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Why formal verification?

Therac-25 radiotherapy Ariane-5 launch Mars climate orbiter
accidents (1985-1987) failure (1996) failure (1999)

o Characteristics of these systems
- Errors due to software
- Complex, often involving parallelism
- Safety-critical

= formal verification is useful for early error detection
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Outline

e Communicating automata

@ Process algebraic languages
o Action-based temporal logics
e On-the-fly verification

o Case study

@ Discussion and perspectives
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Asynchronous concurrent systems

msg
2,
Characteristics: Applications:
o Set of distributed processes o Hardware
@ Message-passing communication o Software
o Nondeterminism o Telecommunications
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CADP toolbox:

Construction and Analysis of Distributed Processes
(http://www.inrialpes.fr/vasy/cadp)

@ Description languages:
- ISO standards (LOTOS, E-LOTQS)
- Networks of communicating automata

o Functionalities:
- Compilation and rapid prototyping
- Interactive and guided simulation
- Equivalence checking and model checking
- Test generation

o Case-studies and applications:
- >100 industrial case-studies
- >30 derived tools

@ Distribution: over 400 sites (2008)

ﬁ ]
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Communicating automata

@ Basic notions

o [mplicit and explicit representations

e Parallel composition and synchronization
o Hiding and renaming

o Behavioural equivalences

RV Z
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Transformational Reactive

systems systems
@ Work by computing a result e Work by reacting to the
in function of the entries stimuli of the environment
@ Absence of termination o Absence of termination
undesirable desirable
e Upon termination, the o Different occurrences of
result is unique the same request may
produce different results
@ Sequential programming o Parallel programming
(sorting algorithms, graph (operating systems,
traversals, syntax analysis, communication protocols,
..) Web services, ...)

e Concurrent execution
o Communication + synchronization

| W ]
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Communicating automata

e Simple formalism describing the behaviour of
concurrent systems
e Black-box approach:
- One cannot inspect directly the state of the system

- The behaviour of the system can be known only through
its interactions with the environment

< process/automaton (black box)

gate (communication channel)

e Synchronization on a gate requires the participation
of the process and of its environment (rendezvous)
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Automaton (LTS)
o Labeled Transition System M = (S, A, T, sp)

- S: set of states (s, s, ...) internal action
- A: set of visible actions (a,, a,, ...) (Moediorz)

- T: transition relation (s,-a>s, e T)  evely state is reachable
oL from the initial state
- Sp € St initial state

req1 deadlock (sink) state:
) Example: no outgoing transitions
process client, soég ¢s1
sequential model
rest of a reactive system
behaviour

o Other kinds of automata:
- Kripke strictures (information associated to states)
- Input/output automata [Lynch-Tuttle]

| W ]
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LTS representations in CADP

(http://www.inrialpes.fr/vasy/cadp)

Explicit
o List of transitions

o Allows forward and
backward exploration

o Suitable for global
verification

@ BCG (Binary Coded Graphs)
environment

- APl in C for reading/writing

- Tools and libraries for explicit
graph manipulation (bcg_io,
bcg_draw, bcg_info,
bcg_edit, bcg labels ..)

- Global verification tools (XTL)
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Implicit
@ “Successor” function

o Allows forward exploration
only

o Suitable for local (or on-
the-fly) verification

o Open/Caesar environment
[Garavel-98]

- APl in C for LTS exploration

- Libraries with data structures
for implicit graph manipu-
lation (stacks, tables, edge
lists, hash functions, ...)

- On-the-fly verification tools
(Bisimulator, Evaluator, ...)
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Server example
(modeled using a single automaton)

e Server able to process two requests concurrently
o State variables u,, u, storing the request status:
- Empty (e)
- Received (r)
- Handled (h) S
o A state: couple <u,, u,> req2 res2
o [nitial state: <e, e> (ee for short)
o Gates (actions):
- req1, req2: receive a request

- res1, res2: send a response
- i: internal action

req1 res

ﬁ ]
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LTS of the server

(9 states, 16 transitions)

rest

res?2

res?2

rest

[
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Remarks

e All the theoretical states are reachable:
lu | *lu, | =373=9
(no synchronization between request processings)
@ There is no sink state (the system is deadlock-free)

e From every state, it is possible to reach the initial
state again (the server can be re-initialized)

o Shortcomings of modeling with a single automaton:
- One must predict all the possible request arrival orders
- For more complex systems, the LTS size grows rapidly

= need of higher-level modeling features

ﬁ ]
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Server example

(modeled using two concurrent automata)

e Decomposition of the system in two subsystems
- Every type of request is handled by a subsystem
- In the server example, subsystems are independent

o Simpler description w.r.t. single automaton:

3 + 3 =6 states

req1 «®» Server,

req2 <« Server,

Server

|
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Decomposition in
concurrent subsystems

Required at physical level  Chosen at logical level

- Modeling of distributed - Simplified design of the
activities system

- Multiprocessor/multitask - Well-structured
ing execution platform programs

e Communication and synchronization between
subsystems may introduce behavioural errors
(e.g., deadlocks)

e In practice, even simple parallel programs may
reveal difficult to analyze

= need of computer-assisted verification

? ]
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Parallel composition (“product”)
of automata

o Goals:
- Define internal composition laws
® : LTS x ... x LTS — LTS
expressing the parallel composition of 2 (or more) LTSs
- Allow synchronizations on one or several actions (gates)
- Allow hierarchical decomposition of a system

e Consequences:

- A product of automata can always be translated into a
single (sequential) automaton

- The logical parallelism can be implemented sequentially
(e.g., time-sharing OS)

| W ]
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Binary parallel composition
(syntax)
e EXP language [Lang-05]
- Description of communicating automata

- Extensive set of operators
= Parallel compositions (binary, general, ...)
= Synchronization vectors
» Hiding / renaming, cutting, priority, ...

