Software Verification

Grégoire Sutre
LaBRI, University of Bordeaux, CNRS, France

Summer School on Verification Technology, Systems & Applications
September 2008

Part 1

Grégoire Sutre Software Verification VTSA'08 1/286

lamotte
Text Box
Part 1

Part |

Introduction

Grégoire Sutre Software Verification Introduction VTSA'08 2/286

Outline — Introduction

@ Software Verification: Why?

e Software Verification: How?

Grégoire Sutre Software Verification Introduction VTSA'08 3/286

Outline — Introduction

@ Software Verification: Why?

Grégoire Sutre Software Verification Introduction VTSA'08 4/286

Ubiquity of Software in Modern Life

Once upon a time, lecturers used hand-written
transparencies with an overhead projector.

@ pens @ lamp

@ transparencies @ lenses
S @ scissors @ mirror

@ sticky tape @ screen

Grégoire Sutre Software Verification Introduction VTSA'08 5/286

Ubiquity of Software in Modern Life

Once upon a time, lecturers used hand-written
transparencies with an overhead projector.

@ pens @ lamp

@ transparencies @ lenses
@ scissors @ mirror
@ sticky tape @ screen

Nowadays softwares are used to design the slides and to project them

Similar evolution in many, many areas

Grégoire Sutre Software Verification Introduction VTSA'08 5/286

Some advantages of software over dedicated hardware components)

@ Reduce time to market

o Less time to write the slides (really?)
o Ability to re-organize the presentation

@ Reduce costs

@ No pen, no transparencies
o Re-usability of slides, ability to make minor modifications for free

@ Increase functionality

o Automatic generation of some slides (table of contents)
o Nicer overlays (sticky tape is not required anymore!)
o Ability to display videos

But software is not without risk. . .

Grégoire Sutre Software Verification Introduction VTSA'08 6 /286

Bugs are Frequent in Software

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

http://www.flickr.com/photos/fastjack/282707058/

Bugs are Frequent in Software

—
—
P
e
-
-
=
—
.
-
o
s
o
—
=
-
o
-
-

Hﬂ {3_-'3 ! - “. " Gate information will be daplayed sppromimately 30-40 minutes before diparture
| o -

— . - -

DUTY FRiT

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

Bugs are Frequent in Software

AR FRANCE

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

Bugs are Frequent in Software

PR ——
A

e

R S T L A

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

http://commons.wikimedia.org/wiki/Image:Blue_Screen_Phone.jpg

Bugs are Frequent in Software

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

Bugs are Frequent in Software

problem has been detected and windows has been shut down to prevent damage
0 your computer.

he problem seems to be caused by the following file: SPCMDCON.SYS
PAGE_FALULT_IN_MONMPAGED_AREA

1f this is the first time you'wve seen this Stop error screen,

restart wour computer. If this screen appears again, follow

hese steps:

heck to make sure amy new hardware or software is properly installed.

If this is a new installation, ask your hardware or software manufacturer
or any wWindows updates you might need.

1f problems continue, disable or remove any newly installed hardware

or software. Disable BICOS memory options such as caching or shadowing
If you need to use safe mode to remove or disable components, restart
fyour computer, press F8 to select advanced startup options, and then

select safe mode.

echnical information:

Huw STOP: 0x00000050 (OxFD3094C2, 0x00000001, OXFEBFETELT, 0x000000007)

Fws SPCMDCON. SYS - address FBFE7ELY base at FEFESO00, Datestamp 3dedderc

Grégoire Sutre Software Verification Introduction VTSA'08 7 /286

http://commons.wikimedia.org/wiki/Image:Windows_XP_BSOD.png

A Critical Software Bug: Ariane 5.01

Grégoire Sutre Software Verification Introduction VTSA'08)

http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/V88_AR501.htm

A Critical Software Bug: Ariane 5.01

« On 4 June 1996, the maiden flight
of the Ariane 5 launcher ended in a
failure. Only about 40 seconds af-
ter initiation of the flight sequence,
at an altitude of about 3700 m, the
launcher veered off its flight path,
broke up and exploded. »

« The failure of the Ariane 5.01 was
caused by the complete loss of guid-
ance and attitude information 37
seconds after start of the main en-
gine ignition sequence (30 seconds
after lift-off). This loss of informa-
tion was due to specification and
design errors in the software of the
inertial reference system. »

Grégoire Sutre Software Verification Introduction VTSA'08)

http://www.capcomespace.net/dossiers/espace_europeen/ariane/ariane5/AR501/V88_AR501.htm

Software in Embedded Systems

Embedded systems in: cell phones, satellites, airplanes, cars, wireless
routers, MP3 players, refrigerators, . ..

Examples of Critical Systems
@ attitude and orbit control systems in satellites
@ X-by-wire control systems in airplanes and in cars (soon)

Increasing importance of software in embedded systems
@ custom hardware replaced by processor + custom software
@ software is a dominant factor in design time and cost (70 %)

Critical embedded systems require “exhaustive” validation)

Grégoire Sutre Software Verification Introduction VTSA'08 9/286

Software Complexity Grows Exponentially

As computational power grows . ..

Moore’s law: « the number of transistors on a chip doubles every two years »

Grégoire Sutre Software Verification Introduction VTSA'08 10/ 286

Software Complexity Grows Exponentially

As computational power grows . ..

Moore’s law: « the number of transistors on a chip doubles every two years »
. software complexity grows ...

Wirth’s Law: « software gets slower faster than hardware gets faster »

Grégoire Sutre

Software Verification Introduction

VTSA'08 10/286

Software Complexity Grows Exponentially

As computational power grows . ..
Moore’s law: « the number of transistors on a chip doubles every two years »
. software complexity grows ...
Wirth’s Law: « software gets slower faster than hardware gets faster »
. and so does the number of bugs!

Watts S. Humphrey: « 5 — 10 bugs per 1000 lines of code after product test »

Grégoire Sutre Software Verification Introduction VTSA'08 10/ 286

Software Complexity Grows Exponentially

As computational power grows . ..
Moore’s law: « the number of transistors on a chip doubles every two years »
. software complexity grows ...
Wirth’s Law: « software gets slower faster than hardware gets faster »
. and so does the number of bugs!
Watts S. Humphrey: « 5 — 10 bugs per 1000 lines of code after product test »

Growing need for automatic validation techniques J

Grégoire Sutre Software Verification Introduction VTSA'08 10/ 286

Outline — Introduction

e Software Verification: How?

Grégoire Sutre Software Verification Introduction VTSA'08 11/286

Software Testing

Running the executable (obtained by compilation)
@ on multiple inputs
@ usually on the target platform

Testing is a widespread validation approach in the software industry J

@ can be (partially) automated
@ can detect a lot of bugs

Grégoire Sutre Software Verification Introduction VTSA'08 12/ 286

Software Testing

Running the executable (obtained by compilation)
@ on multiple inputs
@ usually on the target platform

Testing is a widespread validation approach in the software industry J

@ can be (partially) automated
@ can detect a lot of bugs

But

Costly and time-consuming | Not exhaustive)

Grégoire Sutre Software Verification Introduction VTSA'08 12/ 286

Dream of Software Model-Checking

Model Checker

x =1;
if (y <= 10) {
y = 10;

}
Xx=y+ 1 Results

Program

Requirements

Grégoire Sutre Software Verification Introduction VTSA'08 13/286

Fundamental Limit: Undecidability

Rice’s Theorem

Any non-trivial semantic property of programs is undecidable.

