\langle 1 \rangle 1, \langle 1 \rangle 2$

• QED step verifies that the lemma follows from above steps — includes trivial case UNCHANGED $\langle x, y \rangle$

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Hierarchical Proofs: Sublevels

 (...)
 ⟨1⟩1. ASSUME InductiveInvariant, SubX PROVE InductiveInvariant'
 ⟨1⟩2. ASSUME InductiveInvariant, SubY PROVE InductiveInvariant'
 (...)

Hierarchical Proofs: Sublevels

```
(...)
⟨1⟩1. ASSUME InductiveInvariant, SubX
PROVE InductiveInvariant'
⟨2⟩1. x' ∈ PosInteger ∧ y' ∈ PosInteger
⟨2⟩2. QED
BY ⟨1⟩1, ⟨2⟩1, GCDDiff DEF SubX
⟨1⟩2. ASSUME InductiveInvariant, SubY
PROVE InductiveInvariant'
(...)
```

Hierarchical Proofs: Sublevels

(...)
⟨1⟩1. ASSUME InductiveInvariant, SubX PROVE InductiveInvariant'
⟨2⟩1. x' ∈ PosInteger ∧ y' ∈ PosInteger BY ⟨1⟩1, SimpleArithmetic DEF PosInteger, SubX
⟨2⟩2. QED BY ⟨1⟩1, ⟨2⟩1, GCDDiff DEF SubX
⟨1⟩2. ASSUME InductiveInvariant, SubY PROVE InductiveInvariant'
(...)

• Cited fact SimpleArithmetic

- theorem from the standard module TLAPS
- invokes decision procedure for Presburger arithmetic

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Deduction at Scale, 03/2011 12 / 23

Overview

The TLA⁺ Specification Language

- 2 Theorem Proving With TLAPS
- 3 The TLA⁺ Proof Language

4 Conclusions

Э

Assertions (in Modules or Proofs)

- Assertions state validity of formulas in current context
- AXIOM and ASSUME assert unproved facts
 - TLAPS handles ASSUME and AXIOM identically
 - TLC checks ASSUMEd facts
- THEOREM asserts that a fact is provable in the current context
 - proofs can be filled in later
 - GUI reflects proof status (missing, incomplete, finished)

• Facts can be named for future reference

THEOREM Fermat $\stackrel{\Delta}{=} \forall n \in Nat \setminus (0..2) : \forall a, b, c \in Nat \setminus \{0\} : a^n + b^n \neq c^n$

Stephan Merz (INRIA Nancy)

Shape of Non-Temporal Assertions

• A TLA⁺ assertion can be a formula or a logical sequent

F	or	ASSUME	A_1,\ldots,A_n
		PROVE	F

• Shape of a sequent ASSUME ... PROVE

- ▶ the conclusion *F* is always a formula
- the assumptions *A_i* can be

declarationsNEW $msg \in Msgs$ formulasmsg.type = ``alert''sequentsASSUME NEW $P(_)$,
ASSUME NEW y PROVE P(y)
PROVE $\forall x : P(x)$

The Proof Language

- Hierarchical and declarative: nested lists of assertions
 - forward-style presentation of natural deduction proofs
 - final QED step proves enclosing assertion
- SUFFICES steps for backward reasoning
 - SUFFICES φ : show that φ implies current goal
 - make φ current goal for the remainder of current scope
- Using and hiding definitions and facts
 - in BY proof or for remainder of current scope
- A few derived forms for convenience
 - ▶ reasoning patterns for basic connectives: \Rightarrow , \forall , \exists

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System

Architecture of TLAPS

Stephan Merz (INRIA Nancy)

TLAPS: The TLA⁺ Proof System

Deduction at Scale, 03/2011 17 / 23

<ロ> (四) (四) (三) (三) (三)

Proof Manager

• Interprets TLA⁺ proof language, computes proof obligations

- track module structure (imports and instantiations)
- manage context: known and usable facts and definitions
- expand operator definitions if they are usable
- Rewrites proof obligations to constant level
 - ▶ handle primed expressions such as *Inv*′
 - distribute prime over (constant-level) operators
 - ▶ introduce distinct symbols *e* and *e*′ for atomic state expression *e*

• Invokes backend provers

- user may explicitly indicate which proof method to apply
- ► optionally: certify backend proof using Isabelle/TLA⁺

Stephan Merz (INRIA Nancy)