- Exp.Open compiler = implicit LTS representation
e Binary parallel composition:

“ ” “ ” with synchronization
lts1.bcg” |[G1, ..., Gn]| “lts2.bcg onG1, ... Gn

“lts1. bcg” 1] “lts?. bcg” WithOL.It synchrqnization
(interleaving)

| W ]
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Binary parallel composition

(semantics)
Let M; = (54, A, Ty, Soi0, My =(5,, Ay, Ty, Soy) @and
L = A, n A, a set of visible actions to be synchronized.

ITLTI My, =(S, AT, sp) /(R) s; 2.8’y A agl
1
GS_S1 XSZ <S1,82>i><8’1,32>
o A=A UA,
a y
95 = <SO1’ S02> < (R,) Sp—So A agl
oTcSxAxS (S1, So) 2+ (Sq, S')

defined by R;-R,

S1 i»S’1 /\32 i>S,2/\ aEL

\ (S1, So) i’<S’1, S'5)

| W ]
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Example

(1) (4)
ANUIA
(2) (3) (5) (6)
(1,4)

47 biry \©
®R) | ®)

(2,4) (3, 5) (1, 6)

C a
(Ry) Ry)

(2,6)
YTSA OB - Mo Plamck Zl
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Interleaving semantics

e Hypothesis:
- Every action is atomic
- One can observe at most one action at a time

=>» suitable paradigm for distributed systems

interleaving lozenge

o Parallelism can be expressed in terms of choice and
sequence (expansion theorem [Milner-89])

[ W ]
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Internal and external choice

e External choice (the environment decides which
branch of the choice will be executed)

the environment can force the execution of a and b
by synchronizing on that action

p:

o Internal choice (the system decides)

d the environment may synchronize on a, but this will
not remove the nondeterminism

‘ Q

? ]
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Example of modeling with
communicating automata
e Mutual exclusion problem:

Given two parallel processes P, and P, competing
for a shared resource, guarantee that at most one
process accesses the resource at a given time.
@ Several solutions were proposed at software level.
- In centralized setting (Peterson, Dekker, Knuth, ...)
- In distributed setting (Lamport, ...)

= M. Raynal. Algorithmique du parallelisme: le
probleme de [’exclusion mutuelle.
Dunod Informatique, 1984.

| W T
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Peterson’s algorithm [1968]

var dO : bool := false
var d1 : bool := false
vart{0,1}:=0

{ read by P1, written by PO }
{ read by PO, written by P1 }
{ read/written by PO and P1 }

loop forever { PO }
1:{ncsO}

2 . dO :=true

3:1:=0

4 : wait (d1 =falseort=1)
5:{b_cs0}

6:{e_csO}

7 . dO :=false

endloop

loop forever { P1 }
1:{ncs1}

2 . d1 :=true

3:t:=1

4 : wait (dO = false or t = 0)
5:{b_cs1}

6:{e_csl}

7 . d1 :=1false

endloop
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Automata of P, and P,

/P, N (P ™~
dO :=false” nesO “d1 ‘= fals ncs1
7/ @ 7 @
e _csO “dO := true” e csi “d1 :=true”
© 9 © ®
b_cs0 ‘t:=0 b_cs1 “t:=1
“d1 =false 7" | “d0 =false 7" |
) @ ) @
=17 N =07 Y.

VTSA OB - Mo Pl Z
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Automata of d,, d,, and t

“d0 = false ?”

~

d,

“d1 = false ?”

~

<;@'\/ Qtzw”

“t:=0"

)

[
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Architecture of the system
(graphical)
“d0 := false” do
ncsO T ncs1
b_csO =17 b_cst
e cso| PO - t =07 P1 "¢ csi

“d1 :=true”

4
N

“d1 = false ?” “d1 = false”

d1i

o Synchronized actions: «d0:=false», «d0:=true», ...
@ Non synchronized actions: ncs0, b_cs0, e_cs0, ...

? ]
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Architecture of the system

(textual)

o Using binary parallel composition:

(PO ||| P1)

|[ “d0:=false”, “d0O:=true”, ... ]|

(dO [11dl[]It)
o Using general parallel composition:

par
“d0:=false”, “dO:=true”, ... 2> PO
“d1:.=false”, “d1:=true”, ... > P1
“d0:=false”, “dO:=true”, “dO=false?” = d0
“d1:.=false”, “d1:=true”, “d1=false?” = d1
“t:=0”, “t:=1", “t=0?", “t=1?" > t
end par

VTSA'08 - Max Planck Institute, Saarbriicken ‘!(
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Construction of the LTS

(“product automaton”)

e Explicit-state method:

- LTS construction by exploring forward the transition
relation, starting at the initial state

- Transitions are generated by using the R;, R,, R;rules

- Detect already visited states in order to avoid cycling
o Several possible exploration strategies:

- Breadth-first, depth-first

- Guided by a criterion / property, ...

o Several types of algorithms:
- Sequential, parallel, distributed, ...

| W ]
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Construction of the LTS

S={FV}Ix{F,V}x{0,1}x{1..7}x{1..7}
A ={ ncsO, ncst, ..., “dO:=true”, ... }
so=(F,F,0,1,1)=FFO11