Classical Example: Termination

There exists no algorithm which can solve the halting problem:
@ given a description of a program as input,
@ decide whether the program terminates or loops forever.

Grégoire Sutre Software Verification Introduction VTSA'08 14/ 286

Practical Limit: Combinatorial Explosion

Implicit in Rice’s Theorem is an idealized program model, where
programs have access to unbounded memory.

In reality programs are run on a computer with bounded memory.

Model-checking becomes decidable for finite-state systems. J

But even with bounded memory, complexity in practice is too high for
finite-state model-checking:

@ 1 megabyte (1 000 000 bytes) of memory ~ 102400000 gtates
@ 1000 variables x 64 bits ~ 109200 states

@ optimistic limit for finite-state model checkers: 10 states

Grégoire Sutre Software Verification Introduction VTSA'08 15/ 286

More Realistic Objectives for Software Verification

Incomplete Methods)

Approximate Algorithms Exact Semi-Algorithms

© Always terminate © Definite answer (yes/no)

® Indefinite answer (yes/no/?) ® May not terminate

Grégoire Sutre Software Verification Introduction VTSA'08 16 /286

More Realistic Objectives for Software Verification

Incomplete Methods)

Approximate Algorithms Exact Semi-Algorithms

© Always terminate © Definite answer (yes/no)

® Indefinite answer (yes/no/?) ® May not terminate

Topics of the lecture

Static Analysis J Abstraction Refinement |

Grégoire Sutre Software Verification Introduction VTSA'08 16 /286

Static Analysis

Tentative Definition

Compile-time techniques to gather run-time information about
programs without actually running them

Detection of variables that are used before initialization \

© Always terminates

© Applies to large programs

©® Simple analyses (original goal was compilation)
® Indefinite answer (yes/no/?)

Grégoire Sutre Software Verification Introduction VTSA'08 17/ 286

Static Analysis

Tentative Definition

Compile-time techniques to gather run-time information about
programs without actually running them

Detection of variables that are used before initialization \

© Always terminates

© Applies to large programs

©® Simple analyses (original goal was compilation)
® Indefinite answer (yes/no/?)

Data Flow Analysis Abstract Interpretation \

Grégoire Sutre Software Verification Introduction VTSA'08 17/ 286

Abstraction Refinement

Tentative Definition

Analysis-time techniques to verify programs by model-checking and
refinement of finite-state approximate models

Verification of safety and fairness of a mutual exclusion algorithm

© Complex analyses (properties expressed in temporal logics)
© Definite answer (yes/no)

® May not terminate

® Modeling of the program into a finite-state transition system

Grégoire Sutre Software Verification Introduction VTSA'08 18/ 286

Abstraction Refinement

Tentative Definition

Analysis-time techniques to verify programs by model-checking and
refinement of finite-state approximate models

Verification of safety and fairness of a mutual exclusion algorithm

© Complex analyses (properties expressed in temporal logics)
© Definite answer (yes/no)

® May not terminate

® Modeling of the program into a finite-state transition system

Abstract Model Refinement for Safety Properties \

Grégoire Sutre Software Verification Introduction VTSA'08 18/ 286

Common Ingredient: Property-Preserving Abstraction

Abstraction Process
Interpret programs according to a simplified, “abstract” semantics.

Property-Preserving Abstraction
Formally relate the “abstract” semantics with the “standard” semantics,
so as to preserve relevant properties.

Preservation of Properties

Program interpretation with this abstract semantics therefore gives
“correct” information about properties of real runs.

Grégoire Sutre Software Verification Introduction VTSA'08 19/ 286

Abstract Interpretation Example: Sign Analysis

Objective of Sign Analysis

Discover for each program point the sign of possible run-time values
that numerical variables can have at that point.

The abstract semantics “tracks” the following information, for each
variable x:

A

X X X X X
v
O O o o o

\%

Grégoire Sutre Software Verification Introduction VTSA'08 20 /286

Abstract Interpretation Example: Sign Analysis

7 X = 2 * X;
8 y =y - 1;
9 }

10}

" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0

6 while (x < y) {

7 X = 2 * X;
8 y =y - 1;
9 }

10}

" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0

x>0

6 while (x < y) {

7 X = 2 * X;
8 y =y - 1;
9 }

10}

" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

6 while (x < y) {

7 X = 2 * X;
8 y=vy - 1;
9 }

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < y) {

7 X = 2 * X;
8 y=vy - 1;
9 }

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < y) {
x>0Ay>0

7 X = 2 * X;
8 y=vy - 1;
9 }

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < y) {
x>0Ay>0

7 X = 2 * X;

x>0Ay>0
8 y=vy - 1;
9 }

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < y) {
x>0Ay>0

7 X = 2 * X;

x>0Ay>0
8 y=vy - 1;

x>0Ay>0
9 }

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < vy) {
x>0ANy>0 \V x>0ANy>0Ax<y
7 X = 2 * X;

x>0Ay>0

8 y=vy - 1;
x>0Ay>0

10}
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

x>0
x>0

x>0ANy>0

x>0ANy>0
6 while (x < y) {
x>0ANy>0 \V x>0ANy>0Ax<y

7 X = 2 * X;

x>0Ay>0
8 y=vy - 1;

x>0Ay>0
9 }

x>0Ay>0
10}
n x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

1x = 1;
x>0
2 if (y < 10) {
x>0
3 y = 10;
x>0ANy>0
4}
5 else ({

x>0ANy>0
6 while (x < y) {
x>0ANy>0 \V x>0ANy>0Ax<y

7 X = 2 * X;
x>0Ay>0
= —1;
’ Yo x>0Ay>0
9 }
x>0ANy>0
10}
x>0Ay>0 (x>0Ay>0)V(x>0Ay>0)
" x =y + 1;

12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

1x = 1;
x>0
2 if (y < 10) {
x>0
3 y = 10;
x>0ANy>0
4}
5 else ({

x>0ANy>0
6 while (x < y) {
x>0ANy>0 \V x>0ANy>0Ax<y

7 X = 2 * X;
x>0Ay>0
= —1;
’ Yo x>0Ay>0
9 }
x>0ANy>0
10}
x>0Ay>0 (x>0Ay>0)V(x>0Ay>0)
" x =y + 1;

x>0ANy>0
12 assert (x > 0);

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Abstract Interpretation Example: Sign Analysis

1x = 1;
x>0
2 if (y < 10) {
x>0
3 y = 10;
x>0ANy>0
4}
5 else ({

x>0ANy>0
6 while (x < y) {
x>0ANy>0 \V x>0ANy>0Ax<y

7 X = 2 * X;
x>0Ay>0
= —1;
’ Yo x>0Ay>0
9 }
x>0ANy>0
10}
x>0Ay>0 (x>0Ay>0)V(x>0Ay>0)
" x =y + 1;

x>0ANy>0
12 assert (x > 0); @

Grégoire Sutre Software Verification Introduction VTSA'08 21/286

Credits: Pioneers (1970’s)

Iterative Data Flow Analysis
Gary Kildall
John Kam & Jeffrey Ullman
Michael Karr

Abstract Interpretation
Patrick Cousot & Radhia Cousot
Nicolas Halbwachs

And many, many more. .. Apologies!

