
Language-based methods for software security

Gilles Barthe

IMDEA Software, Madrid, Spain

lamotte
Text Box
Part 2

Transfer rules

P[i] = push n
i ` st⇒ se(i) :: st

P[i] = binop op
i ` k1 :: k2 :: st⇒ (k1 t k2) :: st

P[i] = load x
i ` st⇒ (Γ(x) t se(i)) :: st

P[i] = store x se(i) t k 6 Γ(x)

i ` k :: st⇒ st

P[i] = goto j
i ` st⇒ st

P[i] = return se(i) t k 6 kr

i ` k :: st⇒

P[i] = if j ∀j ′ ∈ region(i), k 6 se(j ′)
i ` k :: ε⇒ ε

Gilles Barthe Language-based methods for software security

State equivalence

Unwinding lemmas focus on state equivalence ∼L.

State equivalence

〈〈i, ρ, s〉〉 ∼L 〈〈i ′, ρ ′, s ′〉〉 if:
Memory equivalence ρ ∼L ρ

′

Operand stack equivalence s
i,i′
∼ L s ′ (defined w.r.t. S)

Operand stack equivalence s
i,i′
∼ L s ′ is defined

w.r.t. Si and Si′ :
High stack positions in black
Require that both stacks coincide, except in
their lowest black portion

Gilles Barthe Language-based methods for software security

State equivalence

Unwinding lemmas focus on state equivalence ∼L.

State equivalence

〈〈i, ρ, s〉〉 ∼L 〈〈i ′, ρ ′, s ′〉〉 if:
Memory equivalence ρ ∼L ρ

′

Operand stack equivalence s
i,i′
∼ L s ′ (defined w.r.t. S)

Operand stack equivalence s
i,i′
∼ L s ′ is defined

w.r.t. Si and Si′ :
High stack positions in black
Require that both stacks coincide, except in
their lowest black portion

Gilles Barthe Language-based methods for software security

Soundness
If S ` P (w.r.t. se and cdr) then P is non-interfering.

Direct application of
Low (locally respects) unwinding lemma:
If s ∼L s ′ and s{ t and s ′ { t ′, then t ∼L t ′, provided s · pc = s ′ · pc
High (step consistent) unwinding lemma:
If s ∼L s ′ and s{ t and then t ∼L t ′, provided s · pc = i is a high
program point and Si is high and se is well-formed
Gluing lemmas for combining high and low unwinding lemmas
(extensive use of SOAP properties)
Monotonicity lemmas

Gilles Barthe Language-based methods for software security

Compatibility with lightweight verification

The type system:
is compatible with lighweight bytecode verification
code provided with

regions (verified by a region checker)
security environment
type information at junction points

Gilles Barthe Language-based methods for software security

Adding objects, exceptions and methods

Main issues:

objects
(heap equivalence, allocator)

exceptions
(loss of precision)

methods (extended signatures)

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Gilles Barthe Language-based methods for software security

Adding objects, exceptions and methods

Three successive phases:
1 the PA (pre-analyse) analyser

computes information to reduce the
control flow graph.

2 the CDR analyser computes control
dependence regions (to deal with
implicit flows)

3 the IF (Information Flow) analyser
computes for each program point a
security environment and a stack type

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Gilles Barthe Language-based methods for software security

Adding objects, exceptions and methods

Each phase corresponds to a pair
analyser/checker

Trusted Computed Base (TCB) is
reduced to the checkers

Moreover, since we prove these
checkers in Coq, TCB is in fact
relegated to Coq and the formal
definition of non-interference.

TCB

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Gilles Barthe Language-based methods for software security

Adding objects, exceptions and methods

Each phase corresponds to a pair
analyser/checker

Trusted Computed Base (TCB) is
reduced to the checkers

Moreover, since we prove these
checkers in Coq, TCB is in fact
relegated to Coq and the formal
definition of non-interference.

program

PA analyser

CDR analyser

IF analyser

PA checker

CDR checker

IF checker

diagnostic

annots.

annots.

annots.

Coq
+

NI definition

TCB

proof

Gilles Barthe Language-based methods for software security

Pre-analyses

Branching is a major source of imprecision in an information flow
static analysis.

The PA (pre-analyse) analyser computes information that is used to
reduce the control flow graph and to detect branches that will never
be taken.

null pointers (to predict unthrowable null pointer exceptions),
classes (to predict target of throws instructions),
array accesses (to predict unthrowable out-of-bounds
exceptions),
exceptions (to over-approximate the set of throwable exceptions
for each method)

Such analyses (and their respective certified checkers) can be
developed using certified abstract interpretation.

Gilles Barthe Language-based methods for software security

Information flow type system

Type annotations required on programs:
ft : F → S attaches security levels to fields,
at : M× P ⇀ S attaches security levels to contents of arrays at
their creation point
each method posseses one (or several) signature(s):

~kv
kh−→ ~kr

~kv provides the security level of the method parameters (and local
variables),
kh: effect of the method on the heap,
~kr is a record of security levels of the form {n : kn, e1 : ke1 , . . . en : ken }

kn is the security level of the return value (normal termination),
ki is the security level of each exception ei that might be propagated by
the method

Gilles Barthe Language-based methods for software security

Example

int m(boolean x,C y) throws C {

if (x) {throw new C();}

else {y.f = 3;};

return 1;

}

1 load x
2 if 5
3 new C
4 throw
5 load y
6 push 3
7 putfield f
8 push 1
9 return

m : (x : L, y : H)
H−→ {n : H, C : L, np : H}

kh = H: no side effect on low fields ,
~kr[n] = H: result depends on y,
termination by an exception C doesn’t depend on y,
but termination by a null pointer exception does.

Gilles Barthe Language-based methods for software security

Fine grain exceptions handling : example
try {z = o.m(x,y);} catch (NPE z) {}; t = 1;

0 : load oL
1 : load yH
2 : load xL
3 : invokevirtual m
4 : store zH
5 : push 1
6 : store tL

handler : [0, 3], NullPointer→ 4

0 1 2

3

4

5

6

np

∅ ∅

∅
C

∅

∅

∅

With only one level for all exceptions
[4,5,6] is a high region (depends on yH): tL = 1 is rejected

With our signature
[4,5,6] is a low region: tL = 1 is accepted
a region is now associated to a branching point and a step kind
(normal step or exception step)

Gilles Barthe Language-based methods for software security

Typing judgment

General form
P[i] = ins constraints

Γ , ft, region, se, sgn, i `τ st⇒ st ′

Selected rules

Pm[i] = invokevirtual mID ΓmID [k] = ~k′a
k′h−→ ~k′r

kt kh t se(i) 6 k′h k 6 ~k′a [0] ∀i ∈ [0, length(st1) − 1], st1[i] 6 ~k′a [i + 1]

e ∈ excAnalysis(mID)∪ {np} ∀j ∈ region(i, e), kt ~k′r [e] 6 se(j) Handler(i, e) = t

