
Deduction Based Question
Answering and its Application

LogAnswer Embedding AD in QAS

Ulrich Furbach
Björn Pelzer

Ingo Glöckner
Hermann Helbig

Deduction Based Question
Answering and its Application

LogAnswer Embedding AD in QAS

Ulrich Furbach
Björn Pelzer

Loganswer

AR Aspects

(Application)

Ingo Glöckner
Hermann Helbig

LogAnswer - a Question-Answering
System

Who was the lead
singer of Nirvana?

Kurt Cobain

LogAnswer - a Question-Answering
System

Who was the lead
singer of Nirvana?

Kurt Cobain

LogAnswer - a Question-Answering
System

• receives a natural-language question regarding
any topic, and

• returns a natural-language answer found in a
knowledge-base.

An open domain question-answering system

Why use Logic in QA?

Shallow NLP fails when:

Why use Logic in QA?

Shallow NLP fails when:

• words in the knowledge sources do not match exactly:

When did Hannibal
cross the Alps?

The Carthaginian general led his
army over the Alps in 218 BC.

Why use Logic in QA?

Shallow NLP fails when:

• words match, but they are too far apart:

What is the
population of

Mongolia?

Mongolia is very sparsely populated
for its size. The landlocked country

between China and Russia has a
population of 2.9 million people.

• words in the knowledge sources do not match exactly:

When did Hannibal
cross the Alps?

The Carthaginian general led his
army over the Alps in 218 BC.

NLP Deduction

•NLP-components
•MultiNet knowledge

base, based on snapshot
of German Wikipedia

•theorem prover
 E-KRHyper

The LogAnswer project combines

MultiNet Knowledge Base

MultiNet:

•Multilayered Extended Semantic Networks
•language independent, but tools mostly German

MultiNet Knowledge Base

"Hinter der Anklage stand
der spätere Bürgermeister

von New York, Rudolph
Giuliani."

MultiNet to First-Order Logic

MultiNet First-Order Logic

MultiNet Knowledge Base

•snapshot of German Wikipedia

•formal representations of ~12 million sentences,
generated semi-automatically

•plus ~12,000 background knowledge axioms,
manually adapted from MultiNet inference rules and
from WordNet

Hypertableau

• splitting with purification solves the problem of variables
shared between tableau branches:

• only one branch needs to be worked on at any time

• emphasis on unit operations

• proof confluent

E-hyper tableau calculus:

• clause tree instead of literal tree

• four extension rules instead of one

• adds term ordering (reduction ordering)

• adds redundancy handling

Cade 07

Jelia 96

"Who was Ian
Fleming?"

The LogAnswer question answering system:

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform

The LogAnswer question answering system:

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform

The LogAnswer question answering system:

KB

information retrieval &
machine learning

Wikipedia-snapshot,
29 million sentences

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform

The LogAnswer question answering system:

200 best KB
fragments, "answer

candidates"KB

information retrieval &
machine learning

Wikipedia-snapshot,
29 million sentences

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform

The LogAnswer question answering system:

200 best KB
fragments, "answer

candidates"KB

information retrieval &
machine learning

Wikipedia-snapshot,
29 million sentences

Logik
KB

Backgr.
KB

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform

The LogAnswer question answering system:

200 best KB
fragments, "answer

candidates"KB

information retrieval &
machine learning

Wikipedia-snapshot,
29 million sentences

proofs

ATP E-KRHyper

FOL query

+ answer candidate

+ background knowledge

Logik
KB

Backgr.
KB

"Who was Ian
Fleming?"

word info + FOL
query

parse & transform ML-based proof
ranking & NL answer
generation

"British author"

The LogAnswer question answering system:

200 best KB
fragments, "answer

candidates"KB

information retrieval &
machine learning

Wikipedia-snapshot,
29 million sentences

proofs

ATP E-KRHyper

FOL query

+ answer candidate

+ background knowledge

Logik
KB

Backgr.
KB

Retrieval of Answer Candidates

Pre-analysed and indexed text passages allow quick
computation of syntactic filtering criteria:

Retrieval of Answer Candidates

• matchRatio: relative proportion of lexical concepts and numerals in the
question which find a match in the text passage,

• failedMatch: number of lexical concepts and numerals in the question which
find no match in the text passage,

• failedNames: proper names which find no match in the text passage,

• containsBrackets: indicates whether passage contains parentheses. “...Sydney
(Australia) ...”