Grégoire Sutre Software Verification Introduction VTSA'08 22 /286

Outline of the Lecture

> Control Flow Automata
»>> Data Flow Analysis

P> Abstract Interpretation

> Abstract Model Refinement

Grégoire Sutre Software Verification Introduction VTSA'08 23 /286

Outline of the Lecture

> Control Flow Automata
> Data Flow Analysis

Static Analysis

> Abstract Interpretation

> Abstract Model Refinement

Grégoire Sutre Software Verification Introduction VTSA'08 23 /286

Outline of the Lecture

> Control Flow Automata

> Data Flow Analysis
Static Analysis
> Abstract Interpretation
Abstraction Refinement

> Abstract Model Refinement

Grégoire Sutre Software Verification Introduction VTSA'08 23 /286

Part I

Control Flow Automata

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 24 /286

Outline — Control Flow Automata

@ Syntax and Semantics

e Verification of Control Flow Automata

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 25/286

Outline — Control Flow Automata

@ Syntax and Semantics

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 26 /286

Short Introduction to Control Flow Automata

Requirement for verification: formal semantics of programs

Formal Semantics
Formalization as a mathematical model of the meaning of programs

Denotational Operational Axiomatic

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 27 /286

Short Introduction to Control Flow Automata

Requirement for verification: formal semantics of programs

Formal Semantics
Formalization as a mathematical model of the meaning of programs

Denotational Operational Axiomatic

Operational Semantics
Labeled transition system describing the possible computational steps

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 27 /286

Short Introduction to Control Flow Automata

Requirement for verification: formal semantics of programs

Formal Semantics
Formalization as a mathematical model of the meaning of programs

Denotational Operational Axiomatic

Operational Semantics
Labeled transition system describing the possible computational steps

First Step Towards an Operational Semantics
Program text —— Graph-based representation

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 27 /286

Short Introduction to Control Flow Automata

Requirement for verification: formal semantics of programs

Formal Semantics
Formalization as a mathematical model of the meaning of programs

Denotational Operational Axiomatic

Operational Semantics
Labeled transition system describing the possible computational steps

First Step Towards an Operational Semantics

Program text —— Graph-based representation
Control flow automaton

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 27 /286

Control Flow Graph

x =1
1 x = 1;
2 if (y < 10) {
3 y = 10;
4}
5 else {
6 while (x < y) {
7 X = 2 * X;
8 y:y_ll
9 }
10}
"M x =y + 1;
12

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 28 /286

Control Flow Automaton

1 x = 1;

2 if (y < 10) {

3 y = 10;

4}

5 else {

6 while (x < y) {
7 X = 2 * X;
8 y =y - 1; y:
9 }

10}

"n x =y + 1;

12

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 29 /286

Labeled Directed Graphs

Definition

A labeled directed graph is a triple G = (V, X, —) where:
@ Vis a finite set of vertices,
@ Y is a finite set of labels,
@ — C V x ¥ x Vis afinite set of edges.

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 30/286

Labeled Directed Graphs

Definition

A labeled directed graph is a triple G = (V, X, —) where:
@ Vis a finite set of vertices,
@ Y is a finite set of labels,
@ — C V x ¥ x Vis afinite set of edges.

Notation for edges: v % v/ instead of (v,o0,V') € —

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 30/286

Labeled Directed Graphs

Definition
A labeled directed graph is a triple G = (V, X, —) where:
@ Vis a finite set of vertices,

@ X is a finite set of /abels,
@ — C V x ¥ x Vis afinite set of edges.

Notation for edges: v % v/ instead of (v,o0,V') € —

A path in G is a finite sequence vo ~> V{, ..., vk — v} of edges such
that v/ = v;; 1 foreach 0 </ < k.

Notation for paths: vo 2% vj -+ vk 25 v,

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 30/286

Control Flow Automata: Syntax

A control flow automaton is a quintuple (Q, gin, Qout, X, —) Where:
@ Qs afinite set of locations,
@ gin» € Qs an initial location and qou: € Q is an exit location,
@ X is a finite set of variables,
@ — C Q x 0p x Qis a finite set of transitions.

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 31/286

Control Flow Automata: Syntax

A control flow automaton is a quintuple (Q, gin, Qout, X, —) Where:
@ Qs afinite set of locations,
@ gin» € Qs an initial location and qou: € Q is an exit location,
@ X is a finite set of variables,
@ — C Q x 0p x Qis a finite set of transitions.

Op is the set of operations defined by:

cst = ceqQ
var = XX
expr = cst|var|expr e expr, withe c {+ - «}
guard = expr <4 expr, with € € {<,<,=#, > >}
Op == guard | var := expr

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 31/286

Control Flow Automata: Syntax

O: {q1>QZ7Q3aq67 }

a7, gs, 11, 12
Qin = g1
Qout = Q12
X ={x,v}

(q1a x:=1 7q2)7
(G2, y<10 ,@s),
(CIZ, y>10 7QG)7
(any = 10,‘%1)7

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 32/286

Programs as Control Flow Automata

Control flow automata can model:
© flow of control (program points),
© numerical variables and numerical operations,
© non-determinism (uninitialized variables, boolean inputs).

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 33 /286

Programs as Control Flow Automata

Control flow automata can model:
© flow of control (program points),
© numerical variables and numerical operations,
© non-determinism (uninitialized variables, boolean inputs).

Control flow automata cannot model:
® pointers
® recursion
® threads
® ...

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 33/286

Programs as Control Flow Automata

Control flow automata can model:
© flow of control (program points),
© numerical variables and numerical operations,
© non-determinism (uninitialized variables, boolean inputs).

Control flow automata cannot model:

® pomters mese
® recursion . a\oo\.\\
© threads Fo(ge
® ...
But they are complex enough for verification. and for Iearning!J

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 33/286

Verification of Safety Properties

Check that “nothing bad can happen”. \

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 34 /286

Verification of Safety Properties

Check that “nothing bad can happen”. \

Bad behaviors specified e.g. as assertion violations in the original
program

An assertion violation can be modeled as a location:

assert(x > 0) & if (x > 0) then { BAD: }

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 34 /286

Verification of Safety Properties

Check that “nothing bad can happen”. \

Bad behaviors specified e.g. as assertion violations in the original
program

An assertion violation can be modeled as a location:

assert(x > 0) & if (x > 0) then { BAD: }

Goal (refined)

Check that there is no “run” that visits a location g contained in a given
set Qgap C Q of bad locations.