Γ , region, se, ~ka
kh−→ ~kr, i `e st1 :: k :: st2 ⇒ (kt ~k′r [e]) :: ε

P[i] = xastore k1 t k2 t k3 6 ke ∀j ∈ region(i,∅), ke 6 se(j)

Γ , region, se, ~ka
kh−→ ~kr, i `∅ k1 :: k2 :: k3[ke] :: st⇒ liftke (st)

Gilles Barthe Language-based methods for software security

Formalization in Coq

| i n v o k e v i r t u a l : f o r a l l i (mid : MethodSignature) s t 1 k1 st2 ,
length s t 1 = length (METHODSIGNATURE. parameters (snd mid)) −>
c o m p a t t y p e s t l v t (v i r t u a l s i g n a t u r e p (snd mid) k1) (s t 1++L . Simple k1 : : s t 2) (1+ (length s t 1)) −>
k1 <= (v i r t u a l s i g n a t u r e p (snd mid) k1) . (heapEf fec t) −>
(f o r a l l j , region i None j −>

L . j o i n (j o i n l i s t (v i r t u a l s i g n a t u r e p (snd mid) k1) . (resExceptionType) (throwableBy p (snd mid)))
k1 <= se j) −>

compat op (METHODSIGNATURE. r e s u l t (snd mid)) (v i r t u a l s i g n a t u r e p (snd mid) k1) . (resType) −>
sgn . (heapEf fec t) <= (v i r t u a l s i g n a t u r e p (snd mid) k1) . (heapEf fec t) −>
t e x e c i (I n v o k e v i r t u a l mid) None
(s t 1++L . Simple k1 : : s t 2)
(Some (l i f t k1

(l i f t (j o i n l i s t (v i r t u a l s i g n a t u r e p (snd mid) k1) . (resExceptionType) (throwableBy p (snd mid)))
(cons opt ion (j o i n o p k1 (v i r t u a l s i g n a t u r e p (snd mid) k1) . (resType)) s t 2))))

See the Coq development for 63 others typing rules...

Gilles Barthe Language-based methods for software security

Remarks on machine-checked proof
We have used the Coq proof assistant to

to formally define non-interference definition,
to formally define an information type system,
to mechanically proved that typability enforces non-interference,
to program a type checker and prove it enforces typability,
to extract an Ocaml implementation of this type checker.

Structure of proofs

1 Itermediate semantics simplifies the intermediate definition of
indistinguishability (call stacks),

2 Second intermediate semantics : annotated semantics with result of
pre-analyses

the pre-analyse checker enforces that both semantics correspond
3 Implementation and correctness proof of the CDR checker
4 The information flow type system (and its corresponding type checker)

enforce non-interference wrt. the annotated semantics.

About 20,000 lines of definitions and proofs, inc. 3000 lines to define the JVM
semantics

Gilles Barthe Language-based methods for software security

Towards realistic applications

Many features of missing to program realistic applications:
declassification
multi-threading
flow sensitivity, polymorphism, etc

Gilles Barthe Language-based methods for software security

Declassification

Baseline policies (i.e. non-interference) are too restrictive in
practice. Declassification policies allow intentional information
release.
Main dimensions: what, where, who

Gilles Barthe Language-based methods for software security

Information release for JVM

Goal is to define an information flow policy that:
supports controlled release of information,
that can be enforced efficiently,
with a modular proof of soundness,
instantiable to bytecode
can reuse machine-checked proofs

Gilles Barthe Language-based methods for software security

Policy setting

Setting is heavily influenced by non-disclosure, but allows
declassification of a variable rather than of a principal.
Policy is local to each program point:

modeled as an indexed family (∼Γ [i])i∈P of relations on states
each ∼Γ [i] is symmetric and transitive
monotonicity of equivalence

Γ [i] 6 Γ [j] ∧ s ∼Γ [i] t⇒ s ∼Γ [j] t

(properties hold when relations are induced by the security level
of variables)

Gilles Barthe Language-based methods for software security

Delimited non-disclosure

P satisfies delimited non-disclosure (DND) iff entry R entry, where
R ⊆ P× P satisfies for every i, j ∈ P:

if i R j then j R j;
if i R j then for all si, tj and s ′i′ s.t.

si { s ′i′ ∧ si ∼Γ [i] tj ∧ safe(tj)

there exists t ′j′ such that:

tj {
? t ′j′ ∧ s ′i′ ∼Γ [entry] t ′j′ ∧ i ′ R j ′

Gilles Barthe Language-based methods for software security

Local policies vs. declassify statements

One could use a construction declassify (e) in { c } and compute local
policies from program syntax:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

yields
Γ [1](l1) = Γ [1](l2) = Γ [1](l3) = L
Γ [1](h) = H
Γ [2](l1) = Γ [2](l2) = Γ [2](l3) = L
Γ [2](h) = L
Γ [3] = Γ [1]

Gilles Barthe Language-based methods for software security

Where is what?

Declassification of expressions through fresh local variables:

declassify (h > 0) in { [if (h > 0) then { [l := 0]2 }]1 }

becomes
[h ′ := h > 0]1 ;
declassify (h ′) in { [if (h ′) then { [l := 0]3 }]2 }

Gilles Barthe Language-based methods for software security

DND type system

Given a NI type system Γ , S, se ` i; think as a shorthand for

∃sj. Γ [i], S, se ` S(i)⇒ sj ∧ sj 6 S(j)

Define a DND type system (Γ [j])j∈P, S, se ` i as

Γ [i], S, se ` i

(Note: not so easy for source languages)
Program P is typable w.r.t. policy (Γ [j])j∈P and type S iff for all i

Γ [i], S, se ` i

Soundness

If (Γ [j])j∈P, S, se ` P then P satisfies DND.