T =
o0 FFOT_ncst
dO:=tru FFO21 csi ncsO FFO12 d1:=true

" VFO31 . (EF022 . FVO13 ,._
t:=0 ncst dO:= di:=true ncs t:=1

| W ]
VTSA'08 - Max Planck Institute, Saarbriicken 30



Remarks

e The LTS of Peterson’s algorithm is finite:
| S |1 =250<2x2x2x7x7=2392

e [n the presence of synchronizations, the number of
reachable states is (much) smaller than the size of
the cartesian product of the variable domains

@ Some tools of CADP for LTS manipulation:

- OCIS (step-by-step and guided simulation)
- Executor (random exploration)

- Exhibitor (search for regular sequences)

- Terminator (search for deadlocks)

=» can be used in conjunction with Exp.Open

ﬁ ]
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Verification

@ Once the LTS is generated, one can formulate and
verify automatically the desired properties of the
system

e For Peterson’s algorithm:

- Deadlock freedom: each state has at least one successor

- Mutual exclusion: at most one process can be in the
critical section at a given time

- Liveness: no process can indefinitely overtake the other
when accessing its critical section

[see the chapter on temporal logics]

| W ]
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Limitations of binary parallel
composition
e Several ways of modeling a process network:

- Absence of canonical form

- Difficult to determine whether two composition
expressions denote the same process network

- Difficult to retrieve the process network from a
composition expression

@ The semantics of “|[Gq, ..., G,]|” (rule R;) does not
prevent that other processes

synchronize on Gy, ..., G, i binary synchro.

(maximal cooperation) G S hization on G
@ Some networks cannot be G

modeled using “|[[]]”: P2 @ ® P

ﬁ B ]
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Example
(ring network [Garavel-Sighireanu-99]) P1
/ o&.
P2 P5
o Description using binary G2 G4
parallel composition: a3
P3 ® ® P4

(Py 1LGqI1 P2 11G,]1 P35 11Gs]1 Py)

| [Gy4, Gs]
the composition expression

P 5 does not reflect the symmetry
of the process network

[ W ]
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General parallel composition
[Garavel-Sighireanu-99]

e “Graphical” parallel composition operator allowing
the composition of several automata and their
m among n synchronization:

par [ g#m,, ..., g.#m,in ]

G, 2 By
gates with their associated
[ QZ 2 BZ synchronization degrees
automata (processes
1 G.>B, (p )
end par communication interfaces

(gate lists)

| W ]
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General parallel composition

(semantics - rules without synchronization degrees)

1a,1.B;-a2 B’ rag G AaV]j=i.B =B,
par G,=»B,, ..., G,2B, -a-» par G,=B,’, ..., G,2B,’

(GR1)

mandatory interleaved execution of
non-synchronized actions

da.Vvi.ifae G, thenB;-a> B else B,” = B, GR?2)

par G,»B,, ..., G,2B_ -a-> par G,=B,’, ..., G,2B,’

execution in maximal cooperation of
synchronized actions

| W ]
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Example (1/3)

@ Process network unexpressible using “|[]]”:

e Description using general
parallel composition:

par G#2 in
G- P,
| G-=>P,
| G > P
end par

VTSA0s - P Z
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P2 @

P1

maximal cooperation avoided by
means of synchronization degrees

® P3
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Example (2/3)

(ring network [Garavel-Sighireanu-99])

e Description using general
parallel composition:

par
G, G; 2> P,

P2

G, G, 2> P,
G;, G, 2 P;
Gy, G; 2 Py
Gs, G, 2 P:
end par

G2

/

P3 @

G3

R

composition expression

VTSA S - Mo P Z
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Example (3/3)

o Definition of “|[]|” in terms of “par”:
B, |[G ..., G ]I B, = par G, ..., G, 2> B,

| | G, ..., G, 2 B,
end par
o CREW (Concurrent Read / Exclusive Write):
par W#2 in
R, W P, ® Pl 6 & P2 & & P @
R, W->P,
[ _ | @
R, W= Ps R| W R| [W R
R, W > VAR r oo— . *° ']
end par
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Parallel composition using
synchronization vectors
e Primitive form of n-ary parallel composition

e Proposed in various networks of automata:
MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]

@ Synchronizations are made explicit by means of
synchronization vectors

e Syntax in the EXP language [Lang-05]:
par V., ..., V_in

B 1 1| ... || Bn synchronization vectors

end par
Vi=(G | )*..." (G, | _) 2 G

wildcard 7
| ]
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Example
(client-server with gate multiplexing)

req

Server binary synchronization
on gates req and res
Client2

res

@ Description using synchronization vectors:
par req*_ *req—>req, rep*_ *rep - rep,
*req*req—>req, _ “rep*rep ->rep
in
Client, || Client, || Server
end par

VTSA'08 - Max Planck Institute, Saarbriicken ‘!( 41



Behavioural equivalence

e Useful for determining whether two LTSs denote
the same behaviour

o Allows to:

- Understand the semantics of languages (communicating
automata, process algebras) having LTS models

- Define and assess translations between languages

- Refine specifications whilst preserving the equivalence of
their corresponding LTSs

- Replace certain system components by other, equivalent
ones (maintenance)

- Exploit identities between behaviour expressions
(e.g., B, |[G]I B, =B, |[G]| B;) in analysis tools

. W |
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Equivalence relations between LTSs

a d

equivalent?

