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Kurt Cobain

LogAnswer - a Question-Answering 
System

• receives a natural-language question regarding 
any topic, and 

• returns a natural-language answer found in a 
knowledge-base.

An open domain question-answering system 
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Why use Logic in QA?

Shallow NLP fails when:

• words match, but they are too far apart:

What is the 
population of 

Mongolia?

Mongolia is very sparsely populated 
for its size. The landlocked country 

between China and Russia has a 
population of 2.9 million people.

• words in the knowledge sources do not match exactly:

When did Hannibal 
cross the Alps?

The Carthaginian general led his 
army over the Alps in 218 BC.



NLP Deduction

•NLP-components
•MultiNet knowledge 

base, based on snapshot 
of German Wikipedia

•theorem prover
 E-KRHyper

The LogAnswer project combines



MultiNet Knowledge Base

MultiNet:

•Multilayered Extended Semantic Networks
•language independent, but tools mostly German



MultiNet Knowledge Base

"Hinter der Anklage stand 
der spätere Bürgermeister 

von New York, Rudolph 
Giuliani."



MultiNet to First-Order Logic

MultiNet First-Order Logic



MultiNet Knowledge Base

•snapshot of German Wikipedia

•formal representations of ~12 million sentences,  
generated semi-automatically

•plus ~12,000 background knowledge axioms, 
manually adapted from MultiNet inference rules and 
from WordNet



Hypertableau 

• splitting with purification solves the problem of variables 
shared between tableau branches:

• only one branch needs to be worked on at any time

• emphasis on unit operations

• proof confluent

E-hyper tableau calculus:

• clause tree instead of literal tree

• four extension rules instead of one

• adds term ordering (reduction ordering)

• adds redundancy handling

Cade 07

Jelia 96
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"Who was Ian 
Fleming?"

word info + FOL 
query

parse & transform ML-based proof 
ranking & NL answer 
generation

"British author"

The LogAnswer question answering system:

200 best KB 
fragments, "answer 

candidates"KB

information retrieval & 
machine learning

Wikipedia-snapshot,
29 million sentences

proofs

ATP E-KRHyper

FOL query

+ answer candidate

+ background knowledge

Logik
KB

Backgr.
KB
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• matchRatio: relative proportion of lexical concepts and numerals in the 
question which find a match in the text passage,

• failedMatch: number of lexical concepts and numerals in the question which 
find no match in the text passage,

• failedNames: proper names which find no match in the text passage,
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Retrieval of Answer Candidates

• matchRatio: relative proportion of lexical concepts and numerals in the 
question which find a match in the text passage,

• failedMatch: number of lexical concepts and numerals in the question which 
find no match in the text passage,

• failedNames: proper names which find no match in the text passage,

• containsBrackets: indicates whether passage contains parentheses.      “...Sydney 
(Australia) ...”

Pre-analysed and indexed text passages allow quick 
computation of syntactic filtering criteria:

Scores are aggregated into a quality estimate using decision trees. The 
'best' 200 logical text passage representations are answer candidates 
and will be evaluated deductively.



¬attch(FOCUS, X1) ∨ ¬sub(FOCUS, us_stadt.1.1) 
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Answer Generation

The FOCUS-variable 
represents the core object 

of the question.



Answer Generation

The FOCUS-variable 
represents the core object 

of the question.

"New York"



Answer Presentation

• skippedLits: number of query literals skipped by relaxation,

• npFocus: FOCUS-variable was bound to a nominal phrase constant,

• focusEatMatch: answer type matches expected answer type,

• irScore: the original quality estimate for the text passage

Decision tree computes a quality score for each answer, 
using criteria like:16

sub(erfinder.1.1,mensch.1.1) ∧ subs(c40, erfinden.1.1) ∧ obj(c40, c37) ∧ agt(c40, c31) ∧ temp(c39, past.0)

∧ subs(c39, kopieren.1.1) ∧ agt(c39, c31) ∧ obj(c39, c27) ∧ sub(c38,name.1.1) ∧ val(c38, coca-cola.0)

∧ sub(c37, erzeugnis.1.1) ∧ attr(c37, c38) ∧ val(c34, pemberton.0) ∧ sub(c34, familienname.1.1)