Policies must respect no creep up, ie Γ [i](x) 6 Γ [entry](x)

Gilles Barthe Language-based methods for software security

Unwinding+Progress

Unwinding: if Γ , S `NI i then

(si ∼Γ ti ∧ si { s ′i′ ∧ ti { t ′j′)⇒ s ′i′ ∼Γ t ′j′

Progress: if i is not an exit point and safe(si) then there exists t s.t.
si { t

(Γ [i])i∈P, S `DND P
si ∼Γ [i] ti
si { s ′i′
safe(ti)

⇒ ∃t ′j′ . ti { t ′j′ ∧ s ′i′ ∼Γ [entry] t ′j′

Gilles Barthe Language-based methods for software security

High branches

Unwinding: if Γ , S `NI i and H 6 se(i) then
(si ∼Γ tj ∧ si { s ′i′)⇒ s ′i′ ∼Γ tj

Exit from high loops: if i is a high branching point, then
jun(i) is defined
all executions entering region(i) exit the region at jun(i)

No declassify in high context

H 6 se(i), se(j) ∧ i 7→ j⇒ Γ [i](x) = Γ [j](x)

(Γ [i])i∈P, S `DND P
i high branching

j ∈ region(i)
safe(sj)

 ∃s ′jun(i). sj {
? s ′jun(i) ∧ sj ∼Γ [entry] s ′jun(i)

Gilles Barthe Language-based methods for software security

Bisimulation

i B i
j B i
i B j

i, j ∈ region(k) ∪ {jun(k)} se(k) = H
i B j

If i, j ∈ region(k) for some k s.t. H 6 se(k).
Assume si ∼Γ [i] tj, and si { s ′i′ .
Choose t ′ = t.
By unwinding and monotonicity, s ′i′ ∼Γ [entry] tj.
By exit through junction, either i ′ ∈ region(k) or i ′ = jun(k).
If j ∈ region(k) and i = jun(k) for some k s.t. H 6 se(k).
. . .

Gilles Barthe Language-based methods for software security

Laundering attacks

[h := h ′]1 ; declassify (h) in { [l := h]2 }

Such programs are insecure w.r.t. policies such as localized
delimited release.
It is possible to define a simple effect system that prevents
laundering attacks:

judgments are of the form `LA c : U, V
U is the set of assigned variables
V is the set of declassified variables

Gilles Barthe Language-based methods for software security

Concurrency

Mobile code applications often exploit concurrency
Concurrent execution of secure sequential programs is not
necessarily secure:

if(h > 0){skip; skip}{skip}; l := 1 || skip; skip; l := 2

Security of multi-threaded programs can be achieved:
by imposing strong security conditions on programs
by relying on secure schedulers

Gilles Barthe Language-based methods for software security

Secure schedulers

A secure scheduler selects the thread to be executed in function of the
security environment:

the thread pool is partitioned into low, high, and hidden threads
if a thread is currently executing a high branch, then only high
threads are scheduled
if the program counter of the last executed thread becomes high
(resp. low), then the thread becomes hidden or high (resp. low)
the choice of a low thread only depends on low history

Round-robin schedulers are secure, provided they take over control
when threads become high/low/hidden

Gilles Barthe Language-based methods for software security

Multi-threaded language

New instruction start i
States 〈〈ρ, λ〉〉where λ associates to each active thread a pair 〈〈i, s〉〉.
Semantics s, h{ s ′:

h is an history
implicitly parameterized by scheduler (modeled as function pickt
from states and histories to threads) and security environment
most rules inherited from sequential fragment

pickt(〈〈ρ, λ〉〉, h) = ctid
λ(ctid) = 〈〈i, s〉〉

P[i] , start k
〈〈i, ρ, s〉〉{seq 〈〈i ′, ρ ′, s ′〉〉
〈〈ρ, λ〉〉, h{ 〈〈ρ ′, λ ′〉〉

where

λ ′(tid) =

{
〈〈i ′, s ′〉〉 if tid = ctid
λ(tid) otherwise

pickt(〈〈ρ, λ〉〉, h) = ctid
λ(ctid) = 〈〈i, s〉〉
P[i] = start pc

ntid fresh

〈〈ρ, λ〉〉, h{ 〈〈ρ ′, λ ′〉〉
where

λ ′(tid) =

{
〈〈pc, ε〉〉 if tid = ntid
λ(tid) otherwise

Gilles Barthe Language-based methods for software security

Policy and type system

Policy is similar to sequential fragment
Transfer rules inherited from sequential fragment

P[i] , start j i `seq st⇒ st ′

i ` st⇒ st ′
P[i] = start j se(i) 6 se(j)

i ` st⇒ st

Type system similar to sequential fragment. As in bytecode
verification, each thread is verified in isolation.

If P[i] = start j we do not have i 7→ j

Assume the scheduler is secure, type soundness can be lifted
from sequential language

Gilles Barthe Language-based methods for software security

Type-preserving compilation

Source type systems offer tools for developing safe/secure
applications, but does not directly address mobile code
Bytecode verifiers provides safety/security assurance to users
Relating both type systems ensure:

applications can be deployed in a mobile code architecture that
delivers the promises of the source type system
enhanced safety/security architecture can benefit from tools for
developing applications that meet the policy it enforces

Gilles Barthe Language-based methods for software security

Compiler correctness

The compiler is semantics-preserving (terminating runs, input/output
behavior)

P,µ ⇓ ν, v ⇒ [[P]],µ ⇓ ν, v

Thus source programs satisfy an input/output property iff their
compilation does

∀P,φ,ψ,µ,ν, v.
(φ(µ)⇒ P,µ ⇓ ν, v⇒ ψ(µ,ν, v))
⇒ (φ(µ)⇒ [[P]],µ ⇓ ν, v⇒ ψ(µ,ν, v))

But are typable programs compiled into typable programs?

∀P,` P =⇒ ∃S. S,` [[P]]

Yes for JVM typing, no in general

Gilles Barthe Language-based methods for software security

Loss of information

Using the sign abstraction

x := 1; y := x − x

yields
y = zero

But
push 1
store x
load x
load x
op −
store y

yields
y = >

Solutions:
Change lattice
Decompile expressions

Gilles Barthe Language-based methods for software security

Source language: While

A program is a command:

commands c ::= x := e assignment
| if(e){c}{c} conditional
| while(e){c} loop
| c; c sequence
| skip skip
| return e return value

Semantics is standard:
States are pairs 〈〈c, ρ〉〉
Small-step semantics 〈〈c, ρ〉〉{ 〈〈c ′, ρ ′〉〉 or 〈〈c, ρ〉〉{ 〈〈ν, v〉〉
Evaluation semantics c,µ ⇓ 〈〈ν, v〉〉 iff c,µ{? 〈〈ν, v〉〉

Gilles Barthe Language-based methods for software security

Information flow type system

Security policy Γ : X→ S and kret

Volpano-Smith security type system

e : k k t pc 6 Γ(x)