e A large spectrum of equivalence relations proposed:
- Trace equivalence (= language equivalence)
- Strong bisimulation [Park-81]
- Weak bisimulation [Milner-89]
- Branching bisimulation [Bergstra-Klop-84]
- Safety equivalence [Bouajjani-et-al-90]

| W ]
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Trace equivalence

e Trace: sequence of visible actions
(e.g., 0 =req, res, req, res,)

e Notations (a = visible action):

- § =a=>. there exists a transition sequence
S-12 S, -12 S, ... -2 S,
- s =0=>: there exists a transition sequence

s=a,=>5s,...=a,=>s,suchthato=a, ... a,

o Two state are trace equivalents iff they are the
source of the same traces:

s~,s iff Vo.(s=o=> iff s=0=>)

[ W ]
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Example

(coffee machine)

e The two LTSs below are trace equivalent:

money,/~\.umoney money

coffee teg U coffee teg
M, M,

Traces (M,) = Traces (M,) =
{ €, money, money coffee, money tea }

=» have the two coffee machines the same

; ?
behaviour w.r.t. a user: "

? T
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Bisimulation

@ Trace equivalence is not sufficiently precise to
characterize the behaviour of a system w.r.t. its
interaction with its environment

=>» stronger relations (bisimulations) are necessary

o Two states s, et s, are bisimilar iff they are the
origin of the same behaviour (execution tree):

vV s,-a=2>s,’ .315-a2>s,’ .S =S,
vV s,-a=2>s,’ . 31s,-a>s,’ .S, =S,

o Bisimulation is an equivalence relation (reflexive,
symmetric, and transitive) on states

o Two LTSs are bisimilar iff s5; = sy,

ﬁ ]
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Strong bisimulation

o Strong bisimulation: the largest bisimulation

=>» to show that two LTSs are strongly bisimilar, it is
sufficient to find a bisimulation between them

VTSA'08 - Max Planck Institute, Saarbriicken J‘!( 47




Is strong bisimulation sufficient?

o Trace equivalence ignores internal actions (i) and
does not capture the branching of transitions

=>» does not distinguish the LTSs below

money money. money
coffee tea coffee tea
®

o Strong bisimulation captures the branching, but
handles internal and visible actions in the same way

=>» does not abstract away the internal behaviour

| W ]
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Weak bisimulation

(or observational equivalence)

e [n practice, it is necessary to compare LTSs

- By abstracting away
internal actions - - —

7
- By distinguishing the a T T //’ T
branching o
o Weak bisimulation \\‘\\ . \:\\ .
[Milner-89]: W 5 NN
WM A \\
every a-transition VAN q
corresponds to an ‘\ \.. . |
?c;f/?v,;gglzn gr gffggg <4l \ corresponds to 0 or
oy ‘U more rtransitions
r-transitions \

| W ]
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Weak bisimulation

(formal definition)
e Let M1 = <S1, A, T1, So1> and /\/12 = <SZ, A, Tz, 507”

o A weak bisimulation is a relation ~ < S, x §, such
that s, = s, iff:

Vs -a»>s’.3s -t".a.t">s, .5 eqs,
Vs -t25s .35 -17™>s,’ .5’ €eqs,
and
Vs,-a»>s),.3s -1.a.17"> 51’ .S, eqs,
VSs-12s .35 -17™>s’.s’eqs,
~.ps 1S the largest weak blslmulatlon
° M1 ~obs My 11T So1 Rops Soa

VTSA'08 - Max Planck Institute, Saarbriicken ! ( 50



Example

e To show that two LTSs are weakly bisimilar, it is
sufficient to find a weak bisimulation between
them

[ W ]
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Communicating automata

(summary)

o Advantages:
- Simple model for describing concurrency

- Powerful tools for manipulation
= MEC (University of Bordeaux)
= Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
= CADP (INRIA, Grenoble)

- Some industrial applications

@ Shortcomings:

- Limited expressiveness
= No dynamic creation and destruction of automata
= |Impossible to express: A then (B || C) then D

= No handling of data (each variable = an automaton), unacceptable for
complex types (numbers, lists, structures, ...)

- Maintenance difficult and error-prone (large automata)

VTSA'08 - Max Planck Institute, Saarbriicken ‘!(
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Process algebraic languages

@ Basic notions

o Parallel composition and hiding

e Sequential composition and choice
@ Value-passing and guards

@ Process definition and instantiation

RV Z
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53



Process algebras

@ PAs: theoretical formalisms for describing and
studying concurrency and communication
e Examples of PAs for asynchronous systems:
- CCS (Calculus of Communicating Systems) [Milner-89]
- CSP (Communicating Sequential Processes) [Hoare-85]
- ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]

@ Basic idea of PAs:

- Provide a small nhumber of operators

- Construct behaviours by freely combining operators (lego)
e Standardized specification languages:

- LOTOS [ISO-1988], E-LOTOS [ISO-2001]

ﬁ B ]
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LOTOS

(Language Of Temporal Ordering Specification)

e [nternational standard [ISO 8807] for the formal
specification of telecommunication protocols and
distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

o Enhanced LOTOS (E-LOTQOS): revised standard [2001]

@ LOTOS contains two “orthogonal” sublanguages:
- data part (for data structures)
- process part (for behaviours)
o Handling data is necessary for describing realistic

systems. “Basic LOTOS” (the dataless fragment of
LOTOS) is useful only for small examples.