Pre-analysed and indexed text passages allow quick
computation of syntactic filtering criteria:

Retrieval of Answer Candidates

• matchRatio: relative proportion of lexical concepts and numerals in the
question which find a match in the text passage,

• failedMatch: number of lexical concepts and numerals in the question which
find no match in the text passage,

• failedNames: proper names which find no match in the text passage,

• containsBrackets: indicates whether passage contains parentheses. “...Sydney
(Australia) ...”

Pre-analysed and indexed text passages allow quick
computation of syntactic filtering criteria:

Scores are aggregated into a quality estimate using decision trees. The
'best' 200 logical text passage representations are answer candidates
and will be evaluated deductively.

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1)
∨ ¬attr(X1,X2) ∨ ¬val(X2, rudy.0) ∨ ¬sub(X2, vorname.1.1)
∨ ¬attr(X1,X3) ∨ ¬val(X3, giuliani.0) ∨ ¬sub(X3, nachname.1.1)
∨ ¬sub(X1, bürgermeister.1.1)

⇒ FOCUS = c215 (2 relaxations)

User question:

Rudy Giuliani war
Bürgermeister

welcher US-Stadt?

Answer candidate:

"Hinter der Anklage
stand der spätere

Bürgermeister von New
York, Rudolph Giuliani."

Answer Generation

The FOCUS-variable
represents the core object

of the question.

Answer Generation

The FOCUS-variable
represents the core object

of the question.

Answer Generation

The FOCUS-variable
represents the core object

of the question.

Answer Generation

The FOCUS-variable
represents the core object

of the question.

Answer Generation

The FOCUS-variable
represents the core object

of the question.

Answer Generation

The FOCUS-variable
represents the core object

of the question.

"New York"

Answer Presentation

• skippedLits: number of query literals skipped by relaxation,

• npFocus: FOCUS-variable was bound to a nominal phrase constant,

• focusEatMatch: answer type matches expected answer type,

• irScore: the original quality estimate for the text passage

Decision tree computes a quality score for each answer,
using criteria like:16

sub(erfinder.1.1,mensch.1.1) ∧ subs(c40, erfinden.1.1) ∧ obj(c40, c37) ∧ agt(c40, c31) ∧ temp(c39, past.0)

∧ subs(c39, kopieren.1.1) ∧ agt(c39, c31) ∧ obj(c39, c27) ∧ sub(c38,name.1.1) ∧ val(c38, coca-cola.0)

∧ sub(c37, erzeugnis.1.1) ∧ attr(c37, c38) ∧ val(c34, pemberton.0) ∧ sub(c34, familienname.1.1)

∧ ∗tupl(c33, john.0, stith.0) ∧ sub(c32, vorname.1.1) ∧ val(c32, c33) ∧ sub(c31, erfinder.1.1)

∧ attr(c31, c34) ∧ attr(c31, c32) ∧ sub(c27, getraenk.1.1)

Fig. 8. Logical passage representation

0.01 0.011

irScore

<211.5>=211.5

0.013

0.036 0.06

matchRatio

<0.414 >=0.414

eatFound

<0.5 >=0.5

irScore

<276.5 >=276.5

0.164

0.223 0.431

defLevel

<1.5 >=1.5

0.881

focusDefLevel

<1.5 >=1.5

litRatioUb

<0.913 >=0.913

matchRatio

<0.69 >=0.69

Fig. 9. Example of a probability estimation tree; see Sections 5 and 9 for documentation of the features. The tree was
constructed by the PET induction method described here, declaring matchRatio, irScore, and litRatioUb as having a positive
effect on probability estimates. In this case, this resulted in an increasing sequence of probability estimates at the leaves.

spects the monotonicity requirements expressed
by MON if for all α ∈ MON, (x1, . . . , xn) ∈ Rn

and x�α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x�α, xα+1, . . . , xn), where pτ : Rn →
[0, 1] is the mapping from the inputs to probability
estimates at the corresponding leaves of the tree.
We use this criterion to constrain the admissible
splits when inducing the decision tree.