[pc] ` x := e
[k] ` c [k] ` c ′

[pc] ` c; c ′

e : k [k] ` c1 [k] ` c2

[pc] ` if(e){c1}{c2}

e : k [k] ` c
[pc] ` while(e){c}

e : k k t pc 6 kret

[pc] ` return e [pc] ` skip

plus subtyping rules

[pc] ` c pc ′ 6 pc
[pc ′] ` c ′

e : k k 6 k ′

e : k ′

Gilles Barthe Language-based methods for software security

Compiling statements

[[x]] = load x
[[v]] = push v

[[e1 op e2]] = [[e2]]; [[e1]]; binop op

k : [[x := e]] = [[e]]; store x
k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]

where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; return

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto l; k2 : [[i2]]
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i1]]| + 1
l = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i]]; goto k
where k1 = k + |[[e2]]| + |[[e1]]| + 1

k2 = k1 + |[[i]]| + 1

Gilles Barthe Language-based methods for software security

Compiling control dependence regions

region(i)

junc(i)

i

junc(i)

region(i)

i

Gilles Barthe Language-based methods for software security

Compiling security environment

if(yH){x := 1}{x := 2};
x ′ := 3;
return 2

load yH L
if 6 L
push 1 H ∈ region(2)
store x H ∈ region(2)
goto 8 H ∈ region(2)
push 2 H ∈ region(2)
store x H ∈ region(2)
push 3 L jun(2)
store x ′ L
push 2 L
return L

Gilles Barthe Language-based methods for software security

Preservation of information flow types

If P is typable, then the extended compiler generates security
environment, regions, and stack types at junction points, such that:

regions satisfy SOAP and can be checked by region checker
[[P]] can be verified by lightweight checker

The result also applies to
concurrency (using naive rule for parallel composition)
declassification

Gilles Barthe Language-based methods for software security

Motivation: source code verification

Traditional PCC

Producer Consumer

Proof
Checker OK

Source Program Compiler

VCGen

Verification
Conditions

Prover Certificate

Execution

VCGen

Verification
Conditions

Compiled
Program

Gilles Barthe Language-based methods for software security

Motivation: source code verification

Source Code Verification

VCGen

Verification
Conditions

Prover Certificate

Producer Consumer

Proof
Checker OK

Source Program Compiler Execution

VCGen

Verification
Conditions

Compiled
Program

Gilles Barthe Language-based methods for software security

Motivation: source code verification

Certificate Translation

VCGen

Verification
Conditions

Prover CertificateCertificate

Certificate
Translator

Producer Consumer

Proof
Checker OK

Source Program Compiler Execution

VCGen

Verification
Conditions

Compiled
Program

Gilles Barthe Language-based methods for software security

Certificate translation vs certifying compilation

Program
Source Compiler

VCGen

Verification
Conditions

Prover Proof
CheckerCertificate

VCGen

Verification
Conditions

Compiled
Program

OK

Execution
Program
Source

VCGen

Verification
Conditions

Prover CertificateCertificate

Compiler

Proof
Checker

VCGen

Verification
Conditions

Compiled
Program

OK

Execution

Certificate
Translator

Conventional PCC Certificate Translation

Automatically in-
ferred invariants

Specification Interactive

Automatic certifying
compiler Verification Interactive source

verification

Safety Properties
Complex func-
tional properties

Gilles Barthe Language-based methods for software security

Certificate translation vs certified compilation

Certified compilation aims at producing a proof term H such that

H : ∀P µ ν, P,µ ⇓ ν =⇒ [[P]],µ ⇓ ν

Thus, we can build a proof term H ′ : {φ}[[P]]{ψ} from H and
H0 : {φ}P{ψ}

Program
Source

Proof
Checker OKCompilation

Certificate
Producer Consumer

Compiled
Program

ExecutionCompiler

* encapsulating

source program

* limited to input output properties

compiler definition

must be available

Gilles Barthe Language-based methods for software security

Program Specification

{pre}
ins1
{ϕ1}

ins2
...
{ϕ2}

insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Gilles Barthe Language-based methods for software security

Program Specification

{pre}
ins1
{ϕ1}

ins2
...
{ϕ2}

insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Gilles Barthe Language-based methods for software security

Program Specification

{pre}
ins1
{ϕ1}

ins2
...
{ϕ2}

insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Gilles Barthe Language-based methods for software security

Program Specification

{pre}
ins1
{ϕ1}

ins2
...
{ϕ2}

insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Gilles Barthe Language-based methods for software security

Program Specification

{pre}
ins1
{ϕ1}

ins2
...
{ϕ2}

insk
{post}

Assertions: formulae attached to a program point,
characterizing the set of execution states at that point.
Instructions are possibly annotated:

Possibly annotated instructions

ins ::= ins | 〈ϕ, ins〉

A partially annotated program is a triple 〈P,Φ,Ψ〉 s.t.
Φ is a precondition and Ψ is a postcondition
P is a sequence of possibly annotated instructions

Gilles Barthe Language-based methods for software security

Building a certificate

Certification of annotated programs is performed in three steps
1 A verification condition generator fully annotates the program,

and extracts a set of verification conditions (a.k.a. proof
obligations)

2 verification conditions are discharged interactively
3 a certificate is built from proofs of verification conditions

Specification Theorem Prover

VCGen Proof Obligations Certificate

Program+

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Weakest precondition calculus

Computes an assertion for a given program node only if the corresponding
assertion has been already computed for all successor nodes

Sufficiently annotated program

All infinite paths must go through an annotated program point

Weakest precondition wpL(k) of program
point k

wpL(k) = φ if P[k] = 〈φ, i〉
wpL(k) = wpi(k) otherwise

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5

5 = 5

store x

os[>] = 5

{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5

5 = 5

store x os[>] = 5
{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Assertions

Annotations do not refer to stacks
Intermediate assertions may do so

{true}
push 5 5 = 5
store x os[>] = 5
{x = 5}

Stack indices

k ::= > | >− i

Expressions

e ::= res | x? | x | c | e op e | os[k]

Assertions

φ ::= e cmp e | ¬φ | φ∧ φ | φ∨ φ | φ⇒ φ

∀x. φ | ∃x. φ

Gilles Barthe Language-based methods for software security

Weakest precondition

if P[k] = push n then

wpi(k) = wpL(k + 1)[n/os[>],>/>− 1]

if P[k] = binop op then

wpi(k) = wpL(k + 1)[os(>− 1) op os[>]/os[>],>− 1/>]

if P[k] = load x then

wpi(k) = wpL(k + 1)[x/os[>],>/>− 1]

if P[k] = store x then

wpi(k) = wpL(k + 1)[os[>]/x,>− 1/>]

if P[k] = if cmp l then

wpi(k) = (os[>− 1] cmp os[>]⇒ wpL(k + 1)[>− 2/>])

∧(¬(os[>− 1] cmp os[>])⇒ wpL(l)[>− 2/>])

if P[k] = goto l then wpi(k) = wpL(l)

if P[k] = return then wpi(k) = Ψ[os[>]/res]

Gilles Barthe Language-based methods for software security

Verification conditions

Proof obligations PO(P,Φ,Ψ)

Precondition implies the weakest precondition of entry point:

Φ⇒ wpL(1)

For all annotated program points (P[k] = 〈ϕ, i〉), the annotation ϕ
implies the weakest precondition of the instruction at k:

ϕ⇒ wpi(k)

An annotated program is correct if its verification conditions are
valid.