ﬁ ]
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LOTOS - data part

e Based on algebraic abstract data types (ActOne):

type Natural is
sorts Nat
opns 0 : -> Nat
succ : Nat -> Nat
+ : Nat, Nat -> Nat
eqns forall M, N : Nat
ofsort Nat
O+ N=N;
succ(M) + N = succ(M + N);
endtype

o Caesar.Adt compiler of CADP [Garavel-Turlier-92]

o ADTs tend to become cumbersome for complex data
manipulations (removed in E-LOTQS).
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LOTOS - process part

e Combines the best features of the process algebras
CCS [Milner-89] and CSP [Hoare-85]

e Terminal symbols (identifiers):
- Variables: X,, ..., X,
- Gates: G, ..., G,
- Processes: Py, ..., P,
- Sorts (= types): S, ..., S,
- Functions: F,, ..., F,
- Comments: (* ... ¥)

o Caesar compiler of CADP [Garavel-Sifakis-90]

? ]
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Value expressions and offers

o Value expressions: V., ..., V_
Vi=X
| F(V,, .., V)
|V, FV,

o Offers: O,, ..., O,
O::=1V emission of a value V

| ?2X:S reception of a value to be stored
in a variable X of sort S

[ W ]
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o Behaviours: B,, ..

B ::

Behaviour expressions
(Lots Of Terribly Obscure Symbols :-)

. B,

stop
G,0,...0,[V]; B,
B, [1B,

B1 |[G1, ceey Gn]l Bz
B, Il B,
hide G, ..., G, in B,
[V]-> B,

let X: S=Vin B,
choice X : S [] B,
PI[G,, ..

VTSA'08 - Max Planck Institute, Saarbriicken

LG 1V, ...

)

/A

4

n

)

inaction
action prefix
choice

parallel with synchroni-
zationon G, ..., G,

interleaving
hiding

guard

variable definition
choice over values

process call

59



Process definitions

process P[ G, ..., G, ] (X;:S4, ..., X.:S,) :=
B
endproc

where:
@ P = process nhame
Gy, ..., G, = formal gate parameters of P

° X, ..., X, = formal value parameters of P,
of sorts S, ..., S,

o B = body (behaviour) of P
VTSA'08 - Max Planck Institute, Saarbriicken W
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Remarks

e LOTOS process: “black box” equipped with
communication points (gates) with the outside

rocess P [G,, G,, G;] (...) :=
G1+5+GSP [G1, Gy, G (...)

G, endproc

@ Each process has its own local (private) variables,
which are not accessible from the outside

= communication by rendezvous and
not by shared variables

o Parallel composition and encapsulation of boxes:
described using the |[...]|, | | |, and hide operators

VTSA'08 - Max Planck Institute, Saarbriicken ‘!( 61




Example

PUT

Sender

» Medium1

D

Receiver

GET

Medium2 -

C

(Sender [PUT, A, D] | | | Receiver [GET, B, C])

[[A, B, C, D]

(Medium1 [A, B] | | | Medium2 [C, D])

or

(Sender [PUT, A, D] |[A]l Medium1 [A, B])

[B, D]

(Receiver [GET, B, C] |[C]| Medium2 [C, D])

VTSA'08 - Max Planck Institute, Saarbriicken
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Multiple rendezvous

o LOTOS parallel operators allow to specify the
synchronization of n > 2 processes on the same gate

C1

C2

A

C3

|
VTSA'08 - Max Planck Institute, Saarbriicken

Example (client-server):

C1[A] I[A]l C2 [A] I[A]l C3 [A]
| [A] |
S [A]

the three client processes
synchronize with the server
on gate A (4-way rendezvous)

/A ———



Binary rendezvous

o The | | | operator allows to specify binary
rendezvous (2 among n) on the same gate

C3

C1 C2
® ®
A
@

A'S ‘A

|
VTSA'08 - Max Planck Institute, Saarbriicken

Example (client-server):

(CTIAT 11T C2[A] [1] C3[A])

| [A] |
S [A]

the three client processes are
competing to access the server
on gate A but only one can get
access at a given moment

/A ———



Abstraction
(hiding)

o In LOTOS, when a synchronization takes place on a
gate G between two processes, another one can
also synchronize on G (maximal cooperation)

e |[f this is undesirable, it can be forbidden by hiding
the gate (renaming it into 7) using the hide
operator:

hide G,, ..., G, in B

which means that all actions performed by B on
gates G,, ..., G, are hidden

o The gates G, ..., G,, are “abstracted away” (hidden
from the outside world)

ﬁ |
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Example

Medium1

PUT " GET
» Sender Receiver >

Medium2
D C

process Network [PUT, GET] :=
hide A, B, C, D in
(Sender [PUT, A, D] | || Receiver [GET, B, C])
'[A, B, C, D]
(Medium1 [A, B] | | | Medium2 [C, D])
endproc

ﬁ ]
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Operational semantics

o Notations:
- G: gate list (or set)
- L: action (transition label), of the form
GV, ..V,

where G is a gate and V., ..., V., is the list of values
exchanged on G during the rendezvous

-gate (L) =G

- B[ v/ X ]: syntactic substitution of all free occurrences
of X inside B by a value v (having the same sort as X)

- V[ v/ X]:idem, substitution of Xby vin V

| W ]
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Semantics of “|[...]]”