∧ ∗tupl(c33, john.0, stith.0) ∧ sub(c32, vorname.1.1) ∧ val(c32, c33) ∧ sub(c31, erfinder.1.1)

∧ attr(c31, c34) ∧ attr(c31, c32) ∧ sub(c27, getraenk.1.1)

Fig. 8. Logical passage representation
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Fig. 9. Example of a probability estimation tree; see Sections 5 and 9 for documentation of the features. The tree was
constructed by the PET induction method described here, declaring matchRatio, irScore, and litRatioUb as having a positive
effect on probability estimates. In this case, this resulted in an increasing sequence of probability estimates at the leaves.

spects the monotonicity requirements expressed
by MON if for all α ∈ MON, (x1, . . . , xn) ∈ Rn

and x�α ≥ xα, it holds that pτ (x1, . . . , xn) ≤
pτ (x1, . . . , xα−1, x�α, xα+1, . . . , xn), where pτ : Rn →
[0, 1] is the mapping from the inputs to probability
estimates at the corresponding leaves of the tree.
We use this criterion to constrain the admissible
splits when inducing the decision tree.

Notice that splitting one leaf can now affect the
allowable splits of all other leaves of the tree. While
most approaches to decision tree induction work
strictly locally, considering one leaf at a time, these
global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items
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Answer Presentation

• skippedLits: number of query literals skipped by relaxation,

• npFocus: FOCUS-variable was bound to a nominal phrase constant,

• focusEatMatch: answer type matches expected answer type,

• irScore: the original quality estimate for the text passage

Decision tree computes a quality score for each answer, 
using criteria like:

The top 5 answers are presented to 
the user, together with the text 
passages to provide context and 
links to the documents.
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global dependencies forced us to implement the
tree induction in such a way that all leaf nodes of
the tree constructed so far are considered in par-
allel when determining the next split.

Group-Sensitive Learning In the question an-
swering context, the training data is naturally

grouped by questions. There is often a strong vari-
ation in the number of correct answers available for
these questions, which can be problematic for some
learning techniques. In order to balance the effect
of learning evenly among the questions from which
the data was sampled, a group-sensitive splitting
criterion is needed. The criterion should also re-
flect that the top-ranked results for each question
are most important. The usual splitting criteria
for learning decision trees treat all items equally –
they do not directly maximize the quality of the
few top-ranked results actually shown to the user.
A more appropriate criterion should keep track of
the k highest-ranked correct results for each ques-
tion and encourage splits that further improve the
rank of these results.

Hence let Q be the set of all questions from
which the training items were sampled. For a ques-
tion q ∈ Q, let X(q) be the set of training items
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Performance Issues

short response time (~5 
sec)?

Many prover runs for a single 
question: 

• 200 candidates with up to 5 
relaxations each

• >12,000 clauses input for each 
run

•all runs use the same background knowledge 
base (~97% of the clauses in a run)

Plenty of overlap between prover runs:

•all relaxation runs for a candidate use the same candidate 



Use overlap between relaxation runs for one candidate:

•input sets for runs differ only in one (dropped) query literal

•relaxed query clause subsumes the previous query clause 

¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q1 ∨ ¬Q2 ∨ ¬Q4 ∨ ¬Q5      ⊆

• all clauses derived before first 
derivation Split can be reused in 

next run 

Performance Issues - Incremental Reasoning



Use overlap between relaxation runs for one candidate:

•input sets for runs differ only in one (dropped) query literal

•relaxed query clause subsumes the previous query clause 

¬Q1 ∨ ¬Q2 ∨ ¬Q3 ∨ ¬Q4 ∨ ¬Q1 ∨ ¬Q2 ∨ ¬Q4 ∨ ¬Q5      ⊆

• all clauses derived before first 
derivation Split can be reused in 

next run 

Performance Issues - Incremental Reasoning

no rigid 
variables !



Webservices

Background knowledge

Partitioning and Heuristics

Extensions of Reasoning
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Webservices in E-KRHyper

webservice query/answer pair:  kb(q, a)  

where q and a may be arbitrarily complex terms	



kb(conv(eur, usd, 299.95), 392.87)

kb(q, a) is true iff  a  is a webservice-reply to  q.

webservices representation: KBext of ground unit 
clauses kb(q, a)

use non-ground kb-literals in clauses to access webservices: 

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).
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In theory:



Infeasible in practice:
 KBext  may be infinite,
 retrieving a kb(q,a) takes time.