Gilles Barthe Language-based methods for software security

Soundness

Define validity of assertions:
s |= φ

µ, s |= φ (shorthand µ,ν |= φ if φ does not contain stack indices)

If (P,Φ,Ψ) is correct, and
P,µ ⇓ ν, v
µ |= Φ

then
µ,ν |= Ψ[v/res]

Furthermore, all intermediate assertions are verified

Proof idea: if s{ s ′ and s · pc = k and s ′ · pc = k ′,

µ, s |= wpi(k) =⇒ µ, s ′ |= wpL(k ′)

Gilles Barthe Language-based methods for software security

Source language

Same assertions, without stack expressions
Annotated programs (P,Φ,Ψ), with all loops annotated
whileI(t){s}
Weakest precondition

wpS(skip, post) = post, ∅ wpS(x := e, post) = post[e/x], ∅

wpS(it, post) = φt, θt wpS(if , post) = φf , θf

wpS(if(t){it}{if }, post) = (t⇒ φt) ∧ (¬t⇒ φt), θt ∪ θf

wpS(i, I) = φ, θ
wpS(whileI(t){i}, post) = I, {I⇒ ((t⇒ φ) ∧ (¬t⇒ post))} ∪ θ

wpS(i2, post) = φ2, θ2 wpS(i1,φ2) = φ1, θ1

wpS(i1; i2, post) = φ1, θ1 ∪ θ2

Gilles Barthe Language-based methods for software security

Preservation of proof obligations
Non-optimizing compiler

Syntactically equal proof obligations

PO(P,φ,ψ) = PO([[P]],φ,ψ)

VCGen

Verification
Conditions

Prover CertificateCertificate

Producer Consumer

Proof
Checker OK

Source Program Execution

VCGen

Verification
Conditions

Compiled
Program

Preservation of
Proof Obligations

Compiler
Non−optimizing

Gilles Barthe Language-based methods for software security

PPO: from (sequential) Java to JVM

We prove PPO for idealized, sequential fragments of Java and the JVM

Java vs JVM

Statement language
(obviously)

Naming convention

Basic types

Compiler does simple
optimizations

Verification methods for Java programs
must address known issues with objects,
methods, exceptions.

We use standard techniques: pre- and
(exceptional) post-conditions, behavioral
subtyping

Gilles Barthe Language-based methods for software security

Implementing a proof transforming compiler
(work by J. Charles and H. Lehner, using Mobius verification infrastructure)

Reflective Proof Carrying Code

Programmed and formally verified a the verification condition generator
against reference specification of sequential JVM

We have built a proof transforming compiler that

generates for each annotated program a prelude and a set of VCs

prove equivalence between source VCs and bytecode VCs

Lemma vc_equiv: vc_source <-> vc_bytecode.

Java Source,
Code Specs (JML)

Java Bytecode

ESC/Java2 AST,

FOL Annotations
Source
VCGen

Bytecode
VCGen (Coq)

Verification
Conditions (Coq)

ESC/Java2 Frontend,

JML to FOL Transl.

javac

Bico+

Bicolano
(Coq)

FOL Annotations
(Coq)

Verification
Conditions (Coq)

Equivalence

Gilles Barthe Language-based methods for software security

The main tactic

Ltac magickal :=

repeat match goal with

| [|- forall lv: LocalVar.t, _] =>let lv := fresh "lv" in

intro lv; mklvget lv 0%N

| [H: forall lv: LocalVar.t, _ |- _] => mklvupd MDom.LocalVar.empty 0%N

| [|- forall os: OperandStack.t, _] => intro

| [H: forall os: OperandStack.t, _ |- _] =>

let H’ := fresh "H" in (assert (H’ := H OperandStack.empty); clear H)

| [H : forall y: Heap.t, _ |- forall x: Heap.t, _] =>

let x := fresh "h" in

(intro x; let H1 := fresh "H" in (assert (H1 := H x);

clear H; try (clear x)))

| [H : forall y: Int.t, _ |- forall x: Int.t, _] =>

let x := fresh "i" in (intro x; let H1 := fresh "H" in

(assert (H1 := H x); clear H; try (clear x)))

| [H : _ -> _ |- _ -> _] =>

let A := fresh "H" in (intros A; let H1 := fresh "H" in

(assert (H1 := H A); clear H; clear A))

| [H : _ /\ _ |- _ /\ _] =>let A := fresh "H" in

let B := fresh "H" in

(destruct H as (A, B); split; [clear B | clear A])

end.

Gilles Barthe Language-based methods for software security

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

Producer Consumer

Proof
Checker OK

Source Program Execution

VCGen

Verification
Conditions

Compiled
Program

Preservation of
Proof Obligations

Compiler
Non−optimizing

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Gilles Barthe Language-based methods for software security

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

VCGenCompiled
Program Optimizer

Producer Consumer

Proof
Checker OK

Source Program Execution

Verification
Conditions

Preservation of
Proof Obligations

Compiler
Non−optimizing Optimized

Program

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Gilles Barthe Language-based methods for software security

Optimizing Compilers

VCGen

Verification
Conditions

Prover CertificateCertificate

VCGenCompiled
Program Optimizer

Producer Consumer

Proof
Checker OK

Source Program Execution

Verification
Conditions

Preservation of
Proof Obligations

Compiler
Non−optimizing Optimized

Program

Proofs obligations might not be preserved

annotations might need to be modified (e.g. constant propagation)

certificates for analyzers might be needed (certifying analyzer)

analyses might need to be modified (e.g. dead variable elimination)

Gilles Barthe Language-based methods for software security

Certificate Translation with Certifying Analyzers

Specification of f

Program f

Specification of fA

(RESA)

Certificate for f̄

Certificate for fACertificate for f

Program f̄
Optimized

Analyzer

Verification
Interactive

Certificate
Translator

Analyzer
Certifying

Compiler
Optimizing

TCB

VC Gen

Proof
Checker

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}

{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}

i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)

{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
i := c + i

{x ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Program
+

Specification

Weakest
Precondition

(no fixpoint to compute)

Fully Annotated
Program

Gilles Barthe Language-based methods for software security

Motivating example

{j = 0}
{j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0}
i := 0;
{j = (b + i) ∗ i ∧ b 6 (b + i) ∧ 0 6 i}
x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)
{x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}

i := c + i
j := x ∗ i;

endwhile;
{n ∗ b 6 j}

Set of Proof Obligations:

j = 0⇒ j = (b + 0) ∗ 0 ∧ b 6 (b + 0) ∧ 0 6 0

j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i , n⇒
x ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i

j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i = n⇒ n ∗ b 6 j

Gilles Barthe Language-based methods for software security

Constant propagation analysis

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b + i;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

Program transformation

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := x ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