Notice that splitting one leaf can now affect the
allowable splits of all other leaves of the tree. While
most approaches to decision tree induction work
strictly locally, considering one leaf at a time, these
global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items

16

sub(erfinder.1.1,mensch.1.1) ∧ subs(c40, erfinden.1.1) ∧ obj(c40, c37) ∧ agt(c40, c31) ∧ temp(c39, past.0)

∧ subs(c39, kopieren.1.1) ∧ agt(c39, c31) ∧ obj(c39, c27) ∧ sub(c38,name.1.1) ∧ val(c38, coca-cola.0)

∧ sub(c37, erzeugnis.1.1) ∧ attr(c37, c38) ∧ val(c34, pemberton.0) ∧ sub(c34, familienname.1.1)

∧ ∗tupl(c33, john.0, stith.0) ∧ sub(c32, vorname.1.1) ∧ val(c32, c33) ∧ sub(c31, erfinder.1.1)

∧ attr(c31, c34) ∧ attr(c31, c32) ∧ sub(c27, getraenk.1.1)

Fig. 8. Logical passage representation

0.01 0.011

irScore

<211.5>=211.5

0.013

0.036 0.06

matchRatio

<0.414 >=0.414

eatFound

<0.5 >=0.5

irScore

<276.5 >=276.5

0.164

0.223 0.431

defLevel

<1.5 >=1.5

0.881

focusDefLevel

<1.5 >=1.5

litRatioUb

<0.913 >=0.913

matchRatio

<0.69 >=0.69

Fig. 9. Example of a probability estimation tree; see Sections 5 and 9 for documentation of the features. The tree was
constructed by the PET induction method described here, declaring matchRatio, irScore, and litRatioUb as having a positive
effect on probability estimates. In this case, this resulted in an increasing sequence of probability estimates at the leaves.

spects the monotonicity requirements expressed
by MON if for all α ∈ MON, (x1, . . . , xn) ∈ Rn

and x�α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x�α, xα+1, . . . , xn), where pτ : Rn →
[0, 1] is the mapping from the inputs to probability
estimates at the corresponding leaves of the tree.
We use this criterion to constrain the admissible
splits when inducing the decision tree.

Notice that splitting one leaf can now affect the
allowable splits of all other leaves of the tree. While
most approaches to decision tree induction work
strictly locally, considering one leaf at a time, these
global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items

Answer Presentation

• skippedLits: number of query literals skipped by relaxation,

• npFocus: FOCUS-variable was bound to a nominal phrase constant,

• focusEatMatch: answer type matches expected answer type,

• irScore: the original quality estimate for the text passage

Decision tree computes a quality score for each answer,
using criteria like:

The top 5 answers are presented to
the user, together with the text
passages to provide context and
links to the documents.

16

sub(erfinder.1.1,mensch.1.1) ∧ subs(c40, erfinden.1.1) ∧ obj(c40, c37) ∧ agt(c40, c31) ∧ temp(c39, past.0)

∧ subs(c39, kopieren.1.1) ∧ agt(c39, c31) ∧ obj(c39, c27) ∧ sub(c38,name.1.1) ∧ val(c38, coca-cola.0)

∧ sub(c37, erzeugnis.1.1) ∧ attr(c37, c38) ∧ val(c34, pemberton.0) ∧ sub(c34, familienname.1.1)

∧ ∗tupl(c33, john.0, stith.0) ∧ sub(c32, vorname.1.1) ∧ val(c32, c33) ∧ sub(c31, erfinder.1.1)

∧ attr(c31, c34) ∧ attr(c31, c32) ∧ sub(c27, getraenk.1.1)

Fig. 8. Logical passage representation

0.01 0.011

irScore

<211.5>=211.5

0.013

0.036 0.06

matchRatio

<0.414 >=0.414

eatFound

<0.5 >=0.5

irScore

<276.5 >=276.5

0.164

0.223 0.431

defLevel

<1.5 >=1.5

0.881

focusDefLevel

<1.5 >=1.5

litRatioUb

<0.913 >=0.913

matchRatio

<0.69 >=0.69

Fig. 9. Example of a probability estimation tree; see Sections 5 and 9 for documentation of the features. The tree was
constructed by the PET induction method described here, declaring matchRatio, irScore, and litRatioUb as having a positive
effect on probability estimates. In this case, this resulted in an increasing sequence of probability estimates at the leaves.

spects the monotonicity requirements expressed
by MON if for all α ∈ MON, (x1, . . . , xn) ∈ Rn

and x�α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x�α, xα+1, . . . , xn), where pτ : Rn →
[0, 1] is the mapping from the inputs to probability
estimates at the corresponding leaves of the tree.
We use this criterion to constrain the admissible
splits when inducing the decision tree.