B, >, B’ ngate (L) ¢ G B, evolves
B,I[G]I B,—>, B/’ I[G]I B,

B, >, B,” ngate (L) ¢ G B, evolves
By ILGII B, >, B I[G ]I B’

B1 _)L B1, /\ BZ _)L BZ’ VAN gate (L) e Q B1 and BZ

B, I[G]l B,—>, B, I[G]IB)’ evolve

@ Gates have no direction of communication

? ]
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Semantics of “hide”

B—> B’ Agate (L) ¢ G normal gate
hide G in B —, hide G in B’

B—, B’Agate (L) e G hidden gate
hide G in B —, hide G in B’

o [n LOTOS, i is a keyword: use with care

[ W ]
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Sequential behaviours

e LOTOS allows to encode sequential automata by
means of the choice (“[]”) and sequence operators
(“;” and “stop”), and recursive processes

process P [A, B, C, D, E] : noexit :=
A; (

D ; stop
[]
E;P[A B, C, D, E]
)
)

endproc

| W ]
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Remarks

e The description of automata in LOTOS is not far
from regular expressions (operators “.”, “|”, “*”),
except that:

- The “;” operator of LOTOS is asymmetric (= from “.”)
GO,..0,;B but not B, ; B,

- There is no iteration operator “*”, one must use a
recursive process call instead

o LOTOS allows to describe automata with data
values (=~ functions in sequential languages) by using
processes with value parameters

VTSA'08 - Max Planck Institute, Saarbriicken ! ( 71



Semantics of “stop”

e The “stop” operator (inaction) has no associated
semantic rule, because no transition can be derived
from it

o A call of a “pathological” recursive process like
process P [A] : noexit :=
P [A]
endproc

has a behaviour equivalent to stop (unguarded
recursion)

ﬁ ]
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Prefix operator (“;”)

e Allows to describe:
- Sequential composition of actions
- Communication (emission / reception) of data values

o Simplest variant: actions on gates, without value-
passing (basic LOTOS)

a;b;c;d; stop

a b C d
°® @ @ @ @

| W ]
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Semantics of “;”

Case 1: action without reception offers (?X:5)

(V1<i<n.O0,=!V.)AV-=true
GO,..0,[V];B—¢cy; v, B

o The boolean guard and the offers are optional

o |[f the guard V is false, the rendezvous does not
happen (deadlock):

GO,..0,[V];B =~ stop

[ W ]
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Example (1/2)

Sequential composition: E A ltrue: B 14: stop}
A ltrue; B !4; stop A lirue

{ B !4;‘stop }
Bl4

{ stop }

VTSA OB - Mo Pl Z
VTSA'08 - Max Planck Institute, Saarbriicken
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Example (2/2)

e Synchronization by value matching: two processes
send to each other the same values on a gate
®

G!1;B, |[[G]l G!;B, RIV OK | G1

G!1;B, I[G]] G!2; B, deadlock

(different values)

G!1;B, I[G]| G ltrue; B, deadlock
(different types)
VTSA'08 - Max Planck Institute, Saarbriicken W _76



Semantics of “;”

Case 2: action containing reception offer(s) (?X:5)

(veS)A(V[V/ X]=true)

GIX:S[V];B—g,B[V/X]

o The variables defined in the offers ?X:S are visible
in the boolean guard V and inside B

@ An action can freely mix emission and reception
offers

ﬁ ]
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Example (1/3)

‘) . .
G 2X:Bool; waue
stop

GOo| G1 G2 G3

G ?X:Nat [X < 4];

é é
H!X HO| H1l H2 HS
stop ¢ ¢

o The semantics handles the reception by branching
on all possible values that can be received

VTSA'08 - Max Planck Institute, Saarbriicken ‘!( 78




Example (2/3)

e Emission of a value = guarded reception:

G!IV=GIXS[X=V] ?

where S = type (V) GV
é

@ Synchronization by value generation: two processes
receive values of the same type on a gate

G ?n,:Nat [ n, <=51]; B,
I[G]I G3
G ?n,:Nat [ n, > 2]; B,

G4G°

| W ]
VTSA'08 - Max Planck Institute, Saarbriicken 79



Example (3/3)

e Synchronization by value-passing:

G ?X:Bool ; stop |[G]| G !true; stop G true

G?X:Bool ;stop |[[G]| G!3; stop

G false Gtrue |[G] G3

deadlock: the semantics of the “|[...]|” operator requires
that the two labels be identical (same type for the emitted
value and the reception offer)

| W ]
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Rendezvous

(summary)

e General form:
GCO,..0,[V.;B, I[G]I G O;..0)[V,]; B,
e Conditions for the rendezvous:
-G=G"and G e G
-m=n
-V, and V, are true in the context of O,, ..., O/
- V1 <i<n. type (O)) = type (O,’)
-v1<i<n. prop (0;) nprop (O;’) # D
where prop(0) = set of values accepted by offer O
-prop (V) ={V }
- prop (?X:S) =S
—— /A ——



Choice operator (“[]”)

@ ”’[]”: notation inherited from the programs with
guarded commands [Dijkstra]

o Allows to specify the choice between several
alternatives:

(Bi[1B;1]Bs)
can execute either B,, or B,, or B;
o Example:
a,
(b ; stop
[] b C
c ; stop)

| W ]
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Semantics of “[]”

B, —, B’ execution of B,
B, [1B;, >, By’

B, —, B,’ execution of B,
B, [1B;, =, B’

o After the choice, one of the two behaviours
disappears (the execution was engaged on a branch
of the choice and the other one is abandoned)

| W ]
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Internal / external choice
(Gy;B; []1 G;;By)