Program transformation

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

WP Computation of optimized program

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

WP Computation of optimized program

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

WP Computation of optimized program

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

WP Computation of optimized program

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

WP Computation of optimized program

{j = 0}

{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}

i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}

(i, 0)→ x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}

(x, b)→ while(i! = n)

{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}
(x, b)→ i := c + i

{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}
(x, b)→ j := b ∗ i;

{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Gilles Barthe Language-based methods for software security

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}
i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}
x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}

i := c + i
{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}

j := b ∗ i;
{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b 6 b ∧ 0 6 0

2
j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i , n
⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i

3 j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i = n⇒ n ∗ b 6 j

Gilles Barthe Language-based methods for software security

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}
i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}
x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}

i := c + i
{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}

j := b ∗ i;
{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b 6 b ∧ 0 6 0

2
j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i , n Unprovable

without
knowing
x = b

⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i
3 j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i = n⇒ n ∗ b 6 j

Gilles Barthe Language-based methods for software security

Proof Obligations

{j = 0}
{j = b ∗ 0 ∧ b 6 b ∧ 0 6 0}
i := 0;
{j = b ∗ i ∧ b 6 b ∧ 0 6 i}
x := b;
{Inv : j = x ∗ i ∧ b 6 x ∧ 0 6 i∧x = b}
while(i! = n)
{b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i}

i := c + i
{b ∗ i = x ∗ i ∧ b 6 x ∧ 0 6 i}

j := b ∗ i;
{j = x ∗ i ∧ b 6 x ∧ 0 6 i}
endwhile;
{n ∗ b 6 j}

Proof Obligations:

1 j = 0⇒ j = b ∗ 0 ∧ b 6 b ∧ 0 6 0

2
j = x ∗ i ∧ b 6 x ∧ 0 6 i∧x = b ∧ i , n Solution:

strengthen
annotations

⇒ b ∗ (c + i) = x ∗ (c + i) ∧ b 6 x ∧ 0 6 c + i
3 j = x ∗ i ∧ b 6 x ∧ 0 6 i ∧ i = n⇒ n ∗ b 6 j

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2∧ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3∧ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2)∧wp(S1,ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3)∧wp(S2,ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Strengthening annotations

allows to verify proof obligations of original program

but also introduces new proof obligations

S1

{ϕ1}

S2

{ϕ2}

S3

{ϕ3}

ϕ1 ⇒ wp(S1,ϕ2)

ϕ2 ⇒ wp(S2,ϕ3)

{

S1

{ϕ1∧ψ1}

S2

{ϕ2∧ψ2}

S3

{ϕ3∧ψ3}

ϕ1∧ψ1 ⇒ wp(S1,ϕ2)∧wp(S1,ψ2)

ϕ2∧ψ2 ⇒ wp(S2,ϕ3)∧wp(S2,ψ3)

If the analysis is correct,

ψ1 ⇒ wp(S1,ψ2)

ψ2 ⇒ wp(S2,ψ3)

are valid proof obligations.

Gilles Barthe Language-based methods for software security

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Gilles Barthe Language-based methods for software security

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Gilles Barthe Language-based methods for software security

Certifying/Proof producing analyzer

A certifying analyzer extends a standard analyzer with a procedure
that generates a certificate for the result of the analysis

Certifying analyzers exist under mild hypotheses:
results of the analysis expressible as assertions
abstract transfer functions are correct w.r.t. wp
. . .

Ad hoc construction of certificates yields compact certificates

Gilles Barthe Language-based methods for software security

Certifying analysis for constant propagation

{true}
{b = b}
i := 0;
{b = b}
x := b;
{Inv : x = b}
while(i! = n)
{x = b}

i := c + i
{x = b}

j := b ∗ i;
{x = b}
endwhile;
{true}

Gilles Barthe Language-based methods for software security

Certifying analysis for constant propagation

{true}
{b = b}
i := 0;
{b = b}
x := b;
{Inv : x = b}
while(i! = n)
{x = b}

i := c + i
{x = b}

j := b ∗ i;
{x = b}
endwhile;
{true}

With proof obligations:
x = b ∧ i = n⇒ true
x = b ∧ i , n⇒ x = b
true⇒ b = b

Gilles Barthe Language-based methods for software security

{φ1} + {φA
1 } → {φ1 ∧ φA

1 } {φ ′1 ∧ φA
1 }

S1 S1 S1 → SO
1

{φ2} + {φA
2 } → {φ2 ∧ φA

2 } {φ ′2 ∧ φA
2 }

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n } → {φn ∧ φA

n } {φ ′n ∧ φA
n }

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Gilles Barthe Language-based methods for software security

{φ1} + {φA
1 } → {φ1 ∧ φA

1 } {φ ′1 ∧ φA
1 }

S1 S1 S1 → SO
1

{φ2} + {φA
2 } → {φ2 ∧ φA

2 } {φ ′2 ∧ φA
2 }

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n } → {φn ∧ φA

n } {φ ′n ∧ φA
n }

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Gilles Barthe Language-based methods for software security

{φ1} + {φA
1 } → {φ1 ∧ φA

1 } {φ ′1 ∧ φA
1 }

S1 S1 S1 → SO
1

{φ2} + {φA
2 } → {φ2 ∧ φA

2 } {φ ′2 ∧ φA
2 }

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n } → {φn ∧ φA

n } {φ ′n ∧ φA
n }

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Gilles Barthe Language-based methods for software security

{φ1} + {φA
1 } → {φ1 ∧ φA

1 } {φ ′1 ∧ φA
1 }

S1 S1 S1 → SO
1

{φ2} + {φA
2 } → {φ2 ∧ φA

2 } {φ ′2 ∧ φA
2 }

S2 S2 S2 → SO
2

... +
... →

...
...

Sn−1 Sn−1 Sn−1 → SO
n−1

{φn} + {φA
n } → {φn ∧ φA

n } {φ ′n ∧ φA
n }

Sn Sn Sn → SO
n

Translation consists of:
1 Specifying and certifying automatically the result of the analysis
2 Merging annotations (trivial)
3 Merging certificates

Gilles Barthe Language-based methods for software security

Certificates

Merging of certificates is not tied to a particular certificate format, but
to the existence of functions to manipulate them.