⇒ minimize accesses to KBext.
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Example:

       europrice(coke, 1.20)

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

...

dollarprice(x,z) ← europrice(x,y) ∧ kb(conv(eur, usd, y), z).

σ = {x/coke, y/1.20, 

kb(conv(eur, usd, 1.20), z)

webservice request to 
currency converter,
convert €1.20 to $

1.57

z/1.57} 

kb(conv(eur, usd, 1.20), 1.57)

dollarprice(coke,1.57)  

 ¬europrice(coke,1.20)   

¬kb(conv(eur, usd, 1.20), 1.57)
x

x



proxy always responds immediately:

"wait" - proxy asks webservice; prover does 
other inferences and will ask again later

<result> - webservice has been asked and 
result is in proxy cache

"no result" - webservice has been asked but 
cannot provide a useful result

Webservice via proxy

E-KRHyper
interface

proxy

webservice 1

webservice nLogAnsw
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ws-query 1: "wait" Continue in current branch with other inferences.

ws-query 1: <result>

ws-query 2: "wait"

ws-query 2: "wait"

When the current branch is exhausted and a 
query is still waiting, postpone the branch.

postponed

x

Return to postponed branch when all other 
branches have been closed or postponed.

postponed?
Waiting query returns...
• <result>: continue reasoning
• "no result": done, branch is model
• "wait": depends on configuration:
       either treat as "no result",
       or wait indefinitely until some waiting query
       returns <result> or "no result"



Webservices in Use



Webservices in Use

Yahoo GeoPlanet

Weather Service

Currency Converter

OpenCyc

DBPedia

SpassYago -- coming soon?
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 Q1' ∧ ... ∧ Qn' ∧ kb(abduce(c1 ), x1) ∧ ... ∧ kb(abduce(cm), xm)

where Q1',..., Qn' result from Q1,..., Qn by replacing each 
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Webservices for Abductive 
Relaxation

logical query representation:
false ← Q1 ∧ ... ∧ Qn  

1. add abductive relaxation clause:

      relAns(rel(c1, x1), ..., rel(cm, xm)) ← 
	

 Q1' ∧ ... ∧ Qn' ∧ kb(abduce(c1 ), x1) ∧ ... ∧ kb(abduce(cm), xm)

where Q1',..., Qn' result from Q1,..., Qn by replacing each 
occurrence ci of a constant with a fresh variable xi. 

2. add trivial abduction unit clause:
      kb(abduce(x), x) ← .
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• prover will run until proof is found or timeout
• if timeout, return any derived relAns-facts instead
• let user decide if abductive relaxations were acceptable(?)
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"Who invented Coca-Cola?"
- "J.J. Berzelius, if 'soft drink' can replace 'Coca-Cola'."  (No!)



Partitioning of Clause set

Compute dependency graphs in pre-processing

Test: 

309 multi-literal clauses

10 061 units

Reduction of 20% of clauses and 10% of time



Issues for AD

Time-constraints 

Relaxing queries

Abduction

Webservices

Confidence Measures



QA Forums

Forum users ask and answer questions.

Users can grade answers or answerers.



QA-systems like LogAnser usually give the best answer they 
can find - even if it is poor.
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Block question categories:
    Some categories contain mostly unanswerable questions.

• celebrities: "What is the phone number of  Justin Bieber?"
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Avoiding "Impossible" Questions

Block question categories:
    Some categories contain mostly unanswerable questions.

• celebrities: "What is the phone number of  Justin Bieber?"

• video games: "How do you unlock the Bowser Level in Super Mario Sunshine?"

• computer help: "When I create a file in Corel (Windows), how do I..."

• ...

Blocking selected categories is quite safe (2.2% false positives), 
but 66% of questions have no category at all.

Some questions ask for opinions, recognizable by keywords.
• "What do you think of...?"

• "What is the best/worst/most beautiful...?"

Block question types:



• Cyc is too large for ATP:                                                               
3.3 million formulas in the TPTP-version of OpenCyc,
requires 15 minutes to load and 7GB RAM in E-KRHyper.

!Use query-based axiom selection methods.
!No equational reasoning for Cyc-axioms.
!Only use some parts of Cyc (i.e. subclass-assertions).

External Ontologies