Temporal Proofs (1)

- The problem with modal and temporal logic
 - formulas are interpreted at current (implicit) "world"
 - $F \vdash G$ deduce validity of *G* from validity of *F*
 - $\vdash F \Rightarrow G$ implication holds in current behavior
 - standard calculi rely on identification of these sequents

Temporal Proofs (1)

- The problem with modal and temporal logic
 - formulas are interpreted at current (implicit) "world"
 - $F \vdash G$ deduce validity of *G* from validity of *F*
 - $\vdash F \Rightarrow G$ implication holds in current behavior
 - standard calculi rely on identification of these sequents

イロト イロト イヨト イヨト

Temporal Proofs (1)

- The problem with modal and temporal logic
 - formulas are interpreted at current (implicit) "world"
 - $F \vdash G$ deduce validity of *G* from validity of *F*
 - $\vdash F \Rightarrow G$ implication holds in current behavior
 - standard calculi rely on identification of these sequents
- Possible solution: introduce explicit parameters
 - distinguish $\sigma \models F \Rightarrow G$ and $(\forall \sigma : \sigma \models F) \vdash (\forall \tau : \tau \models G)$
 - ► also need relation $\sigma \sqsubseteq \tau$ for "transferring" temporal formulas
- Sound, but clumsy and defeats the purpose of temporal logic

Temporal Proofs (2)

• Key observations

- implicit behavior at lower levels is a suffix of that at higher levels
- an assumption $\Box F$ is usable throughout the entire subproof
- $\Box F \vdash G$ coincides with $\vdash \Box F \Rightarrow G$
- Distinguish temporal sequents in TLA⁺ proofs
 - \Box ASSUME Fassume that F is true for all suffixes ... \Box PROVEG... then prove G for a fresh suffix

Proof structure

- upper levels state temporal sequents, lower levels ordinary ones
- temporal sequents never occur in the scope of ordinary ones
- all assumptions remain usable throughout the subproof

Temporal Proof Rules

THEOREM $Inv1 \triangleq \Box$ Assume state Inv, $Inv \Rightarrow Inv'$ \Box Prove $Inv \Rightarrow \Box Inv$

• Use of this rule

- hypothesis $\Box[N]_v$ should be present in the context
- $Inv \Rightarrow Inv'$ proved as shown before, using $[N]_v$
- ▶ also prove $Init \Rightarrow Inv$ in order to derive $Spec \Rightarrow \Box Inv$

Temporal Proof Rules

THEOREM $Inv1 \triangleq \Box$ Assume state Inv, $Inv \Rightarrow Inv'$ \Box Prove $Inv \Rightarrow \Box Inv$

• Use of this rule

- hypothesis $\Box[N]_v$ should be present in the context
- $Inv \Rightarrow Inv'$ proved as shown before, using $[N]_v$
- ▶ also prove $Init \Rightarrow Inv$ in order to derive $Spec \Rightarrow \Box Inv$
- Substantial simplification of temporal verification rules

THEOREM SF1 \triangleq \Box ASSUME STATE P, STATE Q, STATE f, ACTION A, SF $_f(A)$, $P \Rightarrow P' \lor Q'$, $P \land \langle A \rangle_f \Rightarrow Q'$, $\Box P \Rightarrow \Diamond \text{ENABLED} \langle A \rangle_f$ \Box PROVE $P \rightsquigarrow Q$

Stephan Merz (INRIA Nancy)

TLAPS: The TLA⁺ Proof System

Overview

The TLA⁺ Specification Language

- 2 Theorem Proving With TLAPS
- 3 The TLA⁺ Proof Language
- 4 Conclusions

3

(日)

Present and future of the TLAPS

- Current release: october 2010
 - releases (source and binary) include back-end provers
 - Eclipse-based GUI supports non-linear interaction
- Restricted to proving non-temporal properties
 - invariant and step simulation (refinement) proofs
 - carried out several case studies, some contained in distribution
 - proofs of Byzantine Paxos and Memoir (security architecture)
- Support for temporal logic (liveness properties)
 - implement support for temporal sequents in proof manager
 - encode semantics of temporal logic in Isabelle/TLA⁺
- More backend provers
 - SMT solver, eventually with proof reconstruction
 - better support for standard theories (arithmetic, sequences, ...)

• Looking forward to user feedback

Stephan Merz (INRIA Nancy)

TLAPS: The TLA+ Proof System