Proof algebra

axiom : P(Γ ; A;∆ ` A)
ring : P(Γ ` n1 = n2) if n1 = n2 is a ring equality
intro⇒ : P(Γ ; A ` B)→ P(Γ ` A⇒ B)
elim⇒ : P(Γ ` A⇒ B)→ P(Γ ` A)→ P(Γ ` B)
elim= : P(Γ ` e1 = e2)→ P(Γ ` A[e1/r])→ P(Γ ` A[e2/r])
subst : P(Γ ` A)→ P(Γ [e/r] ` A[e/r])

Gilles Barthe Language-based methods for software security

Merging certificates

We need to build from the original and analysis certificates:

φ1 ⇒ wp(S,φ2)

———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)

——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S ′,φ2 ∧ a2)

———————————
{φ1 ∧ a1}S ′{φ2 ∧ a2}

by using the gluing lemma

∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

where ins ′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Gilles Barthe Language-based methods for software security

Merging certificates

We need to build from the original and analysis certificates:

φ1 ⇒ wp(S,φ2)

———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)

——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S ′,φ2 ∧ a2)

———————————
{φ1 ∧ a1}S ′{φ2 ∧ a2}

by using the gluing lemma

∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

where ins ′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Gilles Barthe Language-based methods for software security

Merging certificates

We need to build from the original and analysis certificates:

φ1 ⇒ wp(S,φ2)

———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)

——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S ′,φ2 ∧ a2)

———————————
{φ1 ∧ a1}S ′{φ2 ∧ a2}

by using the gluing lemma

∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

where ins ′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Gilles Barthe Language-based methods for software security

Merging certificates

We need to build from the original and analysis certificates:

φ1 ⇒ wp(S,φ2)

———————
{φ1}S{φ2}

a1 ⇒ wp(S, a2)

——————
{a1}S{a2}

the certificate for the optimized program:

φ1 ∧ a1 ⇒ wp(S ′,φ2 ∧ a2)

———————————
{φ1 ∧ a1}S ′{φ2 ∧ a2}

by using the gluing lemma

∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

where ins ′ is the optimization of ins, and a is the result of the analysis

We really construct by well-founded induction a proof term of

wpP(k) ∧ a(k) =⇒ wpP′(k)

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

If the value of e is known to be n, then

. . .
y := e
. . .

n=e−→
. . .
y := n
. . .

The gluing lemma states in this case:

Under the hypothesis that the result of the analysis is valid n = e

the weakest precondition applied to the transformed instruction

wp(y := n,ϕ) (≡ ϕ[n/y])

can be derived from the original one:

wp(y := e,ϕ) (≡ ϕ[e/y])

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

{ϕ1}

x := 5;
{ϕ2}

y := x
{ϕ3}

{T}

x := 5;
{x = 5}

y := x
{x = 5}

{ϕ1 ∧ T}

x := 5;
{ϕ2 ∧ x = 5}

y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[
5/x]

ϕ2 ⇒ ϕ3[
x/y]

Analysis PO’s :

T ⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ T ⇒ ϕ2[
5/x] ∧ 5 = 5

ϕ2 ∧ x = 5⇒ ϕ3[
5/y]∧ x = 5

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

{ϕ1}

x := 5;
{ϕ2}

y := x
{ϕ3}

{T}

x := 5;
{x = 5}

y := x
{x = 5}

{ϕ1 ∧ T}

x := 5;
{ϕ2 ∧ x = 5}

y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[
5/x]

ϕ2 ⇒ ϕ3[
x/y]

Analysis PO’s :

T ⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ T ⇒ ϕ2[
5/x] ∧ 5 = 5

ϕ2 ∧ x = 5⇒ ϕ3[
5/y]∧ x = 5

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

{ϕ1}

x := 5;
{ϕ2}

y := x
{ϕ3}

{T}

x := 5;
{x = 5}

y := x
{x = 5}

{ϕ1 ∧ T}

x := 5;
{ϕ2 ∧ x = 5}

y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[
5/x]

ϕ2 ⇒ ϕ3[
x/y]

Analysis PO’s :

T ⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ T ⇒ ϕ2[
5/x] ∧ 5 = 5

ϕ2 ∧ x = 5⇒ ϕ3[
5/y]∧ x = 5

Gilles Barthe Language-based methods for software security

Illustrating: ∀φ, wp(ins,φ) ∧ a⇒ wp(ins ′,φ)

{ϕ1}

x := 5;
{ϕ2}

y := x
{ϕ3}

{T}

x := 5;
{x = 5}

y := x
{x = 5}

{ϕ1 ∧ T}

x := 5;
{ϕ2 ∧ x = 5}

y := 5
{ϕ3 ∧ x = 5}

Original PO’s:

ϕ1 ⇒ ϕ2[
5/x]

ϕ2 ⇒ ϕ3[
x/y]

Analysis PO’s :

T ⇒ 5 = 5

x = 5⇒ x = 5

Final PO’s:

ϕ1 ∧ T ⇒ ϕ2[
5/x] ∧ 5 = 5

ϕ2 ∧ x = 5⇒ ϕ3[
5/y]∧ x = 5

Gilles Barthe Language-based methods for software security

Applicability and justification of method

Certificate translation is applicable to many common program optimizations:

Constant propagation

Loop induction register strength reduction

Common subexpression elimination

Dead register elimination

Register allocation

Inlining

Dead code elimination

However,

particular language

particular VCgen

particular program
optimizations


provide a general and unifying
framework

Gilles Barthe Language-based methods for software security

An Abstract Model for Certificate Translation

1 We use abstract interpretation to capture in a single model

interactive verification
automatic program analysis

2 We provide sufficient conditions for existence of certifying analyzers
and certificate translators

Abstract interpretation is a natural framework to achieve crisp formalizations
of certificate translation

Benefits of generalization

Language independent and generic in analysis/verification framework

Applicable to backwards and forward verification methods

Extensible

In the sequel, we only consider the case of forward analysis and verification

Gilles Barthe Language-based methods for software security

Program Representation

c := 1
x ′ := x
y ′ := y
while (y ′ , 1) do

if (y ′ mod 2 = 1) then
c := c× x ′

fi
done
x ′ = x ′ × c

Program: directed graph

Nodes denoting execution points (N).
Edges denoting possible transitions between nodes (E).

Gilles Barthe Language-based methods for software security

Abstract Interpretation

Program semantics

Abstract representation

l1

l2

l3 l5

...
...

lf

{η1,η ′1,η ′′1 }

{η2,η ′2}

{η3} {η ′5}

{ηf ,η ′f ,η
′′
f }

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

Gilles Barthe Language-based methods for software security

Abstract Interpretation

Program semantics Abstract representation

l1

l2

l3 l5

...
...

lf

{η1,η ′1,η ′′1 }

{η2,η ′2}

{η3} {η ′5}

{ηf ,η ′f ,η
′′
f }

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

Gilles Barthe Language-based methods for software security

Solution of a Forward Abstract Interpretation

D = 〈D,v,u, . . .〉,
T〈li,lj〉 : D→ D a transfer function (for any edge 〈li, lj〉)

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

{a1, a2, . . . , af } a solution of (D, T) if:

T〈l1,l2〉(a1) v a2
T〈l2,l5〉(a2) v a5
T〈l1,lf 〉(a1) v af

. . .

