
Model Checking of Action-Based
Concurrent Systems

Radu

Mateescu
INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

VTSA'08 - Max Planck Institute, Saarbrücken 2

Why formal verification?

Therac-25 radiotherapy

 accidents (1985-1987)
Mars climate orbiter

 failure (1999)
Ariane-5 launch

 failure (1996)

Characteristics of these systems
–

Errors due to software

–

Complex, often involving parallelism
–

Safety-critical

formal verification is useful for early error detection

VTSA'08 - Max Planck Institute, Saarbrücken 3

informal
requirements

implementation

formal
specification

traces

expected
properties

model

modeling

system

verification
(model checking,

equivalence checking,
visual checking)

testing

requirements
capture

rapid
proto-
typing

VTSA'08 - Max Planck Institute, Saarbrücken 4

Outline

Communicating automata

Process algebraic languages

Action-based temporal logics

On-the-fly verification

Case study

Discussion and perspectives

VTSA'08 - Max Planck Institute, Saarbrücken 5

Asynchronous concurrent systems

Characteristics:
Set of distributed processes
Message-passing communication
Nondeterminism

msg msg

ack

Applications:
Hardware
Software
Telecommunications

VTSA'08 - Max Planck Institute, Saarbrücken 6

CADP toolbox:
 Construction and Analysis of Distributed Processes

 (http://www.inrialpes.fr/vasy/cadp)
Description languages:
–

ISO standards (LOTOS, E-LOTOS)

–

Networks of communicating automata

Functionalities:
–

Compilation and rapid prototyping

–

Interactive and guided simulation
–

Equivalence checking and model checking

–

Test generation

Case-studies and applications:
–

>100 industrial case-studies

–

>30 derived tools

Distribution:

over 400 sites (2008)

VTSA'08 - Max Planck Institute, Saarbrücken 7

Communicating automata

Basic notions

Implicit and explicit representations

Parallel composition and synchronization

Hiding and renaming

Behavioural

equivalences

VTSA'08 - Max Planck Institute, Saarbrücken 8

Transformational
systems

Work by computing a result
in function of the entries
Absence of termination
undesirable
Upon termination, the
result is unique

Sequential programming
(sorting algorithms, graph
traversals, syntax analysis,
...)

Reactive
systems

Work by reacting to the
stimuli of the environment
Absence of termination
desirable
Different occurrences of
the same request may
produce different results
Parallel programming
(operating systems,
communication protocols,
Web services, ...)

• Concurrent execution
• Communication + synchronization

VTSA'08 - Max Planck Institute, Saarbrücken 9

Communicating automata

Simple formalism describing the behaviour

of
concurrent systems
Black-box

approach:

–

One cannot inspect directly the state of the system
–

The behaviour

of the system can be known only through

its interactions with the environment

Synchronization on a gate requires the participation
of the process and of its environment (rendezvous)

Serverreq res
process/automaton (black box)

gate (communication channel)

VTSA'08 - Max Planck Institute, Saarbrücken 10

Automaton

(LTS)

Labeled

Transition System

M

= 〈S, A, T, s0

〉
–

S: set of

states

(s1

, s2

, ...)
–

A: set of

visible actions

(a1

, a2

, ...)
–

T: transition

relation (s1

–a s2 ∈ T)
–

s0 ∈

S: initial state

Example:
 process

client1

Other

kinds

of

automata:
–

Kripke

strictures

(information associated

to states)

–

Input/output automata

[Lynch-Tuttle]

req1

res1

s0 s1
sequential

model

of

a reactive

system
behaviour

internal

action
(noted

i

or τ)

every

state is

reachable
from

the

initial state

deadlock

(sink) state:
no

outgoing

transitions

VTSA'08 - Max Planck Institute, Saarbrücken 11

LTS representations in CADP
 (http://www.inrialpes.fr/vasy/cadp)

Explicit
List of transitions
Allows forward and
backward exploration
Suitable for global
verification
BCG

(Binary Coded Graphs)

environment
–

API in C for reading/writing

–

Tools and libraries for explicit
graph manipulation (bcg_io,
bcg_draw, bcg_info,
bcg_edit, bcg_labels, ...)

–

Global verification tools (XTL)

Implicit
“Successor”

function

Allows forward exploration
only
Suitable for local (or on-

 the-fly) verification
Open/Caesar

environment

[Garavel-98]
–

API in C for LTS exploration

–

Libraries with data structures
for implicit graph manipu-

 lation

(stacks, tables, edge
lists, hash functions, ...)

–

On-the-fly verification tools
(Bisimulator, Evaluator, ...)

VTSA'08 - Max Planck Institute, Saarbrücken 12

Server example
 (modeled

using

a single automaton)

Server able to process

two

requests

concurrently
State variables u1

, u2

storing

the

request

status:
–

Empty

(e)

–

Received

(r)
–

Handled

(h)

A state: couple <u1

, u2

>
Initial state: <e, e> (ee

for short)

Gates (actions):
–

req1, req2: receive

a request

–

res1, res2: send

a response
–

i: internal

action

Server
req2 res2

res1req1

VTSA'08 - Max Planck Institute, Saarbrücken 13

LTS of

the

server
 (9 states, 16 transitions)

ee

re

he

er

eh

rhhr

rr

hh

req1 req2

res1 res2

i ireq1

res1

i

i

req1

res1

req2

req2 i

i

res2

res2

VTSA'08 - Max Planck Institute, Saarbrücken 14

Remarks

All

the

theoretical

states are reachable:
| u1

| * | u2

| = 3 * 3 = 9
(no

synchronization

between

request

processings)

There

is

no

sink

state (the

system

is

deadlock-free)
From

every

state, it

is

possible to reach

the

initial

state again

(the

server

can

be

re-initialized)
Shortcomings

of

modeling

with

a single automaton:

–

One

must predict

all

the

possible request

arrival

orders
–

For more complex

systems, the

LTS size

grows

rapidly

need of higher-level modeling features

VTSA'08 - Max Planck Institute, Saarbrücken 15

Server example
 (modeled

using

two

concurrent automata)

Decomposition

of

the

system

in two

subsystems
–

Every

type of

request

is

handled

by a subsystem

–

In the

server

example, subsystems

are independent

Simpler

description w.r.t.

single automaton:
 3 + 3 = 6 states

Server

req2 res2

res1req1

Server2

Server1

e

h

req1 res1
i

r

e

h

req2 res2
i

r

VTSA'08 - Max Planck Institute, Saarbrücken 16

Decomposition

in
 concurrent subsystems

Required

at

physical

level
–

Modeling

of

distributed

 activities
–

Multiprocessor/multitask

 ing

execution

platform

Chosen

at

logical

level
–

Simplified

design of

the

 system
–

Well-structured

 programs

Communication and

synchronization

between
 subsystems

may

introduce

behavioural

errors

 (e.g., deadlocks)
In practice, even

simple parallel

programs

may

 reveal

difficult

to analyze
need of computer-assisted verification

VTSA'08 - Max Planck Institute, Saarbrücken 17

Parallel composition (“product”)
 of automata

Goals:
–

Define internal composition laws

⊗

: LTS ×

... ×

LTS →

LTS
expressing the parallel composition of 2 (or more) LTSs

–

Allow synchronizations on one or several actions (gates)
–

Allow hierarchical decomposition of a system

Consequences:
–

A product of automata can always be translated into a
single (sequential) automaton

–

The logical parallelism can be implemented sequentially
(e.g., time-sharing OS)

VTSA'08 - Max Planck Institute, Saarbrücken 18

Binary

parallel

composition
 (syntax)

EXP language [Lang-05]
–

Description of communicating automata

–

Extensive set of operators
Parallel compositions (binary, general, ...)
Synchronization vectors
Hiding / renaming, cutting, priority, ...