Notice that splitting one leaf can now affect the
allowable splits of all other leaves of the tree. While
most approaches to decision tree induction work
strictly locally, considering one leaf at a time, these
global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items

16

sub(erfinder.1.1,mensch.1.1) ∧ subs(c40, erfinden.1.1) ∧ obj(c40, c37) ∧ agt(c40, c31) ∧ temp(c39, past.0)

∧ subs(c39, kopieren.1.1) ∧ agt(c39, c31) ∧ obj(c39, c27) ∧ sub(c38,name.1.1) ∧ val(c38, coca-cola.0)

∧ sub(c37, erzeugnis.1.1) ∧ attr(c37, c38) ∧ val(c34, pemberton.0) ∧ sub(c34, familienname.1.1)

∧ ∗tupl(c33, john.0, stith.0) ∧ sub(c32, vorname.1.1) ∧ val(c32, c33) ∧ sub(c31, erfinder.1.1)

∧ attr(c31, c34) ∧ attr(c31, c32) ∧ sub(c27, getraenk.1.1)

Fig. 8. Logical passage representation

0.01 0.011

irScore

<211.5>=211.5

0.013

0.036 0.06

matchRatio

<0.414 >=0.414

eatFound

<0.5 >=0.5

irScore

<276.5 >=276.5

0.164

0.223 0.431

defLevel

<1.5 >=1.5

0.881

focusDefLevel

<1.5 >=1.5

litRatioUb

<0.913 >=0.913

matchRatio

<0.69 >=0.69

Fig. 9. Example of a probability estimation tree; see Sections 5 and 9 for documentation of the features. The tree was
constructed by the PET induction method described here, declaring matchRatio, irScore, and litRatioUb as having a positive
effect on probability estimates. In this case, this resulted in an increasing sequence of probability estimates at the leaves.

spects the monotonicity requirements expressed
by MON if for all α ∈ MON, (x1, . . . , xn) ∈ Rn

and x�α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x�α, xα+1, . . . , xn), where pτ : Rn →
[0, 1] is the mapping from the inputs to probability
estimates at the corresponding leaves of the tree.
We use this criterion to constrain the admissible
splits when inducing the decision tree.

Notice that splitting one leaf can now affect the
allowable splits of all other leaves of the tree. While
most approaches to decision tree induction work
strictly locally, considering one leaf at a time, these
global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items

Performance Issues

short response time (~5
sec)?

Many prover runs for a single
question:

• 200 candidates with up to 5
relaxations each

• >12,000 clauses input for each
run

Performance Issues

short response time (~5
sec)?

Many prover runs for a single
question:

• 200 candidates with up to 5
relaxations each

• >12,000 clauses input for each
run

creating index structures for input can exceed time slot

Performance Issues

short response time (~5
sec)?

Many prover runs for a single
question:

• 200 candidates with up to 5
relaxations each

• >12,000 clauses input for each
run

•all runs use the same background knowledge
base (~97% of the clauses in a run)

Plenty of overlap between prover runs:

•all relaxation runs for a candidate use the same candidate

Use overlap between relaxation runs for one candidate:

•input sets for runs differ only in one (dropped) query literal

•relaxed query clause subsumes the previous query clause

¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q1 ∨ ¬Q2 ∨ ¬Q4 ∨ ¬Q5 ⊆

• all clauses derived before first
derivation Split can be reused in

next run

Performance Issues - Incremental Reasoning

Use overlap between relaxation runs for one candidate:

•input sets for runs differ only in one (dropped) query literal

•relaxed query clause subsumes the previous query clause

¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q1 ∨ ¬Q2 ∨ ¬Q4 ∨ ¬Q5 ⊆

• all clauses derived before first
derivation Split can be reused in

next run

Performance Issues - Incremental Reasoning

no rigid
variables !

Webservices

Background knowledge

Partitioning and Heuristics

Extensions of Reasoning

Webservices in E-KRHyper

Webservices in E-KRHyper

webservice query/answer pair: kb(q, a)

where q and a may be arbitrarily complex terms	

kb(conv(eur, usd, 299.95), 392.87)

kb(q, a) is true iff a is a webservice-reply to q.

webservices representation: KBext of ground unit
clauses kb(q, a)

use non-ground kb-literals in clauses to access webservices:

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

Webservices in E-KRHyper

In theory:

Webservices in E-KRHyper

 kb(conv(eur, usd, 100.00), 131.13)

 kb(conv(eur, usd, 299.95), 392.87)

p(a)

q(b)

r(a,b) s(b) ¬p(a) ¬q(b)

In theory:

Infeasible in practice:
 KBext may be infinite,
 retrieving a kb(q,a) takes time.

⇒ minimize accesses to KBext.