Gilles Barthe Language-based methods for software security

Example of decidable solution

(D, T): constant analysis (for constant propagation)

i:=0

x:=b+i

i , n

i=c+i
j:=x.i

i = 0

⊥

(i, 0)

(x, b)

(x, b)

(x, b)

⊥

Gilles Barthe Language-based methods for software security

Galois connections capture notion of imprecision

In the following (intuition):

(D, T): verification framework based on symbolic execution
(D], T]): static analysis that justifies a program optimization.

Gilles Barthe Language-based methods for software security

Consistency of T] w.r.t. T

T(γ(a)) v γ(T](a))

Smaller elements: more information

Gilles Barthe Language-based methods for software security

Consistency of T] w.r.t. T

T(γ(a)) v γ(T](a))

Smaller elements: more information

Gilles Barthe Language-based methods for software security

Consistency of T] w.r.t. T

l1

l2

l3 l5

...
...

lf

a1

a2

a3 a5

af

l1

l2

l3 l5

...
...

lf

γ(a1)

γ(a2)

γ(a3) γ(a5)

γ(af)

Result:

{a1, a2 . . . an} a solution of (D], T]), then {γ(a1),γ(a2) . . .γ(an)} is a
solution of (D, T).

Gilles Barthe Language-based methods for software security

Certified Solutions

Definition

〈{a1 . . . an}, c〉 is a certified solution if for any edge 〈i, j〉
c(i, j) ∈ C(` T〈i,j〉(ai) v aj)

if ({a1 . . . an}, ca) and ({b1 . . . bn}, cb) are certified solutions of D, then
({a1 u b1 . . . an u bn}, ca ⊕ cb) is a certified solution.

if {a1 . . . an} is a solution of (D], T]), and cons s.t. for any edge 〈i, j〉

cons〈i,j〉 ∈ C(` T〈i,j〉(γ(a)) v γ(T]
〈i,j〉(a)))

then ({γ(a1) . . .γ(an)}, c) is a certified solution of (D, T) [for some c].

Gilles Barthe Language-based methods for software security

Certified Solutions

Definition

〈{a1 . . . an}, c〉 is a certified solution if for any edge 〈i, j〉
c(i, j) ∈ C(` T〈i,j〉(ai) v aj)

if ({a1 . . . an}, ca) and ({b1 . . . bn}, cb) are certified solutions of D, then
({a1 u b1 . . . an u bn}, ca ⊕ cb) is a certified solution.

if {a1 . . . an} is a solution of (D], T]), and cons s.t. for any edge 〈i, j〉

cons〈i,j〉 ∈ C(` T〈i,j〉(γ(a)) v γ(T]
〈i,j〉(a)))

then ({γ(a1) . . .γ(an)}, c) is a certified solution of (D, T) [for some c].

Gilles Barthe Language-based methods for software security

Certified Solutions

Definition

〈{a1 . . . an}, c〉 is a certified solution if for any edge 〈i, j〉
c(i, j) ∈ C(` T〈i,j〉(ai) v aj)

if ({a1 . . . an}, ca) and ({b1 . . . bn}, cb) are certified solutions of D, then
({a1 u b1 . . . an u bn}, ca ⊕ cb) is a certified solution.

if {a1 . . . an} is a solution of (D], T]), and cons s.t. for any edge 〈i, j〉

cons〈i,j〉 ∈ C(` T〈i,j〉(γ(a)) v γ(T]
〈i,j〉(a)))

then ({γ(a1) . . .γ(an)}, c) is a certified solution of (D, T) [for some c].

Gilles Barthe Language-based methods for software security

Program Transformation

l1

l2

l3 l4

l5

l1

l2

l3 l4

l5

Te 7→ T ′e , e ∈ E

a proof of T ′〈l2,l3〉() v a3 u T〈l2,l3〉()

const and copy propag / loop induction var strength reduction /
common. subexpr elimination / etc.

Gilles Barthe Language-based methods for software security

Program Transformation

l1

l2

l3 l4

l5

l1

l2

l3 l4

l5

Te 7→ T ′e , e ∈ E

a proof of T ′〈l2,l3〉() v a3 u T〈l2,l3〉()

const and copy propag / loop induction var strength reduction /
common. subexpr elimination / etc.

Gilles Barthe Language-based methods for software security

Code Duplication

l1

l2

l3 l4

l5

l1

l ′2

l ′3

l2

l3

l4

l5

loop unrolling / function inlining

Gilles Barthe Language-based methods for software security

Node Coalescing

l1

l2

l3

l4

l5

l6

l7

l8

l1

l2

l345

l6

l7

l8

Gilles Barthe Language-based methods for software security

Extensions and prototypes

We have developed a prototype implementation of a certificate
translator.

We use ad-hoc methods for certifying analyzers and for
transforming certificates along constant propagation/common
subexpression elimination.

Extensions
Concurrent and parallel languages
Domain-specific languages

Gilles Barthe Language-based methods for software security

Conclusions

Two verification methods for bytecode and their relation to
verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Gilles Barthe Language-based methods for software security

Conclusions

Two verification methods for bytecode and their relation to
verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Gilles Barthe Language-based methods for software security

Conclusions

Two verification methods for bytecode and their relation to
verification methods for source code

Type system for information flow based confidentiality policies
Verification condition generator for logical specifications

Virtual machine

Source program
Jif type
checker

API

Bytecode program

Jif types

Operating system

Information flow
types

Security env
Regions

BCV

Inf flow

Virtual machine
Operating system

Source program

Bytecode program

Interactive
proofs

API

JML specification

specification
Bytecode

Certificate

Certificate

Certificate
checker

Gilles Barthe Language-based methods for software security

Deployment of secure mobile code can benefit from:
advanced verification mechanisms at bytecode level
methods to “compile” evidence from producer to consumer
machine checked proofs of verification mechanisms on consumer
side (use reflection)

Gilles Barthe Language-based methods for software security

Mobius project

Certified PCC
Machine checked certificate checkers

Basic technologies (type systems and logics) for static
enforcement of expressive policies at application level

information flow: public outputs should not depends on
confidential data
resource usage: memory usage, billable actions,...
functional correctness: proof-transforming compilation

Certificate generation by type-preserving compilation, certifying
compilation, and proof-transforming compilation
see http://mobius.inria.fr

Gilles Barthe Language-based methods for software security

http://mobius.inria.fr

Mobius view

Source program

Source Specification

(types + logics)

Runtime environment

Bytecode program

Bytecode Specification

Certificate

R
eq

ui
re

m
en

ts

Certificate
checker

Certificate
generation

Certificate
Certificate

Bytecode program

Bytecode Specification

Interactive
proofs

Java
compiler

Spec
compiler

Proof
compiler

Code producer

Code consumer

Gilles Barthe Language-based methods for software security

Further information

http://mobius.inria.fr

Gilles Barthe Language-based methods for software security