–

Exp.Open

compiler implicit LTS representation

Binary parallel composition:
“lts1.bcg”

|[G1, ..., Gn]| “lts2.bcg”

“lts1.bcg”

||| “lts2.bcg”

with synchronization
on G1, ..., Gn

without synchronization
(interleaving)

VTSA'08 - Max Planck Institute, Saarbrücken 19

Binary

parallel

composition
 (semantics)

Let M1

= 〈S1

, A1

, T1

, s01

〉, M2

= 〈S2

, A2

, T2

, s02

〉

and
L ⊆

A1

∩

A2

a set of

visible actions to be

synchronized.

M1

|[L]| M2

= 〈S, A, T, s0

〉
S = S1

×

S2

A = A1

∪

A2

s0

= 〈s01

, s02

〉
T ⊆

S ×

A ×

S

defined

by R1

-R3

s1
a

s’1 ∧

a∉L

〈s1

, s2〉

a

〈s’1, s2〉

s2
a

s’2 ∧

a∉L

〈s1

, s2〉

a

〈s1, s’2〉

s1
a

s’1 ∧

s2

a

s’2 ∧

a∈L

〈s1

, s2〉

a

〈s’1, s’2〉

(R1

)

(R2

)

(R3

)

VTSA'08 - Max Planck Institute, Saarbrücken 20

〈1〉

〈2〉 〈3〉

〈4〉

〈5〉 〈6〉

a b b c|[b]| =

〈1, 4〉

〈2, 4〉 〈1, 6〉

〈2, 6〉

〈3, 5〉

a

a

b c

c

(R1

)

(R1

)

(R2

)

(R2

)

(R3

)

Example

VTSA'08 - Max Planck Institute, Saarbrücken 21

Interleaving semantics

Hypothesis:
–

Every action is atomic

–

One can observe at most one action at a time

suitable paradigm for distributed systems

Parallelism can be expressed in terms of choice

and
sequence

(expansion theorem

[Milner-89])

|||a b =

a

a

b

b

interleaving lozenge

VTSA'08 - Max Planck Institute, Saarbrücken 22

Internal and external choice

External

choice (the environment decides which
branch of the choice will be executed)

Internal

choice (the system decides)

the environment can force the execution of a and b
by synchronizing on that actiona b

a a the environment may synchronize on a, but this will
not remove the nondeterminism

VTSA'08 - Max Planck Institute, Saarbrücken 23

Example of modeling with
 communicating automata

Mutual exclusion problem:
Given two parallel processes

P0

and P1

competing
for a shared resource, guarantee that at most one
process accesses the resource at a given time.
Several solutions were proposed at software level:
–

In centralized setting (Peterson, Dekker, Knuth, ...)

–

In distributed setting (Lamport, ...)

M. Raynal. Algorithmique du parallélisme: le
problème de l’exclusion mutuelle.
Dunod Informatique, 1984.

VTSA'08 - Max Planck Institute, Saarbrücken 24

loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

(d1 = false or

t = 1)

5 : { b_cs0 }
6 : { e_cs0 }
7 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

(d0 = false or

t = 0)

5 : { b_cs1 }
6 : { e_cs1 }
7 : d1 := false
endloop

var

d0 : bool

:= false

{ read by P1, written by P0 }

var

d1 : bool

:= false

{ read by P0, written by P1 }

var

t ∈

{0, 1} := 0 { read/written by P0 and P1 }

Peterson’s algorithm [1968]

VTSA'08 - Max Planck Institute, Saarbrücken 25

Automata of P0

and P1

1

27

6 3

45

ncs0

“d0 := true”

“t := 0”

“d1 = false ?”

“t = 1 ?”

e_cs0

b_cs0

“d0 := false”

P0

1

27

6 3

45

ncs1

“d1 := true”

“t := 1”

“d0 = false ?”

“t = 0 ?”

e_cs1

b_cs1

“d1 := false”

P1

VTSA'08 - Max Planck Institute, Saarbrücken 26

Automata of d0

, d1

, and t

“d0 := true”

“d0 = false ?”

d0

false

true

“d0 := false”

“d1 := true”

“d1 = false ?”

d1

false

true

“d1 := false”

t

0 1

“t := 1”

“t := 0”

“t = 0 ?” “t = 1 ?”

VTSA'08 - Max Planck Institute, Saarbrücken 27

Architecture of the system
 (graphical)

Synchronized actions: «d0:=false», «d0:=true», ...
Non synchronized actions: ncs0, b_cs0, e_cs0, ...

“d0 := true”
“d0 = false ?”

“d0 := false”
d0

t

d1

P0 P1

ncs0

b_cs0

e_cs0

ncs1

b_cs1

e_cs1“t = 0 ?”
“t = 1 ?”

“t := 1”

“t := 0”

“d1 = false ?” “d1 := false”

“d1 := true”

VTSA'08 - Max Planck Institute, Saarbrücken 28

Architecture of the system
 (textual)

Using binary parallel composition:
(P0 ||| P1)
|[“d0:=false”, “d0:=true”, ...]|
(d0 ||| d1 ||| t)

Using general parallel composition:
par

“d0:=false”, “d0:=true”, ... P0
||

“d1:=false”, “d1:=true”, ... P1

||

“d0:=false”, “d0:=true”, “d0=false?” d0
||

“d1:=false”, “d1:=true”, “d1=false?” d1

||

“t:=0”, “t:=1”, “t=0?”, “t=1?” t
end par

VTSA'08 - Max Planck Institute, Saarbrücken 29

Construction of the LTS
 (“product automaton”)

Explicit-state

method:
–

LTS construction by exploring forward the transition
relation, starting at the initial state

–

Transitions are generated by using the R1

, R2

, R3 rules
–

Detect already visited states in order to avoid cycling

Several possible exploration strategies:
–

Breadth-first, depth-first

–

Guided by a criterion / property, ...

Several types of algorithms:
–

Sequential, parallel, distributed, ...

VTSA'08 - Max Planck Institute, Saarbrücken 30

FF011

FF012FF021

VF041

FV013FF022VF031

VF032 FV023 FF114

ncs0 ncs1

d0:=true d1:=truencs1 ncs0

t:=0 t:=1d0:=true d1:=truencs1 ncs0

………………………………………………………………...