Webservices in E-KRHyper

 kb(conv(eur, usd, 100.00), 131.13)

 kb(conv(eur, usd, 299.95), 392.87)

p(a)

q(b)

r(a,b) s(b) ¬p(a) ¬q(b)

In theory:

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

kb(conv(eur, usd, 1.20), z)

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

kb(conv(eur, usd, 1.20), z)

webservice request to
currency converter,
convert €1.20 to $

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

kb(conv(eur, usd, 1.20), z)

webservice request to
currency converter,
convert €1.20 to $

1.57

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

kb(conv(eur, usd, 1.20), z)

webservice request to
currency converter,
convert €1.20 to $

1.57

z/1.57}

Example:

 europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20,

kb(conv(eur, usd, 1.20), z)

webservice request to
currency converter,
convert €1.20 to $

1.57

z/1.57}

kb(conv(eur, usd, 1.20), 1.57)

dollarprice(coke,1.57)

 ¬europrice(coke,1.20)

¬kb(conv(eur, usd, 1.20), 1.57)
x

x

proxy always responds immediately:

"wait" - proxy asks webservice; prover does
other inferences and will ask again later

<result> - webservice has been asked and
result is in proxy cache

"no result" - webservice has been asked but
cannot provide a useful result

Webservice via proxy

E-KRHyper
interface

proxy

webservice 1

webservice nLogAnsw

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

When the current branch is exhausted and a
query is still waiting, postpone the branch.

postponed

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

When the current branch is exhausted and a
query is still waiting, postpone the branch.

postponed

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

When the current branch is exhausted and a
query is still waiting, postpone the branch.

postponed

x

ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

When the current branch is exhausted and a
query is still waiting, postpone the branch.

postponed

x

Return to postponed branch when all other
branches have been closed or postponed.

postponed?
Waiting query returns...
• <result>: continue reasoning
• "no result": done, branch is model
• "wait": depends on configuration:
 either treat as "no result",
 or wait indefinitely until some waiting query
 returns <result> or "no result"

Webservices in Use

Webservices in Use

Yahoo GeoPlanet

Weather Service

Currency Converter

OpenCyc

DBPedia

SpassYago -- coming soon?

Webservices for Abductive
Relaxation

logical query representation:
false ← Q1 ∧ ... ∧ Qn

Webservices for Abductive
Relaxation

logical query representation:
false ← Q1 ∧ ... ∧ Qn

1. add abductive relaxation clause:

 relAns(rel(c1, x1), ..., rel(cm, xm)) ←
	

 Q1' ∧ ... ∧ Qn' ∧ kb(abduce(c1), x1) ∧ ... ∧ kb(abduce(cm), xm)

where Q1',..., Qn' result from Q1,..., Qn by replacing each
occurrence ci of a constant with a fresh variable xi.

Webservices for Abductive
Relaxation

logical query representation:
false ← Q1 ∧ ... ∧ Qn

1. add abductive relaxation clause:

 relAns(rel(c1, x1), ..., rel(cm, xm)) ←
	

 Q1' ∧ ... ∧ Qn' ∧ kb(abduce(c1), x1) ∧ ... ∧ kb(abduce(cm), xm)

where Q1',..., Qn' result from Q1,..., Qn by replacing each
occurrence ci of a constant with a fresh variable xi.

2. add trivial abduction unit clause:
 kb(abduce(x), x) ← .

"Who invented Coca-Cola?"
false ← is(x, person) ∧ invent(x, cocacola).

"Who invented Coca-Cola?"
false ← is(x, person) ∧ invent(x, cocacola).

relAns(rel(person,y), rel(cocacola, z)) ←
 is(x, y) ∧ invent(x, z)
 ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

kb(abduce(x), x) ← .

E-KRHyper adds:

"Who invented Coca-Cola?"
false ← is(x, person) ∧ invent(x, cocacola).

• prover will run until proof is found or timeout
• if timeout, return any derived relAns-facts instead
• let user decide if abductive relaxations were acceptable(?)

relAns(rel(person,y), rel(cocacola, z)) ←
 is(x, y) ∧ invent(x, z)
 ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

kb(abduce(x), x) ← .

E-KRHyper adds:

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

webservice request to
ontology browser,
superclasses of
cocacola?