- External choice: the environment can decide which
branch will be executed

- Internal choice: the program decides
o Example (coffee machine):

money money money
coffee tea coffee tea
external choice (user) internal choice (machine)

| W ]
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Internal action (“i”)

e [n LOTOS, the special gate i denotes an internal
event on which the environment cannot act:

(i; Gy ; stop

[]
i; G, ; stop)

internal choice

(G, ; stop G, i
[]
i; G, ; stop) G;

| W ]
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Guard operator (“[...] ->”

e LOTOS does not possess an “if-then-else” construct
e Guards (boolean conditions) can be used instead
o Informal semantics:

[V]->B =~ if Vthen B else stop
o Frequent usage in conjunction with “[]”:
READ ?m,n:Nat ;
([ m>=n]->PRINT Im; stop —
] emission of max (m,n)
] on gate PRINT
‘m<n] ->PRINT In; stop )

[ W ]
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Semantics of “[...] ->”

(V=true) AB—, B’
[V]>B—, B’

o [f the boolean expression V evaluates to false, no
semantic rule applies (deadlock):

[ false] ->B ~ stop

VTSA S - Mo P Z
VTSA'08 - Max Planck Institute, Saarbriicken
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Examples

o “if-then-else”: “case”:
] ]
‘not (V)] ->B, X=0]->8B,
]
 X>0]->B;
o Beware of overlapping guards:
- if X = 0 then this is equivalent
] fo an unguarded choice B1 [] B2

[
VTSA'08 - Max Planck Institute, Saarbriicken
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Operator “let”

o LOTOS allows to define variables for storing the
results of expressions

e Variable definition:
let X:S=Vin B

declares variable X and initializes it with the value
of V. X is visible in B.

o Write-once variables (no multiple assignments):
let X:Bool = true in G !X; (*first X~)
let X:Bool = falsein G !X; (*second X *)
stop

ﬁ ]
VTSA'08 - Max Planck Institute, Saarbriicken ‘( 89



Semantics of “let”

B[V/X]—>, B
let X:S=VinB —, B’

o Example:
let X:NatList = cons (0, nil) in
G \X;
H !cons (1, X);

stop
VTSA OB - Mo pian Z
VTSA'08 - Max Planck Institute, Saarbriicken
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Remarks

LOTOS is a functional language:
e No uninitialized variable (forbidden by the syntax)

e No assignment operator (“:="), the value of a
variable does not change after its initialization

e No “global” or “shared” variables between
functions or processes

o Each process has its own local variables
o Communication by rendezvous only
o No side-effects

. W |
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Operator “choice”

e Operator “choice”: similar to “let”, except that
variable X takes a nondeterministic value in the
domain of its sort S

e Semantics:
(veS)AB[Vv/X]—> B
choice X:S[] B —, B’

e Example:

choice X:Bool [] GfWue
G !X; stop

ﬁ ]
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Examples

@ Reception of a value = particular case of “choice”:
G?X:S;B = choice X:S[]B

o [teration over the values of an enumerated type:
choice A:Addr []
SEND 'm 1A ; stop

o Generation of a random value:
choice rand:Nat []
[ rand <= 10 ] -> PRINT !rand ; stop

| W B ]
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Operator “exit”

e LOTOS allows to express normal termination of a
behaviour, possibly with the return of one or
several values:

exit (V,, .., V,)

denotes a behaviour that terminates and produces
the values V., ..., V,

n
e Example:

RECO REC 1
REC ?x:Nat[x<2];
exit (X + 1 ) exit 1 exit 2

| W ]
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Semantics of “exit”

true
exit (Vy, ..., Vi,) —exit v .. vn StOP

o exit = special gate, synchronized by the “|[...]1”
operator (see later)

o The values V., ..., V, are optional (“exit” means
normal termination without producing any value)

| W ]
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Operator “>>”

e LOTOS allows to express the sequential composition
petween a behaviour B, that terminates and a
oehaviour B, that begins:

B, >> accept X,:5,..., X.:S, in B,

means that when B, terminates by producing values
V.., V., the execution continues with B, in which
X;,-., X, are replaced by the values V.,..., V

n
e Example:
exit (1) >> accept n:Nat in | PRINT 1
PRINT !n ; stop o o @

| W B ]
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Semantics of “>>"”

(B =, B;” ) A (gate (L) # exit )
(B, >> accept X:5in B,) >, (B,” >> accept X:S in B,)

B, —exit V B’
(By >> accept X:5in B;) > B, [V / X ]

o The V values must belong pairwise to the S sorts

o The exit gate is hidden (renamed into i) when
sequential composition takes place

o The “>>” operator is also called enabling (B,’s
execution is made possible by B,’s termination)
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Example (1/4)

@ Sequential composition without value-passing:

(In1; In2; exit In1 In2
]
nZ; In1; exit) In2 n’

>>
(Access; exit) Access
> > |
(Out1; Out2; stop Out ' Out2
[]

Out2; Out1; stop) Out2 g Out1

VTSA'08 - Max Planck Institute, Saarbriicken ‘!(



Example (2/4)

e Sequential composition with value-passing:

(

READ ?m,n:Nat ;

'm >=n ] ->exit (m)

]

‘m<n]->exit(n))

> >

accept max:Nat in
PRINT !max ; stop

|
VTSA'08 - Max Planck Institute, Saarbriicken
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READ O 1