Construction of the LTS

S = { F,V } ×

{ F,V } ×

{ 0,1 } ×

{ 1..7 } ×

{ 1..7 }
A = { ncs0, ncs1, ..., “d0:=true”, ... }
s0

= 〈

F, F, 0, 1, 1 〉

= FF011
T =

VTSA'08 - Max Planck Institute, Saarbrücken 31

Remarks

The LTS of Peterson’s algorithm is finite:
| S | ≅

50 ≤

2 ×

2 ×

2 ×

7 ×

7 = 392

In the presence of synchronizations, the number of
reachable states is (much) smaller than the size of
the cartesian

product of the variable domains

Some tools of CADP for LTS manipulation:
–

OCIS (step-by-step and guided simulation)

–

Executor (random exploration)
–

Exhibitor (search for regular sequences)

–

Terminator (search for deadlocks)

can be used in conjunction with Exp.Open

VTSA'08 - Max Planck Institute, Saarbrücken 32

Verification

Once the LTS is generated, one can formulate and
verify automatically the desired properties of the
system
For Peterson’s algorithm:
–

Deadlock freedom: each state has at least one successor

–

Mutual exclusion: at most one process can be in the
critical section at a given time

–

Liveness: no process can indefinitely overtake the other
when accessing its critical section

[see the chapter on temporal logics]

VTSA'08 - Max Planck Institute, Saarbrücken 33

Limitations of

binary

parallel
 composition

Several ways of modeling a process network:
–

Absence of canonical form

–

Difficult to determine whether two composition
expressions denote the same process network

–

Difficult to retrieve the process network from a
composition expression

The semantics of “|[G1

, ..., Gn

]|”

(rule R3

) does not
prevent that other processes

 synchronize on G1

, ..., Gn
 (maximal cooperation)

Some networks cannot be
 modeled using “|[]|”: P2

P1

P3

G

G

G binary

synchro-
nization

on G

VTSA'08 - Max Planck Institute, Saarbrücken 34

Example
 (ring network [Garavel-Sighireanu-99])

Description using binary
 parallel composition:

(P1

|[G1

]|

P2

|[G2

]|

P3

|[G3

]| P4

)
|[G4

, G5

]|
P5

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the composition expression
does not reflect the symmetry
of the process network

VTSA'08 - Max Planck Institute, Saarbrücken 35

General parallel composition
 [Garavel-Sighireanu-99]

“Graphical”

parallel composition operator allowing
the composition of several

automata and their

 m

among n

synchronization:
par

[g1

#m1

, ..., gp

#mp

in]
G1 B1

||

G2 B2

. . .
||

Gn Bn

end par

automata (processes)

communication interfaces
(gate lists)

gates with their associated
synchronization degrees

VTSA'08 - Max Planck Institute, Saarbrücken 36

General parallel composition
 (semantics –

rules without synchronization degrees)

∃

a, i . Bi

–a Bi’ ∧ a ∉ Gi ∧ ∀ j ≠ i . Bj’ = Bj

par

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

∃

a. ∀

i . if a

∈

Gi

then Bi

–a Bi’ else Bj’ = Bj

par

G1 B1, …, Gn Bn –a par G1 B1’, …, Gn Bn’

(GR1)

(GR2)

mandatory interleaved execution of
non-synchronized actions

execution in maximal cooperation of
synchronized actions

VTSA'08 - Max Planck Institute, Saarbrücken 37

Example (1/3)

Process network unexpressible

using “|[]|”:

Description using general
 parallel composition:

par

G#2 in
G P1

|| G P2

|| G P3

end par

P2

P1

P3

G

G

G

maximal cooperation avoided by
means of synchronization degrees

VTSA'08 - Max Planck Institute, Saarbrücken 38

Example (2/3)
 (ring network [Garavel-Sighireanu-99])

Description using general
 parallel composition:

par
G1

, G5 P1

||

G2

, G1 P2

||

G3

, G2 P3

||

G4

, G3 P4

||

G5

, G4 P5

end par

P2

P1

P3
G3

G1

G2

P4

P5

G5

G4

the symmetry of the process
network is also present in the
composition expression

VTSA'08 - Max Planck Institute, Saarbrücken 39

Example (3/3)
Definition of “|[]|”

in terms of “par”:

B1

|[G1

, ..., Gn

]|

B2

= par

G1

, ..., Gn B1

|| G1

, ..., Gn B2

end par
CREW (Concurrent Read / Exclusive Write):
par

W#2 in
R, W P1

||

R, W P2

||

R, W P3

||

R, W VAR
end par

VAR

P1 P2 P3

W W WR R R

VTSA'08 - Max Planck Institute, Saarbrücken 40

Parallel composition using
synchronization vectors

Primitive form of n-ary

parallel composition
Proposed in various networks of automata:
MEC [Arnold-Nivat], FC2 [deSimone-Bouali-Madelaine]
Synchronizations are made explicit by means of
synchronization vectors
Syntax in the EXP language [Lang-05]:

par

V1

, ..., Vm

in
B1

|| ... || Bn

end par
V ::= (G1

| _) * ... * (Gn

| _) G0

synchronization vectors

wildcard

VTSA'08 - Max Planck Institute, Saarbrücken 41

Example
 (client-server with gate multiplexing)

Description using synchronization vectors:
par

req

* _ * req req, rep * _ * rep rep,

_ * req

* req req, _ * rep * rep rep
in

Client1

|| Client2

|| Server
end par

Client2

Server

Client1
req

res

req

res

binary synchronization
on gates req

and

res

VTSA'08 - Max Planck Institute, Saarbrücken 42

Behavioural

equivalence

Useful for determining whether two LTSs

denote
the same behaviour
Allows to:
–

Understand the semantics of languages (communicating
automata, process algebras) having LTS models

–

Define and assess translations between languages
–

Refine specifications whilst preserving the equivalence of
their corresponding LTSs

–

Replace certain system components by other, equivalent
ones (maintenance)

–

Exploit identities between behaviour

expressions
(e.g., B1

|[G]|

B2

= B2

|[G]|

B1

) in analysis tools

VTSA'08 - Max Planck Institute, Saarbrücken 43

Equivalence relations between LTSs

A large spectrum of equivalence relations proposed:
–

Trace

equivalence (≅

language equivalence)

–

Strong

bisimulation

[Park-81]
–

Weak

bisimulation

[Milner-89]

–

Branching

bisimulation

[Bergstra-Klop-84]
–

Safety equivalence [Bouajjani-et-al-90]

–

...

a

c

a

b

a

cb
equivalent?

