Verified Enumeration of
Plane Graphs Modulo Isomorphism

Tobias Nipkow

Fakultat fiir Informatik
TU Miinchen



@ Background

@® Generic enumeration

© Application



@ Background



Kepler Conjecture (1611)

Theorem (Hales 1998). No packing of 3-dimensional
balls of the same radius has density greater than the
face-centered cubic packing.




Proof ideas

e Reduce infinite problem to (small!) finite one:

o Represent cluster as graph:




Sketch of Hales's proof

Proof by contradiction.
Assume there is a counterexample D.
Associate a plane graph (contravening graph) with D.

Theorem 0. Every contravening graph is tame.

Theorem 1. Every tame plane graph is isomorphic
to a graph in the Archive.

Theorem 2. No graph in the Archive is contravening.
QED



Hales's proof of Theorem 1

e Java program to enumerate all tame plane graphs.

e Run program and check that each enumerated
graph is isomorphic to one in the Archive.

But is the program correct?



The Flyspeck project

Check all of the proof with interactive theorem provers

Tom Hales & Co Pitt & Vietnam HOL light
John Harrison Intel HOL light
Steven Obua TUM Isabelle/HOL
Gertrud Bauer, T.N. TUM Isabelle/HOL



A first contribution

N., Bauer, Schultz verified Theorem 1 (IJCAR 2006):

HOL is a functional programming language.

Express executable enumeration of tame plane
graphs in HOL (instead of Java).

Verify that enumeration is complete.
Execute enumeration and check against Archive.

Hales was right



Executing HOL

Execution by equational logic:
last[1,2, 3] = last[2,3] = last[3] = 3
Too inefficient for Flyspeck.
Execution by compilation (to ML):
last[1, 2, 3] Y3

100 x less time and space.



Statistics for 2006 proof

Size of proof: 17 000 lines
Execution time: 1 hour
Number of graphs generated: 23 000 000
Number of tame graphs found: 35 000
Number of tame graphs mod iso: 3 000

Average size of graphs in Archive: 13 nodes, 18 faces



An improved proof

Christian Marchal. Study of the Kepler's conjecture: The
problem of the closest packing.
Mathematische Zeitschrift. Published online 2009.

AN
e simplifies geometric consideration
e simpler notion of tameness
e new archive of 19 000 tame graphs (mod iso)

e adapted Isabelle/HOL enumeration of tame graphs
runs out of space



@® Generic enumeration



An enumeration tree

tame



The formalization

Given:

succs : graph — (graph)list

tame : graph — bool

A naive depth-first search:

enum : (graph)list — (graph)list — (graph)list
enum [| tgs = tgs

enum (g - gs) tgs =
enum (succs g @ gs) (if tame g then g - tgs else tgs)



Problems and solutions

Problems:
e Termination
e Removal of isomorphic tame graphs

Generic solutions:
e While combinator for partial functions
o Collections over a preorder (subsumption relation)



Termination

HOL:
e A logic of total functions
e Can also define partial functions by totalizing them

Function enum:
e Do not want to prove its termination — difficult
e |t should suffice that its actual execution terminates

e Currently not directly definable in Isabelle
(or elsewhere)



A while combinator

With a few tricks definable

while : (o — bool) — (o — o) — a — («)option
where datatype («)option = None | Some «
Lemmas:

while b ¢ s = (if b s then while b ¢ (c s) else Some s)

while b c s = Somet Ps VYs.PsAbs— P(cs)
Pt




A worklist function

worklist succs f [| s = Some s

worklist succs f (x - ws) s =
worklist succs f (succs x @ ws) (f x s)

Easily definable from while.
Simple instance: f x s = if tame x then x - s else s
Must avoid collecting isomorphic graphs!

lgnore x if x <y for some y already encountered

for some preorder <



Collections over a preorder

An abstract data type:

<: e — e — bool
empty : S

insert-mod : e —> s — s
set-of : s — (e)set

set-of (insert-mod x s) = {x} U (set-of s) V
(Jy € set-of s. x X y) Ainsert-mod x s =s



Enumeration modulo <

enum succs P =
worklist succs (Ax s. if P x then insert-mod x s else s)



Implementing collections over <

By hash-maps to lists of elements:

key : e — k
lookup : m — k — (e)list
update : m — k — (e)list - m

insert-mod x m =

let k = key x;
ys = lookup m k

in if dy € set ys. x <y then m
else update m k (x - ys)



Implementing hash-maps

By tries (= key must be a list)

[3,5] — [a, b], ...



Realisation in Isabelle

e Specify ADT as “locale” (= parameterised theory)

e Implement ADT by theory interpretation



© Application



To apply the generic enumeration theory to tame plane
graphs we need

e a graph isomorphism test (=)
e a hash function for graphs



Plane graph isomorphism test

Three alternatives:
e Implement and verify efficient linear-time algorithm
— hard
e Implement unverified test and verify result-checker
— the clever cop out

e Implement and verify reasonable algorithm
— not too hard, and lets you sleep better



Hash function

key : graph — (nat)list
key g = sort(map degree (nodes g))



Results

Execution time: 10 hours
Number of graphs generated: 2 x 10°
Number of tame graphs found: 350 000
Number of tame graphs mod iso: 19 000
Avg number of graphs per trie node: 3

Found 2 graphs that were missing from Hales's Archive!



Two days later Hales emailed me:

| found the bug in my code! It was in the code
that uses symmetry to reduce the search space.
This is a bug that goes all the way back to the
1998 proof. It is just a happy coincidence that
there were no missed cases in the 1998 proof.
This is a good example of the importance of
formal proof in computer-assisted proofs.