PRINT 1

READQ 2

PRINT 2
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Example (3/4)

e Definition of terminating process:
process Login [LogReq, LogConf, LogAbort] : exit :=
LogReq;
(1; LogConf ; exit
[]
i ; LogAbort ; Login [LogReq, LogConf, LogAbort])
endproc

o Example of call:
Login [Req,Conf,Abort] >> Transfer ; Logout ; stop
VTSA'08 - Max Planck Institute, Saarbriicken W 100




Example (4/4)

e Combination of “exit” and parallel composition: the
two behaviours are synchronized on the exit gate
(they terminate simultaneously)

(a;b;exit) ||| (c; exit)

| W ]
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Sequential composition

(summary)

e In LOTOS, difference between
“;” (asymmetric)
and
“>>” (symmetric):

G

B

VTSA 0B - M P Z
VTSA'08 - Max Planck Institute, Saarbriicken
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Process call

o Let a process P defined by:
process P [G,, ..., G ] (X;:S¢, ..., X.:S,) :=
B
endproc
e Semantics of a call to P:
Blg /Gy iy 8,/ G, ][V /Xy ey vy I X ] >, B’
Plgy, s 80l (V45 ooy V) > B’
o This semantics explains why a call to
process P[G] : noexit := P[G] endproc
is equivalent to stop.

ﬁ B ]
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Example

@ Boolean variable: i READ ff

WRITE ff WRITE tt

READ tt

process VAR [READ, WRITE] (b:Bool) : noexit :=
READ !b;
VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;
VAR [READ, WRITE] (b2)
endproc

WRITE

READL yaR

? ]
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Static semantics

(summary)

@ Scope of variables inside behaviours:

B::=G!V,?2X:5...[V]; B, p(X)=1{V, By}
hide G in B, p (G)={B,}
let X:S=Vin B, p (X)={B,}
choice X:S [] B, p (X)={B,}

B, >> accept X:5 in B, p (X)={B,}
@ Scope of process parameters:
process P [G] (X:S) := p (G)=1{5;}
By p(X)={B,}
endproc

VTSA'08 - Max Planck Institute, Saarbriicken ‘!( 105




LOTOS specification

e A LOTOS specification is similar to a process
definition:

specification Protocol [ SEND, RECEIVE ] : noexit :=
(* ... type definitions *)
behaviour
(* ... behaviour = body of the specification *)
where
(* ... process definitions *)
endspec

ﬁ ]
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Example:
Peterson’s mutual exclusion algorithm

var dO : bool := false
var d1 : bool := false

{ read by P1, written by PO }
{ read by PO, written by P1 }

vart e {0,1}:=0

{ read/written by PO and P1}

loop forever { PO }
1:{ncsO}

2 . dO :=true

3:1:=0

4 : wait (d1 =falseort=1)
5:{csO}

6 : dO := false

endloop

loop forever { P1 }
1:{ncs1}

2 .d1 :=true

3:t:=1

4 : wait (dO = false ort = 0)
5:{csl1}

6 : d1 :=false

endloop

|
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Description of variables dO, d1

e Each variable: instance of the same process D
e Current value of the variable: parameter of D
e Reading and writing: RdV on gates R et W

process D [R, W] (b:Bool) : noexit :=
R!b; D[R, W] (b)
[]
W ?b2:Bool ; D [R, W] (b2)
endproc

o d0 =D [RO, WO] (false), d1 =D [R1, W1] (false)

ﬁ ]
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e Variable t: instance of process T
e Current value of the variable: parameter of T
e Reading and writing: RdV on gates R et W

ot=T

VTSA'08 - Max Planck Institute, Saarbriicken

Description of variable t

process T [R, W] (n:Nat) : noexit :=
R!n; TI[R, W] (n)

[]

W ?n2:Bool ; T [R, W] (n2)

endproc

RT, WT] (0)

/A
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Description of processes PO and P1

@ Process P,,: instance of the same process P
e [ndex m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit :=
NCS !Im ; Wm !true ; WT !Im ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
endproc

o PO = P [RO, WO, R1, W1, RT, WT, NCS, CS] (0)
o P1=P [R1, W1, RO, WO, RT, WT, NCS, CS] (1)
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Processes PO et P1

(continued)

e Auxiliairy process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit :=
Rn ?dn:Bool ; RT ?t:Nat ;
([dnand (tegm) ] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)
[]
[ not (dn) or (teq ((Mm + 1) mod 2)) ] ->
CS !Im ; Wn !false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m) )
endproc
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Architecture of the system

(graphical)
WO » D (false) i
NCS RT RT ) NCS
P (0 | T | | P (1
CS © WT WT 1| cs
= D (false) e

| W ]
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Architecture of the system
(textual)
hide RO, WO, R1, W1, RT, WT in

( P [RO, WO, R1, W1, RT, WT, NCS, CS] (0)
I|3|[|R1, W1, RO, WO, RT, WT, NCS, CS] (1)

)|[ RO, WO, R1, W1, RT, WT ]|

( T [RT, WT] (0)
Il)l[IRO, WO] (false)
I|)|[|R1, W1] (false)

)

? ]
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Process algebraic languages

(summary)

@ More concise than communicating automata:
process parameterization, value-passing
communication (Exercise: model variables d0, d1, t
using a single gate allowing both reading / writing)

e [n general, there are several ways of describing the
parallel composition of processes (Exercise: write a
different expression for the architecture of
Peterson’s algorithm)

@ Modeling of nested loops: mutually recursive LOTOS
processes (Exercise: model processes PO, P1 using a
single LOTOS process)

o But: E-LOTOS process part is much more convenient
VTSA'08 - Max Planck Institute, Saarbriicken W 115
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