VTSA'08 - Max Planck Institute, Saarbrücken 44

Trace equivalence

Trace: sequence of visible actions
 (e.g., σ

= req1

res1

req2

res2

)
Notations (a

= visible action):

–

s

=a=>: there exists a transition sequence
 s

–i s1 –i s2 ... –a sk

–

s

=σ=>: there exists a transition sequence
s

=a1

=> s1

... =an

=> sn

such that σ

= a1

... an

Two state are trace equivalents iff

they are the
source of the same traces:

s ≈tr

s’

iff

∀σ

. (s =σ=> iff

s =σ=>)

VTSA'08 - Max Planck Institute, Saarbrücken 45

Example
 (coffee machine)

The two LTSs

below are trace equivalent:

Traces (M1

) = Traces (M2

) =
 { ε, money, money coffee, money tea }

have the two coffee machines the same
behaviour w.r.t. a user?

money

tea

money

coffee

money

teacoffee
≈tr

M1 M2

M1

: risk of deadlock

VTSA'08 - Max Planck Institute, Saarbrücken 46

Bisimulation

Trace equivalence is not sufficiently precise to
characterize the behaviour

of a system w.r.t. its

interaction with its environment
stronger relations (bisimulations) are necessary

Two states s1

et s2

are bisimilar

iff

they are the
origin of the same behaviour

(execution tree):

∀

s1

–a s1’ . ∃ s2–a s2’ . s1’ ≈ s2’
∀

s2

–a s2’ . ∃ s1–a s1’ . s2’ ≈ s1’
Bisimulation

is an equivalence relation (reflexive,

symmetric, and transitive) on states
Two LTSs

are bisimilar

iff

s01

≈

s02

VTSA'08 - Max Planck Institute, Saarbrücken 47

Strong bisimulation

Strong bisimulation: the largest bisimulation
to show that two LTSs are strongly bisimilar, it is
sufficient to find a bisimulation between them

≈st

a
d

b
c

M1 M2

a

d
b
c

a

VTSA'08 - Max Planck Institute, Saarbrücken 48

Is strong bisimulation

sufficient?

Trace equivalence ignores internal actions (i) and
does not capture the branching of transitions

does not distinguish the LTSs below

Strong bisimulation

captures the branching, but
handles internal and visible actions in the same way

does not abstract away the internal behaviour

money

coffee tea

moneymoney

coffee tea

VTSA'08 - Max Planck Institute, Saarbrücken 49

Weak bisimulation
 (or observational equivalence)

In practice, it is necessary to compare LTSs
–

By abstracting away

 internal actions
–

By distinguishing the

 branching

Weak bisimulation
 [Milner-89]:

a τ

τ

. . .

a

. . .

τ τ

τ

. . .

every a-transition
corresponds to an
a-transition preceded and
followed by 0 or more
τ-transitions

every τ -transition
corresponds to 0 or
more τ-transitions

VTSA'08 - Max Planck Institute, Saarbrücken 50

Weak bisimulation
 (formal definition)

Let M1

= <S1

, A, T1

, s01

> and M2

= <S2

, A, T2

, s02

>
A weak bisimulation

is a relation ≈ ⊆ S1

×

S2

such
that s1

≈

s2

iff:
∀

s1

–a s1’ . ∃ s2 –τ*.a.τ* s2’ . s1’ eq s2’
∀

s1

–τ s1’ . ∃ s2 –τ* s2’ . s1’ eq s2’
and

∀

s2

–a s2’ . ∃ s1 –τ*.a.τ* s1’ . s1’ eq s2’
∀

s2

–τ s2’ . ∃ s1 –τ* s1’ . s1’ eq s2’
≈obs

is the largest weak bisimulation
M1

≈obs

M2

iff

s01

≈obs

s02

VTSA'08 - Max Planck Institute, Saarbrücken 51

Example

To show that two LTSs

are weakly bisimilar, it is
sufficient to find a weak bisimulation

between

them

put

put

get

put

put
τ

τ
get

VTSA'08 - Max Planck Institute, Saarbrücken 52

Communicating automata
 (summary)

Advantages:
–

Simple model for describing concurrency

–

Powerful tools for manipulation
MEC (University of Bordeaux)
Auto/Autograph/FC2 (INRIA, Sophia-Antipolis)
CADP (INRIA, Grenoble)

–

Some industrial applications

Shortcomings:
–

Limited expressiveness

No dynamic creation and destruction of automata
Impossible to express: A then (B || C) then D
No handling of data (each variable = an automaton), unacceptable for
complex types (numbers, lists, structures, ...)

–

Maintenance difficult and error-prone (large automata)

VTSA'08 - Max Planck Institute, Saarbrücken 53

Process algebraic languages

Basic notions

Parallel composition and hiding

Sequential composition and choice

Value-passing and guards

Process definition and instantiation

VTSA'08 - Max Planck Institute, Saarbrücken 54

Process algebras

PAs: theoretical formalisms for describing and
studying concurrency and communication
Examples of PAs

for asynchronous systems:

–

CCS (Calculus of Communicating Systems) [Milner-89]

–

CSP (Communicating Sequential Processes) [Hoare-85]

–

ACP (Algebra of Communicating Processes) [Bergstra-Klop-84]

Basic idea of PAs:
–

Provide a small number of operators

–

Construct behaviours

by freely combining operators (lego)

Standardized specification languages:
–

LOTOS [ISO-1988], E-LOTOS [ISO-2001]

VTSA'08 - Max Planck Institute, Saarbrücken 55

LOTOS
 (Language Of Temporal Ordering Specification)

International standard [ISO 8807]

for the formal
specification of telecommunication protocols and
distributed systems

http://www.inrialpes.fr/vasy/cadp/tutorial

Enhanced LOTOS (E-LOTOS): revised standard [2001]
LOTOS contains two “orthogonal”

sublanguages:

–

data

part (for data structures)
–

process

part (for behaviours)

Handling data is necessary for describing realistic
systems. “Basic LOTOS”

(the dataless

fragment of

LOTOS) is useful only for small examples.

VTSA'08 - Max Planck Institute, Saarbrücken 56

LOTOS –

data part

Based on algebraic abstract data types (ActOne):

Caesar.Adt

compiler of CADP [Garavel-Turlier-92]
ADTs

tend to become cumbersome for complex data

manipulations (removed in E-LOTOS).

type

Natural is
sorts

Nat

opns

0

: -> Nat
succ

: Nat -> Nat

+ : Nat, Nat -> Nat
eqns

forall

M, N : Nat

ofsort

Nat
0 + N = N;
succ(M) + N = succ(M

+ N);

endtype

VTSA'08 - Max Planck Institute, Saarbrücken 57

LOTOS –

process part

Combines the best features of the process algebras
CCS [Milner-89]

and CSP [Hoare-85]

Terminal symbols (identifiers):
–

Variables: X1

, …, Xn

–

Gates: G1

, …, Gn

–

Processes: P1

, …, Pn

–

Sorts (≈

types): S1

, …, Sn

–

Functions: F1

, …, Fn

–

Comments: (* …

*)
Caesar compiler of CADP [Garavel-Sifakis-90]