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 34 /286

Runs: Examples

y:=10
(g11,1,10)

x =y+l

(Q12, 11,10)

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 35/286

Runs: Examples

(g1, —159,27)
lx =1
(q2,1,27)
ly>10
(gs,1,27)
lx<y
(g97,1,27)
lx = 2%X
(gs,2,27)
ly =y-1
(G6,2,26)
§

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 35/286

Labeled Transition Systems

A labeled transition system is a quintuple (C, Init, Out, ¥, —) where :
@ C is a set of configurations
@ /nit C C and Out C C are sets of initial and exit configurations
@ % is a finite set of actions
@ —» C Cx X x Cis aset of transitions

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 36 /286

Labeled Transition Systems

A labeled transition system is a quintuple (C, Init, Out, ¥, —) where :
@ C is a set of configurations
@ /nit C C and Out C C are sets of initial and exit configurations
@ % is a finite set of actions
@ —» C Cx X x Cis aset of transitions

Post(c,0) = {c’e C‘ciw’} Post(c) = U Post (c, o)
gEY
Post(U,s) = | Post(c,0) Post(U) = [J Post(c)
ceU cel

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 36 /286

Labeled Transition Systems

A labeled transition system is a quintuple (C, Init, Out, ¥, —) where :
@ C is a set of configurations
@ /nit C C and Out C C are sets of initial and exit configurations
@ % is a finite set of actions
@ —» C Cx X x Cis aset of transitions

Pre(c,0) = {C’GC‘C’LC} Pre(c) = |J Pre(c,o)
oEL
Pre(U,0) = [J Pre(c,0) Pre(U) = [J Pre(c)
cey celU

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 36 /286

Semantics of Expressions and Guards

Consider a finite set X of variables. A valuation is a function v : X — R.

Expressions: [e]v

[e]v
[x]v
[[61 T 92]]V
[e1 - e]v
[er e2]v

c [ceq]
v(x) [x €X]
[ei]v + [e2]v
lei]v — [ez2]v
le1]v x [e2]v

Grégoire Sutre

Software Verification

Control Flow Automata

VTSA'08

37 /286

Semantics of Expressions and Guards

Consider a finite set X of variables. A valuation is a function v : X — R.

Exprossions: o]

[elv
[x]v
[e1 +ex]v
[e1 - e]v
[e1 » e2]v

c [ceq]
v(x) [x €X]
[ei]v + [e2]v
lei]v — [ez2]v
le1]v x [e2]v

Grégoire Sutre

Software Verification

S < < < < <

=9
E ej<e f
= e1<e f
E e=e |f
= eite if
= e1>e f
E e >e f

[e1]v < [e2]v
le1]v < [e2]v
[ei]v = [e2]v
[ei]v # [e2]v
le1]v > [e2]v
[ei]v > [e2]v

Control Flow Automata

VTSA'08 37 /286

Semantics of Operations

The semantics [op] of an operation op is defined as a binary relation
between valuations before op and valuations after op:

[op] € (X—R)x(Xx—R)

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 38 /286

Semantics of Operations

The semantics [op] of an operation op is defined as a binary relation
between valuations before op and valuations after op:

[op] € (X—R)x(Xx—R)

Examples with X = {x, vy}
[x+xy <10] = {(v,v) [v(x)*xv(y) <10}
[x:=3«x] = {(v,V)[V(x) =3xv(x) A V(y)=v(y)}

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 38 /286

Semantics of Operations

The semantics [op] of an operation op is defined as a binary relation
between valuations before op and valuations after op:

[op] € (X—R)x(Xx—R)

Examples with X = {x, vy}
[x+xy <10] = {(v,v) [v(x)*xv(y) <10}
[x:=3«x] = {(v,V)[V(x) =3xv(x) A V(y)=v(y)}

| A

Operations: [op]
(viv)elg] if viEg and v =v

N [V = el
(v,W)elx:=¢] Iif {v’(y) = V/(y) forally # x

\

Control Flow Automata VTSA'08 38/286

Software Verification

Grégoire Sutre

Operational Semantics of Control Flow Automata

The interpretation of a control flow automaton (Q, gin, Qout, X, —) is the
labeled transition system (C, Init, Out, 0p, —) defined by:

e C=Qx(xXx—R)
olnit:{q;n}x(x—>[R) and Out = {Qout} X (X — R)
° (q,v) = (q, V) if g== g and (v,V) € [op]

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 39/286

Operational Semantics of Control Flow Automata

The interpretation of a control flow automaton (Q, gin, Qout, X, —) is the
labeled transition system (C, Init, Out, 0p, —) defined by:

e C=Qx(xXx—R)
° /nit:{q;n} (X —R) and Out = {qout} x (Xx = R)
° (q,v) = (q, V) if g== g and (v,V) € [op]

Two kinds of labeled directed graphs

Control Flow Automata Interpretations (LTS)
Use: program source codes Use: program behaviors
@ Syntactic objects @ Semantic objects

@ Finite @ Uncountably infinite

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 39/286

Control Paths, Execution Paths and Runs

A control path is a path in the control flow automaton:

OPo OPk—1
Q — q1- - Qk—1 — Gk

An execution path is a path in the labeled transition system:

(q07 VO) ﬂ (q17 V1) T (qkf'lv Vk71) ﬂj—) (qk7 Vk)

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 40 /286

Control Paths, Execution Paths and Runs

A control path is a path in the control flow automaton:

OPo OPk—1
Q — q1- - Qk—1 — Gk

An execution path is a path in the labeled transition system:

(q07 VO) (q17 V1) (qkf'lv Vk71) ﬂj—) (qk7 Vk)

A run is an execution path that starts with an initial configuration:

(Gins Vin) =22 (G4, Ve) - - (Gt V1) = (Gk, V)

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 40 /286

Execution Path: Example

(g1, —159,27)
lx =1
(q2,1,27)
ly>10
(gs,1,27)
lx<y
(g97,1,27)
lx = 2%X
(gs,2,27)
ly =vy-1
(G6,2,26)
§

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 41 /286

Control Path: Example

Grégoire Sutre

Software Verification

Control Flow Automata

VTSA'08

42 /286

Outline — Control Flow Automata

e Verification of Control Flow Automata

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 43 /286

Forward Reachability Set Post”

Set of all configurations that are reachable from an initial configuration]

Post' = | J {(a,v)|(q,v) occurs on p}

p:run

= | J Post'(Init)

ieN

= U {a} x ([opk—1]o--- o [opo]) [(Xx — R)]

opQ OPk—1
Qi

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 44 /286

Forward Reachability Set Post® on Running Example

¢ :RxR
g : {1} xR

g5 : {1}x] — 00, 10]
g6 : {1}x]10, +o0[U

{2}x]9, +oo[U
{4} %18, +o0] U

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 45 /286

Forward Reachability Set Post® on Running Example

¢ :RxR

g : {1} xR

g5 : {1}x] — 00, 10]
g6 : {1}x]10, +o0[U

o {2} x]9, +oo] U
— {4} x]8, +o0] U

QGZHiEN {

x=2""A y+i>10 A
i>1 = 2T <y +1

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 45 /286

Backward Reachability Set Pre*

Set of all configurations that can reach an exit configuration]

Pre* = | J Pre/(Out)

ieN

= U {a x (lopol ™ oo [opk] ") [(x — R)]
Fo, K > Qout

- U 1@ x ((fopkrlo o forol) ") [(x — R)]

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 46 / 286

Verification of Control Flow Automata

Goal (Repetition)

Check that there is no run that visits a location q contained in a given
set Qgap C Q of bad locations.