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

webservice request to
ontology browser,
superclasses of
cocacola?
response: kb(abduce
(cocacola),softdrink)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

webservice request to
ontology browser,
superclasses of
cocacola?
response: kb(abduce
(cocacola),softdrink)

kb(abduce(cocacola), z)

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

webservice request to
ontology browser,
superclasses of
cocacola?
response: kb(abduce
(cocacola),softdrink)

kb(abduce(cocacola), z)

relAns(rel(person,person), rel(cocacola,softdrink))

}

false ← is(x, person) ∧ invent(x, cocacola).
relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).
kb(abduce(x), x) ← .

relAns(rel(person,y), rel(cocacola,z)) ←
 is(x, y) ∧ invent(x, z) ∧ kb(abduce(person), y) ∧ kb(abduce(cocacola), z).

invent(j_j_berzelius, softdrink)

is(j_j_berzelius, person)

kb(abduce(x), x)

σ = {x/j_j_berzelius,
 y/person,

is(x, y)

is(j_j_berzelius, person)

invent(x,z)

invent(j_j_berzelius, softdrink)

 z/softdrink

kb(abduce(person),y)

kb(abduce(x), x)

kb(abduce(cocacola), z)

webservice request to
ontology browser,
superclasses of
cocacola?
response: kb(abduce
(cocacola),softdrink)

kb(abduce(cocacola), z)

relAns(rel(person,person), rel(cocacola,softdrink))

}

"Who invented Coca-Cola?"
- "J.J. Berzelius, if 'soft drink' can replace 'Coca-Cola'." (No!)

Partitioning of Clause set

Compute dependency graphs in pre-processing

Test:

309 multi-literal clauses

10 061 units

Reduction of 20% of clauses and 10% of time

Issues for AD

Time-constraints

Relaxing queries

Abduction

Webservices

Confidence Measures

QA Forums

Forum users ask and answer questions.

Users can grade answers or answerers.

QA-systems like LogAnser usually give the best answer they
can find - even if it is poor.

QA-systems like LogAnser usually give the best answer they
can find - even if it is poor.

If 18% of questions are answered correctly,
then almost 82% get wrong answers.

High risk that forum users perceive LogAnswer as a nuisance!

QA-systems like LogAnser usually give the best answer they
can find - even if it is poor.

Improve answer
derivation to increase
number of correct
answers.

If 18% of questions are answered correctly,
then almost 82% get wrong answers.

High risk that forum users perceive LogAnswer as a nuisance!

QA-systems like LogAnser usually give the best answer they
can find - even if it is poor.

Improve answer
derivation to increase
number of correct
answers.

Improve detection of
unanswerable questions
and bad answers - if "best"
answer is irrelevant or
wrong, keep quiet instead
of posting.

If 18% of questions are answered correctly,
then almost 82% get wrong answers.

High risk that forum users perceive LogAnswer as a nuisance!

QA-systems like LogAnser usually give the best answer they
can find - even if it is poor.

Improve answer
derivation to increase
number of correct
answers.

Improve detection of
unanswerable questions
and bad answers - if "best"
answer is irrelevant or
wrong, keep quiet instead
of posting.

If 18% of questions are answered correctly,
then almost 82% get wrong answers.

High risk that forum users perceive LogAnswer as a nuisance!

Avoiding "Impossible" Questions

Block question categories:
 Some categories contain mostly unanswerable questions.

• celebrities: "What is the phone number of Justin Bieber?"

• video games: "How do you unlock the Bowser Level in Super Mario Sunshine?"

• computer help: "When I create a file in Corel (Windows), how do I..."

• ...

Avoiding "Impossible" Questions

Block question categories:
 Some categories contain mostly unanswerable questions.

• celebrities: "What is the phone number of Justin Bieber?"

• video games: "How do you unlock the Bowser Level in Super Mario Sunshine?"

• computer help: "When I create a file in Corel (Windows), how do I..."

• ...

Blocking selected categories is quite safe (2.2% false positives),
but 66% of questions have no category at all.

Avoiding "Impossible" Questions

Block question categories:
 Some categories contain mostly unanswerable questions.

• celebrities: "What is the phone number of Justin Bieber?"

• video games: "How do you unlock the Bowser Level in Super Mario Sunshine?"

• computer help: "When I create a file in Corel (Windows), how do I..."

• ...

Blocking selected categories is quite safe (2.2% false positives),
but 66% of questions have no category at all.

Some questions ask for opinions, recognizable by keywords.
• "What do you think of...?"

• "What is the best/worst/most beautiful...?"

Block question types:

• Cyc is too large for ATP:
3.3 million formulas in the TPTP-version of OpenCyc,
requires 15 minutes to load and 7GB RAM in E-KRHyper.

!Use query-based axiom selection methods.
!No equational reasoning for Cyc-axioms.
!Only use some parts of Cyc (i.e. subclass-assertions).

External Ontologies