VTSA'08 - Max Planck Institute, Saarbrücken 58

Value expressions and offers

Value expressions: V1

, …, Vn

V

::= X
| F

(V1

, …, Vn

)
| V1

F V2

Offers: O1

, …, On

O

::= ! V

emission of a value V

| ? X

: S

reception of a value to be stored
 in a variable X

of sort S

VTSA'08 - Max Planck Institute, Saarbrücken 59

Behaviour

expressions
 (Lots Of Terribly Obscure Symbols :-)

Behaviours: B1

, …, Bn

B

::= stop

inaction

| G0 O1

... On

[V] ; B0

action prefix

| B1

[] B2

choice

| B1

|[G1

, ..., Gn

]| B2

parallel with synchroni-
 zation

on G1

, ..., Gn

| B1

||| B2

interleaving

| hide

G1

, ..., Gn

in

B0

hiding

| [V

] -> B0

guard

| let

X

: S

= V

in

B0

variable definition

| choice

X

: S

[] B0 choice over values

| P [G1

, ..., Gn

] (V1

, ..., Vn

)

process call

VTSA'08 - Max Planck Institute, Saarbrücken 60

Process definitions

process

P

[G1

, …, Gn

] (X1

:S1

, …, Xn

:Sn

) :=
B

endproc

where:
P

= process name

G1

, …, Gn

= formal gate

parameters of P
X1

, …, Xn

= formal value

parameters of P,
 of sorts S1

, …, Sn

B

= body (behaviour) of P

VTSA'08 - Max Planck Institute, Saarbrücken 61

Remarks

LOTOS process: “black box”

equipped with
communication points (gates) with the outside

process

P

[G1

, G2

, G3

] (...) :=
...

endproc
Each process has its own local (private) variables,
which are not accessible from the outside

communication by rendezvous and
not by shared variables

Parallel composition and encapsulation of boxes:
described using the |[…]|, |||, and hide

operators

PG1

G2

G3

VTSA'08 - Max Planck Institute, Saarbrücken 62

Example

(Sender [PUT, A, D] ||| Receiver

[GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

or
(Sender [PUT, A, D] |[A]| Medium1 [A, B])
|[B, D]|
(Receiver

[GET, B, C] |[C]| Medium2 [C, D])

A BMedium1

Medium2

ReceiverSender
PUT

C

GET

D

VTSA'08 - Max Planck Institute, Saarbrücken 63

Multiple rendezvous

LOTOS parallel operators allow to specify the
synchronization of n

≥

2 processes on the same gate

Example (client-server):

C1 [A] |[A]| C2 [A] |[A]| C3 [A]
|[A]|

S [A]

the three client processes
synchronize with the server
on gate A (4-way rendezvous)

C1 C2 C3

S

A

VTSA'08 - Max Planck Institute, Saarbrücken 64

Binary

rendezvous

The

||| operator

allows

to specify

binary
 rendezvous

(2 among

n) on the

same

gate

Example

(client-server):

(C1 [A] ||| C2 [A] ||| C3 [A])
|[A]|
S [A]

C1 C2 C3

S

A

A A

the three client processes are
competing to access the server
on gate A but only one can get
access at a given moment

VTSA'08 - Max Planck Institute, Saarbrücken 65

Abstraction
 (hiding)

In LOTOS, when a synchronization takes place on a
gate G between two processes, another one can
also synchronize on G (maximal cooperation)
If this is undesirable, it can be forbidden by hiding
the gate (renaming it into i) using the hide

 operator:
hide

G1

, …, Gn

in

B
which means that all actions performed by B

on

gates G1

, …, Gn

are hidden
The gates G1

, …, Gn

are “abstracted away”

(hidden
from the outside world)

VTSA'08 - Max Planck Institute, Saarbrücken 66

Example

process

Network [PUT, GET] :=
hide

A, B, C, D in

(Sender [PUT, A, D] ||| Receiver [GET, B, C])
|[A, B, C, D]|
(Medium1 [A, B] ||| Medium2 [C, D])

endproc

Medium1

Medium2

ReceiverSender
PUT

C

GET

A B

D

VTSA'08 - Max Planck Institute, Saarbrücken 67

Operational semantics

Notations:
–

G: gate list (or set)

–

L: action (transition label), of the form
G V1

, …, Vn

where G

is a gate and V1

, …, Vn

is the list of values
exchanged on G

during the rendezvous

–

gate

(L) = G
–

B

[v

/ X

]: syntactic substitution of all free occurrences

of X

inside B

by a value v

(having the same sort as X)
–

V

[v

/ X

]: idem, substitution of X

by v

in V

VTSA'08 - Max Planck Institute, Saarbrücken 68

Semantics of “|[...]|”

B1

→L

B1

’

∧

gate

(L) ∉

G

B1

evolves
B1

|[G

]| B2

→L

B1

’

|[G

]| B2

B2

→L

B2

’

∧

gate

(L) ∉

G

B2

evolves
B1

|[G

]| B2

→L

B1

|[G

]| B2

’

B1

→L

B1

’

∧

B2

→L

B2

’

∧

gate

(L) ∈

G

B1

and B2

B1

|[G

]| B2

→L

B1

’

|[G

]| B2

’

evolve

Gates have no direction of communication

VTSA'08 - Max Planck Institute, Saarbrücken 69

Semantics of “hide”

B

→L

B’

∧

gate

(L) ∉

G

normal gate
hide

G

in

B

→L

hide

G

in

B’

B

→L

B’

∧

gate

(L) ∈

G

hidden gate
hide

G

in

B

→i

hide

G

in

B’

In LOTOS, i

is a keyword: use with care

VTSA'08 - Max Planck Institute, Saarbrücken 70

Sequential behaviours

LOTOS allows to encode sequential automata by
means of the choice (“[]”) and sequence operators
(“;”

and “stop”), and recursive processes

process

P [A, B, C, D, E] : noexit

:=
A; (

B; stop
[]
C; (

D ; stop
[]
E ; P [A, B, C, D, E]

)
)

endproc

A

B C

D

E

VTSA'08 - Max Planck Institute, Saarbrücken 71

Remarks

The description of automata in LOTOS is not far
from regular expressions

(operators “.”, “|”, “*”),

except that:
–

The “;”

operator of LOTOS is asymmetric

(≠

from “.”)