Define the set Bad of bad configurations by: Bad = Qgap x (X — R).

Goal (Equivalent Formulation)
Check that Post* is disjoint from Bad

Undecidability

The location reachability and configuration reachability problems are
both undecidable for control flow automata.

Proof by reduction to location reachability in two-counters machines.

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 47/ 286

Two-Counters Machines as Control Flow Automata

Two-Counters (Minsky) Machines
Finite-state automaton extended with:

@ two counters over nonnegative integers
@ test for zero, increment and guarded decrement
Reachability is undecidable for this class.

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 48 / 286

Two-Counters Machines as Control Flow Automata

Two-Counters (Minsky) Machines
Finite-state automaton extended with:

@ two counters over nonnegative integers

@ test for zero, increment and guarded decrement
Reachability is undecidable for this class.

Any two-counters machine can (effectively) be represented as a
control flow automaton in this restricted class:

@ two variables: x = {cq, co}
@ allowed guards: x=0 and x # 0 for each x € X
@ allowed assignments: x := x+1 and x := x-1 for each x € x

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 48 / 286

Tentative Solution: Approximation Techniques

Definition
An invariant is any set Inv C C such that Post™ C Inv.

Idea:

@ Compute an invariant Inv (easier to compute than Post*)

@ If Inv is disjoint from Bad then Post* is also disjoint from Bad

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 49 /286

Tentative Solution: Approximation Techniques

Definition
An invariant is any set Inv C C such that Post™ C Inv.

Idea:

@ Compute an invariant Inv (easier to compute than Post*)

@ If Inv is disjoint from Bad then Post* is also disjoint from Bad

Rest of the lecture:

Computation of precise enough invariants)

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 49 /286

@ Computational model for programs: control flow automata

@ syntax
@ semantics

@ Undecidability in general of model-checking for control flow
automata

@ Tentative solution: computation of invariants

Grégoire Sutre Software Verification Control Flow Automata VTSA'08 50 /286

Part Il

Data Flow Analysis

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 51 /286

Outline — Data Flow Analysis

© Classical Data Flow Analyses
@ Basic Lattice Theory

e Monotone Data Flow Analysis Frameworks

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 52 /286

Outline — Data Flow Analysis

© Classical Data Flow Analyses

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 53 /286

Short Introduction to Data Flow Analysis

Tentative Definition

Compile-time techniques to gather run-time information about data
in programs without actually running them

Applications

Code optimization
@ Avoid redundant computations (e.g. reuse available results)
@ Avoid superfluous computations (e.g. eliminate dead code)

Code validation
@ Invariant generation

Conservative approximations]

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 54 /286

Live Variables Analysis: Definition

Definition
A variable x is live at location q if there exists a control path starting
from g where x is used before it is modified.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 55 /286

Live Variables Analysis: Definition

Definition
A variable x is live at location q if there exists a control path starting
from g where x is used before it is modified.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 55 /286

Live Variables Analysis: Definition

Definition
A variable x is live at location q if there exists a control path starting
from g where x is used before it is modified.

x live, y live

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 55 /286

Live Variables Analysis: Definition

Definition
A variable x is live at location q if there exists a control path starting
from g where x is used before it is modified.

x live, y live

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 55 /286

Live Variables Analysis: Definition

Definition
A variable x is live at location q if there exists a control path starting
from g where x is used before it is modified.

x:=1 y = x+3 x =1 y i =y+3
x>y x:=0 x>0 x:=0
x live, y live x not live, v live

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 55 /286

Live Variables Analysis: Running Example

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

Grégoire Sutre

Software Verification

Data Flow Analysis

0 : Initialization

a1

92

a3

Q6

q7

Qs

11

g2

VTSA'08

56 / 286

Live Variables Analysis: Running Example

Grégoire Sutre

Software Verification

Data Flow Analysis

0 : Initialization
1 : Local information

x|y
a1
g2 °
gs
CIG [] []
qr | *
9s °
gi1 o
912

VTSA'08

56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1
Q2 [*|°
a3
9 [®|°
qr | *
9s °
gi1 o
Q12

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1
Q> |[e |
a3
9 [®|°
qr | *
9s °
gi1 o
Q12

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 e
q2 o | e
a3

9 [®|°
qr | *

9s °
q11 °
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 °
q2 o | 0
a3

9 [®|°
qr | *

9s °
q11 °
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 °
Q> |[e |
93
9 [®|°
qr | *
9 [°|®
g1 .
gi2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 °
Q> |[e |
93
9 [®|°
qr | *
s [*|°®
g1 .
gi2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 °
q2 o | 0
a3

9 [®|°
q7 o | o
s [*|°®
q11 °
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 °
q2 o | 0
a3

9 [®|°
q7 o (e
s [*|°®
Q11 °
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Running Example

0 : Initialization
1 : Local information
2 : Propagation («+)

x|y
a1 O
(07} o | 0
a3

9 [®|°
(0/4 o (e
s [*|®
gi1 o
Q12

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 56 / 286

Live Variables Analysis: Formulation

Control Flow Automaton: (Q, gin, Qout, X, —)

System of equations: variables L, for g € Q, with L, C X

Ly = |J Geny U (Ly\Kill) L(Qout) = 0
g—q
Gen. — Var(g) ifop=g9g Kill. — 0 ifop=g
F | Var(e) ifop=x:=e Pl {x} fop=x:=e

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 57 /286

Live Variables Analysis: Formulation

Control Flow Automaton: (Q, gin, Qout, X, —)

System of equations: variables L, for g € Q, with L, C X

Ly = | frl(ly) L(qour) = 0
g—q
Gen.. — Var(g) ifop=g Kill. — 0 ifop =g
F | Var(e) ifop=x:=e Pl {x} fop=x:=e

fo(X) = Gens, U (X \ Kill,) |

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 57 /286

Live Variables Analysis: Applications

Code Optimization
Dead code elimination

@@

If x is not live at location g» then we may remove the assignment
x := e on the edge from g; to g..

This is sound since the analysis is conservative

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 58 /286

Available Expressions Analysis: Definition

Definition
A expression e is available at location q if every control path from g;, to
g contains an evaluation of e which is not followed by an assignment of

any variable x occurring in e.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 59 /286

Available Expressions Analysis: Definition

Definition
A expression e is available at location q if every control path from g;, to
g contains an evaluation of e which is not followed by an assignment of

any variable x occurring in e.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 59 /286

Available Expressions Analysis: Definition

Definition
A expression e is available at location q if every control path from g;, to
g contains an evaluation of e which is not followed by an assignment of

any variable x occurring in e.

x—1 available, x+y not available

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 59 /286

Available Expressions Analysis: Definition

Definition
A expression e is available at location q if every control path from g;, to
g contains an evaluation of e which is not followed by an assignment of

any variable x occurring in e.

<} <}

x—1 available, x+y not available

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 59 /286

Available Expressions Analysis: Definition

Definition

A expression e is available at location q if every control path from g;, to
g contains an evaluation of e which is not followed by an assignment of
any variable x occurring in e.