G O1

…

On

; B

but not B1

; B2

–

There is no iteration operator “*”, one must use a
recursive process call instead

LOTOS allows to describe automata with data
values (≈

functions in sequential languages) by using

processes with value parameters

VTSA'08 - Max Planck Institute, Saarbrücken 72

Semantics of “stop”

The “stop”

operator (inaction) has no associated
semantic rule, because no transition can be derived
from it

A call of a “pathological”

recursive process like
process

P [A] : noexit

:=

P [A]
endproc

has a behaviour

equivalent to stop

(unguarded
recursion)

VTSA'08 - Max Planck Institute, Saarbrücken 73

Prefix operator (“;”)

Allows to describe:
–

Sequential composition of actions

–

Communication (emission / reception) of data values

Simplest variant: actions on gates, without value-
 passing (basic LOTOS)

a

; b

; c

; d

; stop
a b c d

VTSA'08 - Max Planck Institute, Saarbrücken 74

Semantics of “;”

Case 1: action without reception offers (?X:S)

(∀1 ≤

i

≤

n

. Oi

≡

! Vi

) ∧

V

= true
G O1

…

On

[V

] ; B

→G V1 …

Vn

B

The boolean

guard and the offers are optional
If the guard V

is false, the rendezvous does not

happen (deadlock):

G O1

…

On

[V

] ; B ≈

stop

VTSA'08 - Max Planck Institute, Saarbrücken 75

Example (1/2)

Sequential composition:

A !true; B !4; stop

A !true; B !4; stop

B !4; stop

stop

A !true

B !4

VTSA'08 - Max Planck Institute, Saarbrücken 76

Example (2/2)

Synchronization by value matching: two processes
send to each other the same values on a gate

G

!1; B1

|[G

]| G

!1; B2

RdV

OK

G

!1; B1

|[G

]| G

!2; B2

deadlock

(different values)

G

!1; B1

|[G

]| G

!true; B2

deadlock

(different types)

G

1

VTSA'08 - Max Planck Institute, Saarbrücken 77

Semantics of “;”

Case 2: action containing reception offer(s) (?X:S)

(v

∈

S) ∧

(V

[v

/ X

] = true)
G

?X:S

[V

] ; B

→G v

B

[v

/ X

]

The variables defined in the offers ?X:S are visible
in the boolean

guard V

and inside B

An action can freely mix emission and reception
offers

VTSA'08 - Max Planck Institute, Saarbrücken 78

Example (1/3)

G

?X:Bool;
stop

G

?X:Nat

[X

< 4];
H ! X;

stop

The semantics handles the reception by branching
on all possible values that can be received

G

false G

true

G

0 G

3G

1 G

2

H

0 H

1 H

2 H

3

VTSA'08 - Max Planck Institute, Saarbrücken 79

Example (2/3)

Emission of a value = guarded reception:
G

!V

≡

G

?X:S

[X

= V]

where S

= type

(V)

Synchronization by value generation: two processes
receive values of the same type on a gate

G

?n1

:Nat [n1

<= 5]; B1

|[G

]|
G

?n2

:Nat

[n2

> 2]; B2

G V

G

3 G

5G

4

VTSA'08 - Max Planck Institute, Saarbrücken 80

Example (3/3)

Synchronization by value-passing:

G

?X:Bool

; stop

|[G

]| G

!true ; stop

G

?X:Bool

; stop

|[G

]| G

!3 ; stop

G

false G

true G

3|[G

]|

G

true

deadlock: the semantics of the “|[...]|”

operator requires

that the two labels be identical (same type for the emitted
value and the reception offer)

VTSA'08 - Max Planck Institute, Saarbrücken 81

Rendezvous
 (summary)

General form:
G O1

…

Om

[V1

]; B1

|[G

]|

G’

O1

’ … On

’[V2

]; B2

Conditions for the rendezvous:
–

G

= G’ and G

∈

G

–

m

= n
–

V1

and V2

are true in the context of O1

, ..., On

’
–

∀1 ≤

i

≤

n. type

(Oi

) = type

(Oi

’)
–

∀1 ≤

i

≤

n. prop

(Oi

) ∩

prop

(Oi

’) ≠ ∅

where prop(O) = set of values accepted by offer O
–

prop

(!V) = { V

}

–

prop

(?X:S) = S

VTSA'08 - Max Planck Institute, Saarbrücken 82

Choice operator (“[]”)
”[]”: notation inherited from the programs with
guarded commands [Dijkstra]
Allows to specify the choice between several
alternatives:

(B1

[] B2

[] B3)
can execute either B1

, or B2

, or B3

Example:
a

;
(b

; stop

[]
c

; stop)

a

b c

VTSA'08 - Max Planck Institute, Saarbrücken 83

Semantics of “[]”

B1

→L

B1

’

execution of B1

B1

[] B2

→L

B1

’

B2

→L

B2

’

execution of B2

B1

[] B2

→L

B2

’

After the choice, one of the two behaviours
 disappears (the execution was engaged on a branch

of the choice and the other one is abandoned)

VTSA'08 - Max Planck Institute, Saarbrücken 84

Internal / external choice

(G1

; B1

[] G2

; B2)
–

External choice: the environment can decide which
branch will be executed

–

Internal choice: the program decides

Example (coffee machine):

money

coffee tea

money

internal choice (machine)

money

coffee tea

external choice (user)

VTSA'08 - Max Planck Institute, Saarbrücken 85

Internal action (“i”)

In LOTOS, the special gate i

denotes an internal
event on which the environment cannot act:

(i

; G1

; stop
[]
i

; G2

; stop)

(G1

; stop
[]
i

; G2

; stop)

G1

i

G2

i
internal choice

G1

G2

i
still internal choice

VTSA'08 - Max Planck Institute, Saarbrücken 86

Guard operator (“[…]

->”)

LOTOS does not possess an “if-then-else”

construct
Guards

(boolean

conditions) can be used instead

Informal semantics:

[V

] ->

B

≈

if

V

then

B

else

stop
Frequent usage in conjunction with “[]”:

READ ?m,n:Nat

;
([m >= n] -> PRINT !m; stop
[]
[m < n] -> PRINT !n; stop)

emission of max (m,n)
on gate PRINT

VTSA'08 - Max Planck Institute, Saarbrücken 87

Semantics of “[…]

->”

(V

= true) ∧

B

→L

B’
[V

] ->

B

→L

B’

If the boolean

expression V

evaluates to false, no
semantic rule applies (deadlock):

[false] ->

B

≈

stop

VTSA'08 - Max Planck Institute, Saarbrücken 88

Examples

“if-then-else”:

“case”:
[V

] ->

B1

[X

< 0] ->

B1

[]

[]
[not (V)] ->

B2

[X

= 0] ->

B2

[]
[X

> 0] ->

B3

Beware of overlapping guards:
[X ≤

0] ->

B1

[]
[X ≥

0] ->

B2

if X = 0 then this is equivalent
to an unguarded choice B1 [] B2

VTSA'08 - Max Planck Institute, Saarbrücken 89

Operator “let”

LOTOS allows to define variables for storing the
results of expressions
Variable definition:

let

X:S

= V

in

B
declares variable X

and initializes it with the value

of V. X

is visible in B.
Write-once

variables (no multiple assignments):

let

X:Bool

= true

in

G

!X

; (* first X

*)
let

X:Bool

= false

in

G

!X

; (* second X

*)

stop

VTSA'08 - Max Planck Institute, Saarbrücken 90

Semantics of “let”

B

[V

/ X

] →L

B’
let

X:S

= V

in

B

→L

B’

Example:
let

X:NatList

= cons (0, nil) in

G

!X;
H

!cons (1, X);
stop

VTSA'08 - Max Planck Institute, Saarbrücken 91

Remarks

LOTOS is a functional

language:
No uninitialized

variable (forbidden by the syntax)

No assignment operator (“:=”), the value of a
variable does not change after its initialization
No “global”

or “shared”

variables between

functions or processes
Each process has its own local variables
Communication by rendezvous only
No side-effects

VTSA'08 - Max Planck Institute, Saarbrücken 92

Operator “choice”

Operator “choice”: similar to “let”, except that
variable X

takes a nondeterministic value in the

domain of its sort S
Semantics:
(v ∈

S)

∧

B

[v

/ X

] →L

B’
choice

X:S

[] B

→L

B’

Example:
choice

X:Bool

[]

G

!X; stop
G

false G

true

VTSA'08 - Max Planck Institute, Saarbrücken 93

Examples

Reception of a value = particular case of “choice”:
G

?X:S

; B

= choice

X:S

[] B

Iteration over the values of an enumerated type:
choice

A:Addr

[]

SEND

!m

!A ; stop

Generation of a random value:
choice

rand:Nat

[]

[rand

<= 10] -> PRINT

!rand ; stop

VTSA'08 - Max Planck Institute, Saarbrücken 94

Operator “exit”

LOTOS allows to express normal termination

of a
behaviour, possibly with the return of one or
several values:

exit

(V1

, …, Vn

)
denotes a behaviour

that terminates and produces

the values V1

, …, Vn

Example:

REC

?x:Nat

[x

< 2] ;
exit

(x

+ 1)

REC

0 REC

1

exit

1 exit

2

VTSA'08 - Max Planck Institute, Saarbrücken 95

Semantics of “exit”

true
exit

(V1

, …, Vn

) →exit V1 …

Vn

stop

exit

= special gate, synchronized by the “|[…]|”
 operator (see later)

The values V1

, …, Vn

are optional (“exit” means
normal termination without producing any value)

VTSA'08 - Max Planck Institute, Saarbrücken 96

Operator “>>”

LOTOS allows to express the sequential composition
between a behaviour

B1

that terminates and a
behaviour

B2

that begins:
B1

>> accept

X1

:S1

,…, Xn

:Sn

in

B2

means that when B1

terminates by producing values
V1

,…, Vn

, the execution continues with B2

in which
X1

,…, Xn

are replaced by the values V1

,…, Vn

Example:
exit (1) >> accept n:Nat

in

PRINT !n ; stop
PRINT

1i

VTSA'08 - Max Planck Institute, Saarbrücken 97

Semantics of “>>”

(B1

→L

B1

’

) ∧

(gate

(L) ≠

exit)
(B1

>> accept

X:S

in

B2

)

→L

(B1

’

>> accept

X:S

in

B2

)

B1

→exit V

B1

’
(B1

>> accept

X:S

in

B2

)

→i

B2

[V

/ X

]

The V

values must belong pairwise

to the S

sorts
The exit

gate is hidden (renamed into i) when

sequential composition takes place
The “>>”

operator is also called enabling

(B2

’s
execution is made possible by B1

’s termination)

VTSA'08 - Max Planck Institute, Saarbrücken 98

Example (1/4)

Sequential composition without value-passing:

(In1; In2; exit
[]
In2; In1; exit)

>>
(Access; exit)
>>
(Out1; Out2; stop
[]
Out2; Out1; stop)

In1 In2

i
In2 In1

i

Access

i

Out1

Out1

Out2

Out2

VTSA'08 - Max Planck Institute, Saarbrücken 99

Example (2/4)

Sequential composition with value-passing:

READ ?m,n:Nat

;
([m >= n] -> exit (m)
[]
[m < n] -> exit (n))

>>
accept max:Nat

in

PRINT !max ; stop

PRINT

1

READ

0 1

i

READ

0 2

i

PRINT

2

. . .

VTSA'08 - Max Planck Institute, Saarbrücken 100

Example (3/4)

Definition of terminating process:
process

Login [LogReq, LogConf, LogAbort] : exit

:=

LogReq;
(i ; LogConf

; exit

[]
i ; LogAbort

; Login [LogReq, LogConf, LogAbort])

endproc

Example of call:
Login [Req,Conf,Abort] >> Transfer ; Logout ; stop

VTSA'08 - Max Planck Institute, Saarbrücken 101

Example (4/4)

Combination of “exit”

and parallel composition: the
two behaviours

are synchronized on the exit

gate

(they terminate simultaneously)

(a

; b

; exit) ||| (c

; exit)

a

exit

ac

c

c

b

b

VTSA'08 - Max Planck Institute, Saarbrücken 102

Sequential composition
 (summary)

In LOTOS, difference between
 “;”

(asymmetric)

 and
 “>>”

(symmetric):

i i
. . .

B1

B2

B1

>> B2

G

B

G

; B

VTSA'08 - Max Planck Institute, Saarbrücken 103

Process call

Let a process P

defined by:
process

P

[G1

, …, Gn

] (X1

:S1

, …, Xn

:Sn

) :=
B

endproc
Semantics of a call to P:
B

[g1

/ G1

, …, gn

/ Gn

] [v1

/ X1

, …, vn

/ Xn

] →L

B’
P

[g1

, …, gn

] (v1

, …, vn

)

→L

B’
This semantics explains why a call to

process

P[G] : noexit

:= P[G] endproc
is equivalent to stop.

VTSA'08 - Max Planck Institute, Saarbrücken 104

Example

Boolean variable:

process

VAR [READ, WRITE] (b:Bool) : noexit

:=
READ !b;

VAR [READ, WRITE] (b)
[]
WRITE ?b2:Bool;

VAR [READ, WRITE] (b2)
endproc

READ WRITE
VAR

READ tt

READ ff

WRITE ff WRITE tt

VTSA'08 - Max Planck Institute, Saarbrücken 105

Static semantics
 (summary)

Scope of variables inside behaviours:
B

::= G

!V0

?X:S

… [V

] ; B0

p

(X) = { V, B0

}
| hide G

in B0

p

(G) = { B0

}
| let X:S

= V

in B0

p

(X) = { B0

}
| choice X:S

[] B0

p

(X) = { B0

}
| B1

>> accept X:S

in B0

p

(X) = { B0

}

Scope of process parameters:
process P [G] (X:S) :=

p

(G) = { B0

}
B0

p

(X) = { B0

}
endproc

VTSA'08 - Max Planck Institute, Saarbrücken 106

LOTOS specification

A LOTOS specification is similar to a process
definition:

specification

Protocol [SEND, RECEIVE] : noexit

:=
(* ... type definitions *)

behaviour
(* ... behaviour

= body of the specification *)

where
(* ... process definitions *)

endspec

VTSA'08 - Max Planck Institute, Saarbrücken 107

loop forever { P0 }
1 : { ncs0 }
2 : d0 := true
3 : t := 0
4 : wait

(d1 = false or

t = 1)

5 : { cs0 }
6 : d0 := false
endloop

loop forever { P1 }
1 : { ncs1 }
2 : d1 := true
3 : t := 1
4 : wait

(d0 = false or

t = 0)