<} <}

y i=x-1 Z = Xxy x = x-1 Z 1= X*y
xxy>0 y i=x-1 xxy>0 7 = x—1
x—1 available, xxy not available x—1 not available, x+y available

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 59 /286

Available Expressions Analysis: Other Example

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization

c+xd [b+l | 2xa

a1

(0)) ° ° °
g3 ° . °
(0] ° ° °
q7 . ° °
Js ° o °
11 ° . .
Q2| ° ° °

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information

cxd | b+1 | 2%a

a1

Q2 ° °

q3 [] [} [}
Q6 . °

q7 . . °
gs ° °
qi1 . .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a

a1

Q2 ° °

q3 [] [} [}
Q6 ° °

q7 . . °
gs ° °
qi1 . .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
q3 [] [] [}
Q6 ° °
q7 . . °
gs ° °
qi1 . .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2xa
a1
92 °
a3 °) °
Q6 ° °
q7 . . °
gs ° °
qi1 . .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 . .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 . °
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 .
Qi2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 .
Q2| ® o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 .
912 o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . . °
gs ° °
qi1 .
912 o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . .
gs ° °
qi1 .
912 o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Other Example

0 : Initialization
1 : Local information
2 : Propagation (—)

cxd | b+1 | 2%a
a1
92 °
g3 ° °
Q6 ° °
q7 . .
gs ° °
q11 °
912 o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 60 /286

Available Expressions Analysis: Formulation

Control Flow Automaton: (Q, gin, Qout, X, —)

System of equations: variables A, with A; C SubExp(—)

A = [Geny U (Ag\ Killog) Algin) = 0
q—>q
Gen SubExp(g) ifop=g
o {f € SubExp(e) | x ¢ SubExp(e)} ifop=x:=e
Kill — 0 ifop=g9
" \{ee SubExp(—) | x € Var(e)} ifop=x:=e

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 61/286

Available Expressions Analysis: Formulation

Control Flow Automaton: (Q, gin, Qout, X, —)

System of equations: variables A, with A; C SubExp(—)

Ay =[] foo(Ad) A(Gn) = 0
q—>q
Gen SubExp(g) ifop=g
o {f € SubExp(e) | x ¢ SubExp(e)} ifop=x:=e
Kill — 0 ifop=g9
" \{ee SubExp(—) | x € Var(e)} ifop=x:=e

foo(X) = Geng, U (X \ Kill,y) J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 61/286

Available Expressions Analysis: Applications

Code Optimization
Avoid recomputation of an expression

X =e e €€

If e is available at location g; then we may reuse its value to evaluate
the operation on the edge from g4 to go.

This is sound since the analysis is conservative

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 62 /286

Constant Propagation Analysis: Definition

Definition
A variable x is constant at location q if we have v(x) = v/(x) for any
two reachable configurations (g, v) and (g, v') in Post™.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 63 /286

Constant Propagation Analysis: Definition

Definition
A variable x is constant at location q if we have v(x) = v/(x) for any
two reachable configurations (g, v) and (g, v') in Post™.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 63 /286

Constant Propagation Analysis: Definition

Definition
A variable x is constant at location q if we have v(x) = v/(x) for any
two reachable configurations (g, v) and (g, v') in Post™.

x not constant, y constant

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 63 /286

Constant Propagation Analysis: Definition

Definition
A variable x is constant at location q if we have v(x) = v/(x) for any
two reachable configurations (g, v) and (g, v') in Post™.

<} <}

x not constant, y constant

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 63 /286

Constant Propagation Analysis: Definition

Definition
A variable x is constant at location q if we have v(x) = v/(x) for any
two reachable configurations (g, v) and (g, v') in Post™.

<} <}

x =7 xX=2 X =2 x=2
y i=x-3 y = 2%X y i =x-3 y = 2%z
x hot constant, % constant x constant, % not constant

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 63 /286

Constant Propagation Analysis: Running Example

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

Grégoire Sutre

Software Verification

0 : Initialization

b

a1

|~

Q

a3

Q6

q7

Qs

q11

g2

Data Flow Analysis

VTSA'08

64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

b

Y
g1 T T
(0)) 1 T
okl
Q6
a7
Qs
11
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

b

Y
g1 T T
(0)) 1 T
Ukl
Q6
a7
Qs
11
di2

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
Q11
di2

X
a1 T
1
1

| =A<

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
Q11
di2

X
a1 T
1
1

| | |~

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
11 1 10
qi2

X
a1 T
1
1

| | |~

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
11 1 10
qi2

X
a1 T
1
1

| | |~

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
11 1 10
qi2 11 10

X
a1 T
1
1

| | |~

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

Q>
Ukl
Q6
a7
as
11 1 10
qi2 11 10

X
a1 T
1
1

| | |~

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q>
Ukl
Q6
a7
Qs
11 1 10
G2 11 10

_L_L_I.—|><
|] 1

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q>
Ukl
Q6
a7
as
11 1 10
G2 11 10

_L_L_L—|><
= A A<

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

Grégoire Sutre

Software Verification

0 : Initialization
1 : Propagation (—)

a1

Q2

a3

Q6

_L_L_I.—|><

= A A<

q7

Qs

q11

10, T

g2

11

10

Data Flow Analysis

VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a1
Q>
a3
Q6
q7
as
q11 1

qi2| 1

_L_L_I.—|><
= A A<

o|

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a1
Q>
a3
Q6
q7
as
q11 1 T

Q12 11 s 2 1 0, T

_L_L_I.—|><
= A A<

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q2
Ukl
Q6
a7
Qs
q11 1
Q2| T

_L_L_I.—|><
= A A<

|

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q2
Ukl
Q6
a7
Qs
Q11 1
Q2| T

_L_L_L_I.—|><
A A A A<

|

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q2
Ukl
Q6
a7
Qs
Q11 1
Q2| T

_L_L_L_I._|><
| =] =] = | <

|

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X Y
g T T
(0)) 1 T
J3 1 T
(0] 1 T
q7 1 T
as 2 T
Q11 1 T
Gz | T T

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X Y
g T T
(0)) 1 T
J3 1 T
(0] 1 T
q7 1 T
as 2 T
Q11 1 T
Gz | T T

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q>
Ukl
g | 1
a7

as

11
di2

_L_I.—|><

2

| | | A= =] | <

_|_L|\)_L

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X Y
a1 T T
(0)) 1 T
J3 1 T
Js T T
q7 1 T
as 2 T
Q11 1 T
Q12 T T

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q2
Ukl
Q6
a7
Qs
g1 | 1
qi2

—|"_||\)_L—|_L_I.—|><
|]]) o

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X Y
a1 T T
(0)) 1 T
J3 1 T
Js T T
q7 1 T
as 2 T
g1 T T
Q12 T T

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X Y
a1 T T
(0)) 1 T
J3 1 T
Js T T
qQ | 1,7 T
as 2 T
g1 T T
Q12 T T

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q>
Ukl
Q6
a7
Qs
Q11
qi2

| | ro| | | =] =] |
| == | A =] A <

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

X

g1 T
Q2 1
g3 1
=

=

Q6
a7
as 2, T
Q11
qi2

| | | A= =] | <

—|

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Running Example

0 : Initialization
1 : Propagation (—)

a
Q>
Ukl
Q6
a7
Qs
Q11
qi2

| | | A= =] | <

| A] A =] =] |

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 64 /286

Constant Propagation Analysis: Formulation

Extend R with a new element T to account for non-constant values

Extend +, — and x such that T is absorbent

T4+r = r+7T =T
T—r = r—-T7T =T forre RuU {T}
Txr = rxT =T

Extend [e], to valuations from x to RU{T}

D = x — (RuU{T}H

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 65 /286

Constant Propagation Analysis: Formulation

v(y) ifv(y)=Vv'(y)
T otherwise

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 66 / 286

Constant Propagation Analysis: Formulation

v(y) ifv(y)=Vv'(y)
T otherwise

heelV) = Ay.{v(” iy BV = v

le]v ify=x

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 66 / 286

Constant Propagation Analysis: Applications

Code Optimization
Constant folding

X:=e e«q¢

For each variable y occurring in e, if y is constant at location gy then
we may replace y with its constant value in e.