5 : { cs1 }
6 : d1 := false
endloop

var

d0 : bool

:= false

{ read by P1, written by P0 }

var

d1 : bool

:= false

{ read by P0, written by P1 }

var

t ∈

{0, 1} := 0 { read/written by P0 and P1}

Example:
 Peterson’s mutual exclusion algorithm

VTSA'08 - Max Planck Institute, Saarbrücken 108

Description of variables d0, d1

Each variable: instance of the same process D
Current value of the variable: parameter of D
Reading and writing: RdV

on gates R et W

process D [R, W] (b:Bool) : noexit

:=
R !b ; D [R, W] (b)
[]
W ?b2:Bool ; D [R, W] (b2)

endproc

d0 ≡

D [R0, W0] (false), d1 ≡

D [R1, W1] (false)

VTSA'08 - Max Planck Institute, Saarbrücken 109

Description of variable t

Variable t: instance of process T
Current value of the variable: parameter of T
Reading and writing: RdV

on gates R et W

process T [R, W] (n:Nat) : noexit

:=
R !n ; T [R, W] (n)
[]
W ?n2:Bool ; T [R, W] (n2)

endproc

t ≡

T [RT, WT] (0)

VTSA'08 - Max Planck Institute, Saarbrücken 110

Description of processes P0 and P1

Process Pm

: instance of the same process P
Index m of the process: parameter of P

process P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]
(m:Nat) : noexit

:=

NCS !m ; Wm !true ; WT !m ;
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

endproc

P0 ≡

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
P1 ≡

P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

VTSA'08 - Max Planck Institute, Saarbrücken 111

Processes P0 et P1
 (continued)

Auxiliairy

process to describe busy waiting:
process P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS]

(m:Nat) : noexit

:=
Rn

?dn:Bool

; RT ?t:Nat

;

([dn

and (t eq

m)] ->
P2 [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m)

[]
[not (dn) or (t eq

((m + 1) mod 2))] ->

CS !m ; Wn

!false ;
P [Rm, Wm, Rn, Wn, RT, WT, NCS, CS] (m))

endproc

VTSA'08 - Max Planck Institute, Saarbrücken 112

Architecture of the system
 (graphical)

R0W0
D (false)

T (0)

D (false)

P (0) P (1)

NCS

CS

NCS

CS
WT

RT RT

WT

R1 W1

VTSA'08 - Max Planck Institute, Saarbrücken 113

Architecture of the system
 (textual)

hide R0, W0, R1, W1, RT, WT in
(

P [R0, W0, R1, W1, RT, WT, NCS, CS] (0)
|||
P [R1, W1, R0, W0, RT, WT, NCS, CS] (1)

)
|[R0, W0, R1, W1, RT, WT]|
(

T [RT, WT] (0)
|||
D [R0, W0] (false)
|||
D [R1, W1] (false)

)

VTSA'08 - Max Planck Institute, Saarbrücken 114

LTS model

55 states
110 transitions

VTSA'08 - Max Planck Institute, Saarbrücken 115

Process algebraic languages
 (summary)

More concise than communicating automata:
process parameterization, value-passing
communication (Exercise: model variables d0, d1, t
using a single gate allowing both reading / writing)
In general, there are several ways of describing the
parallel composition of processes (Exercise: write a
different expression for the architecture of
Peterson’s algorithm)
Modeling of nested loops: mutually recursive LOTOS
processes (Exercise: model processes P0, P1 using a
single LOTOS process)
But: E-LOTOS process part is much more convenient

	Model Checking of Action-Based Concurrent Systems
	Why formal verification?
	Diapositive numéro 3
	 Outline
	Asynchronous concurrent systems
	CADP toolbox:�Construction and Analysis of Distributed Processes�(http://www.inrialpes.fr/vasy/cadp)
	Communicating automata
	Diapositive numéro 8
	Communicating automata
	Automaton (LTS)
	LTS representations in CADP�(http://www.inrialpes.fr/vasy/cadp)
	Server example�(modeled using a single automaton)
	LTS of the server�(9 states, 16 transitions)
	Remarks
	Server example�(modeled using two concurrent automata)
	Decomposition in�concurrent subsystems
	Parallel composition (“product”)�of automata
	Binary parallel composition�(syntax)
	Binary parallel composition�(semantics)
	Example
	Interleaving semantics
	Internal and external choice
	Example of modeling with�communicating automata
	Peterson’s algorithm [1968]
	Automata of P0 and P1
	Automata of d0, d1, and t
	Architecture of the system�(graphical)
	Architecture of the system�(textual)
	Construction of the LTS�(“product automaton”)
	Construction of the LTS
	Remarks
	Verification
	Limitations of binary parallel composition
	Example�(ring network [Garavel-Sighireanu-99])
	General parallel composition�[Garavel-Sighireanu-99]
	General parallel composition�(semantics – rules without synchronization degrees)
	Example (1/3)
	Example (2/3)�(ring network [Garavel-Sighireanu-99])
	Example (3/3)
	Parallel composition using synchronization vectors
	Example�(client-server with gate multiplexing)
	Behavioural equivalence
	Equivalence relations between LTSs
	Trace equivalence
	Example�(coffee machine)
	Bisimulation
	Strong bisimulation
	Is strong bisimulation sufficient?
	Weak bisimulation�(or observational equivalence)
	Weak bisimulation�(formal definition)
	Example
	Communicating automata�(summary)
	Process algebraic languages
	Process algebras
	LOTOS�(Language Of Temporal Ordering Specification)
	LOTOS – data part
	LOTOS – process part
	Value expressions and offers
	Behaviour expressions�(Lots Of Terribly Obscure Symbols :-)
	Process definitions
	Remarks
	Example
	Multiple rendezvous
	Binary rendezvous
	Abstraction�(hiding)
	Example
	Operational semantics
	Semantics of “|[...]|”
	Semantics of “hide”
	Sequential behaviours
	Remarks
	Semantics of “stop”
	Prefix operator (“;”)
	Semantics of “;”
	Example (1/2)
	Example (2/2)
	Semantics of “;”
	Example (1/3)
	Example (2/3)
	Example (3/3)
	Rendezvous�(summary)
	Choice operator (“[]”)
	Semantics of “[]”
	Internal / external choice
	Internal action (“i”)
	Guard operator (“[…] -”)
	Semantics of “[…] -”
	Examples
	Operator “let”
	Semantics of “let”
	Remarks
	Operator “choice”
	Examples
	Operator “exit”
	Semantics of “exit”
	Operator “>>”
	Semantics of “>>”
	Example (1/4)
	Example (2/4)
	Example (3/4)
	Example (4/4)
	Sequential composition�(summary)
	Process call
	Example
	Static semantics�(summary)
	LOTOS specification
	Example:�Peterson’s mutual exclusion algorithm
	Description of variables d0, d1
	Description of variable t
	Description of processes P0 and P1
	Processes P0 et P1�(continued)
	Architecture of the system�(graphical)
	Architecture of the system�(textual)
	LTS model
	Process algebraic languages�(summary)