This is sound since the analysis is conservative

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 67 /286

Common Form of Data Flow Equations

@ Domain D of data flow “information”
e sets of variables, sets of expressions, valuations, ...

@ Variables D, for g € Q, with value in D
e D, holds data-flow information for location q

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 68 /286

Common Form of Data Flow Equations

@ Domain D of data flow “information”
e sets of variables, sets of expressions, valuations, ...

@ Variables D, for g € Q, with value in D
e D, holds data-flow information for location q

@ “Confluence” operator /\\ on D to merge data flow information
o U, N ®,...

@ Functions f : D — D to model the effect of operations

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 68 /286

Outline — Data Flow Analysis

e Basic Lattice Theory

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 69 /286

Partial Order

A partial order on a set L is any binary relation = C L x L satisfying for
all x,y,ze L:

xCx (reflexivity)
XCYyANyCx = x=y (antisymmetry)
XCyAnyCz = xLCz (transitivity)

A partially ordered set is any pair (L,C) where Lisasetand C is a
partial order on L.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 70 /286

Partial Order

A partial order on a set L is any binary relation = C L x L satisfying for
all x,y,ze L:

xCx (reflexivity)
XCYyANyCx = x=y (antisymmetry)
XCyAnyCz = xLCz (transitivity)

A partially ordered set is any pair (L,C) where Lisasetand C is a
partial order on L.

There canbe x and y in Lsuchthat x [Z y and y [Z x.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 70 /286

Lower and Upper Bounds

Consider a partially ordered set (L,C) and a subset X C L.

Greatest Lower Bound
A lower bound of X is any b € X such that b C x for all x € X.

A greatest lower bound of X is any glb € X such that:
@ glbis alower bound of X,
@ g/b 1 b for any lower bound b of X.

If X has a greatest lower bound, then it is unique and written [] X.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 71/286

Lower and Upper Bounds

Consider a partially ordered set (L,C) and a subset X C L.

Greatest Lower Bound
A lower bound of X is any b € X such that b C x for all x € X.

A greatest lower bound of X is any glb € X such that: [...]

If X has a greatest lower bound, then it is unique and written [| X.

Least Upper Bound
An upper bound of X is any b € X such that b J x for all x € X.

A least upper bound of X is any lub € X such that:
@ /ubis an upper bound of X,
© /ub C b for any upper bound b of X.

If X has a least upper bound, then it is unique and written | | X.

v

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 71/286

Lower and Upper Bounds: Examples

u{o,\/§,4} — 4 ﬂ{%

But{...,—-2,-1,0,1,2,...} has no upper bound and no lower bound.

nenxl} =0

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 72 /286

Lower and Upper Bounds: Examples

| |{o.v2.4} = 4 |—|{21n

But{...,—-2,-1,0,1,2,...} has no upper bound and no lower bound.

(P({_-I*O’ 1})* g)

nenxl} =0

{—1,0,1}
N L] {{0},{1}} = {01}
{10} {11} {01}
| > XX L {{-1},{0,1}} = {-1,0,1}

{=1} {0} {1}

| [1{{-1,0},{0,1}} = {0}
\@/

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 72 /286

v

Complete Lattice

Definition

A lattice is any partially ordered set (L, C) where every finite subset
X C L has a greatest lower bound and a least upper bound.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 73 /286

Complete Lattice

Definition

A lattice is any partially ordered set (L, C) where every finite subset
X C L has a greatest lower bound and a least upper bound.

Definition
A complete lattice is any partially ordered set (L, C) where every
subset X C L has a greatest lower bound and a least upper bound.

The least element L and greatest element T are defined by:

L=[]L=1]0 T=|]L=[]0

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 73 /286

Complete Lattice

Definition

A lattice is any partially ordered set (L, C) where every finite subset
X C L has a greatest lower bound and a least upper bound.

Definition
A complete lattice is any partially ordered set (L, C) where every
subset X C L has a greatest lower bound and a least upper bound.

The least element L and greatest element T are defined by:

L=[]L=1]0 T=|]L=[]0

(R, <) is a lattice, but it is not a complete lattice.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 73 /286

Let f: L — L be a function on a partially ordered set (L, C).

Definition

A fixpoint of fis any x € L such that f(x) = x.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 74 /286

Fixpoints

Let f: L — L be a function on a partially ordered set (L, C).
Definition
A fixpoint of fis any x € L such that f(x

Definition

A least fixpoint of f is any /fo € X such that:
@ /fpis a fixpoint of f,

@ Ifo C x for any fixpoint x of f.

If f has a least fixpoint, then it is unique and written Ifp(f).

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 74 /286

Fixpoints

Let f: L — L be a function on a partially ordered set (L, C).

Definition
A fixpoint of fis any x € L such that f(x

Definition
A least fixpoint of f is any /fo € X such that: [...]

If f has a least fixpoint, then it is unique and written Ifp(f).

Definition

A greatest fixpoint of f is any gfpo € X such that:
@ gfpis a fixpoint of f,
@ gfp 3 x for any fixpoint x of f.

If f has a greatest fixpoint, then it is unique and written gfp(f).

v
Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 74 /286

Knaster-Tarski Fixpoint Theorem

A function f : L — L on a partially ordered set (L, C) is monotonic if for
all x,y e L:
xCy = f(x)Cfy)

Theorem

Every monotonic function f on a complete lattice (L, C) has a least
fixpoint Ifp(f) and a greatest fixpoint gfp(f). Moreover:

Ifo(f) = []{xeL]|f(x)Cx}

ap(f) = || fxel|f(x0)2x)

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 75 /286

Order Duality

If (L,C) is a partially ordered set then so is (L, J).

If (L,C) is a complete lattice then so is (L, 3).
Moy = Ueg Loy = Teo
|_|(L,;) = |_|(L,;) Ty = Leuo

For any monotonic function f : L — L on a complete lattice (L, C),

fo,oy(f) = gfo,o(f)
ofpoy(f) = oo (f)

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 76 /286

Order Duality

If (L,C) is a partially ordered set then so is (L, J).
If (L,C) is a complete lattice then so is (L, 3).
Moy = Ueg Loy = Teo
|_|(L,;) = |_|(L,;) Ty = Leuo
For any monotonic function f : L — L on a complete lattice (L, C),
fo,oy(f) = gfo,o(f)

ofpoy(f) = oo (f)

We shall focus on least fixpoints. J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 76 /286

Ascending Chain Condition

An ascending chain in a partially ordered set (L, C) is any infinite
sequence Xp, X1, . . . of elements of L satisfying x; C x;, 1 forall i € N.

A partially ordered set (L, C) satisfies the ascending chain condition if

every ascending chain xg C xq C - - - of elements of L is eventually
stationary.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 771286

Ascending Chain Condition

An ascending chain in a partially ordered set (L, C) is any infinite
sequence Xp, X1, . . . of elements of L satisfying x; C x;, 1 forall i € N.

A partially ordered set (L, C) satisfies the ascending chain condition if

every ascending chain xg C xq C - - - of elements of L is eventually
stationary.

(R, <) does not satisfy the ascending chain condition.

(N, >) satisfies the ascending chain condition.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 771286

Kleene lteration

Consider a partially ordered set (L,C) and f : L — L monotonic.
The Kleene iteration (f/(L)),,, is an ascending chain:
LCfl)yc--cfh)c i) -

For every k € N, if f<(_L) = fA*1(L) then fX(_L) is the least fixpoint of f.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 78 /286

Kleene lteration

Consider a partially ordered set (L,C) and f : L — L monotonic.

The Kleene iteration (f/(L)),,, is an ascending chain:

LCA)E -~ EfL)EML)E .-

For every k € N, if f<(_L) = fA*1(L) then fX(_L) is the least fixpoint of f.

Correction and termination
LFP(f: L — L) ——
x — | @ For every monotonic f, if LFP(£)
repeat terminates then it returns Ifp(f).
t «— x
R = () @ If L satisfies the ascending chain
until t = x condition then LFP(£) always
return x - .
terminates (on monotonic £).
Grégoire Sutre

Software Verification Data Flow Analysis

VTSA'08 78 /286

Constructing Complete Lattices: Power Set

For any set S, the pair (P(S),C) is a complete lattice, where C = C.

[1,[], L and T satisfy:
=N

L =UuU T =

1 =

=

%))

If Sis finite then (P(S), C) satisfies the ascending chain condition.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 79 /286

Constructing Complete Lattices: Functions

For any set S and complete lattice (L, C), the pair (S — L,C)is a
complete lattice, where L is defined by:

fCg if f(x) Tg(x) forallxe S
[, [, Land T satisfy:
X = Ax.[]{f(x)|feX} 1L = Ax.1

X = Ax.|J{f(x)]|feX} T = Ax.T

If S'is finite and (L, C) satisfies the ascending chain condition then
(S — L,C) satisfies the ascending chain condition.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08

80/286

Outline — Data Flow Analysis

e Monotone Data Flow Analysis Frameworks

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 81/286

Common Form of Data Flow Equations (Recall)

@ Domain D of data flow “information”
e sets of variables, sets of expressions, valuations, ...

@ Variables D, for g € Q, with value in D
e D, holds data-flow information for location q

@ “Confluence” operator /\\ on D to merge data flow information
o U, N ®,...

@ Functions f : D — D to model the effect of operations

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 82 /286

Monotone Frameworks

Monotone Framework
@ Complete lattice (L, C) of data flow facts

@ Set F of monotonic transfer functions f: L — L

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 83 /286

Monotone Frameworks

Monotone Framework
@ Complete lattice (L, C) of data flow facts

@ Set F of monotonic transfer functions f: L — L

Partial order C compares the precision of data flow facts:
@ ¢ C ¢ means that ¢ is more precise than .

@ | | X is the most precise fact consistent with all facts ¢ € X.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 83 /286

Monotone Frameworks

Monotone Framework
@ Complete lattice (L, C) of data flow facts

@ Set F of monotonic transfer functions f: L — L

Partial order C compares the precision of data flow facts:
@ ¢ C ¢ means that ¢ is more precise than .

@ | | X is the most precise fact consistent with all facts ¢ € X.

Conservative Approximation
¢ C ¢ means that ¢ soundly approximates ¢.

If » C 4 then it is sound, but less precise, to replace ¢ by .

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 83 /286

Data Flow Facts: Example for Live Variables Analysis

Semantic Definition of Liveness

A variable x is live at location q if there exists an execution path
starting from g where x is used before it is modified.

Consider a control flow automaton with variables x = {x, v, z}.
Complete lattice (L, C) of data flow facts: (P(x), ©)

The fact {x, z} means: the variables that are live are among {x, z}.

i.e. the variable y is not live.

The fact {x} is more precise than {x, z}, but incomparable with {y}.

The fact {x, z} soundly approximates the fact {x}.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 84 /286

Data Flow Instances

Data Flow Instance

@ Monotone framework ((L,C), F)

@ Control flow automaton (Q, gin, Gout, X, —)

@ Transfer mapping f : op — F

@ Initial data flow value » € L

Notation for transfer mapping: f., instead of f(op)

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 85 /286

Data Flow Instances

Data Flow Instance
@ Monotone framework ((L,C), F)

@ Control flow automaton (Q, gin, Qout, X, —)

@ Transfer mapping f : op — F

@ Initial data flow value » € L

Notation for transfer mapping: 7., instead of 7(op)

Two possible directions for data flow analysis: forward and backward

Transfer functions 7., must be defined in accordance with the direction
of the analysis. J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 85 /286

Data Flow Equations

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

System of equations: variables A, for g € Q, with A € L

Forward Analysis

1 ifg=gq;
Ay = Ilg U |_| foo(Aq') lg = {L otherwi:e

q—>q

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 86 /286

Data Flow Equations

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

System of equations: variables A, for g € Q, with A € L

Forward Analysis

v ifq=qin
= I, U o (Ag —
Ag 9 |—| fop(Aq') 9 {J_ otherwise

q—>q

Backward Analysis

v if g = Qout
= I, U foo(Ag l, =
Ag g |—| o(4q) Y {L otherwise

g

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 86 /286

Minimal Fixpoint (MFP) Solution

The system of data flow equations may have several solutions. ..

We are interested in the “least solution” to the data flow equations. J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 87 /286

Minimal Fixpoint (MFP) Solution

The system of data flow equations may have several solutions. ..

We are interested in the “least solution” to the data flow equations.]

Complete lattice (L, C) extended to (Q — L,C)

The forward minimal fixpoint solution MFP of the data flow instance
—
is the least fixpoint of the monotonic function A on (Q — L):

vu L fe(a@) ifq=an

q—>q

| | fs(a(@) otherwise

7-2sq

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 87 /286

Minimal Fixpoint (MFP) Solution

The system of data flow equations may have several solutions. ..

We are interested in the “least solution” to the data flow equations.]

Complete lattice (L, C) extended to (Q — L,C)

The backward minimal fixpoint solution MFP of the data flow instance
—
is the least fixpoint of the monotonic function A on (Q — L):

1 LJ |_| op(a(q If q = qOUt

|_| f..(a(q’)) otherwise

9—q

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 87 /286

Constraint-Based Formulation

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

Constraint system: variables A for g € Q, with Ag € L

Forward Analysis

= AQin =
(CS) °
Ay 3 fp(Aq) foreachq = ¢

By Knaster-Tarski Fixpoint Theorem,

MFP — |_|{aeQ—>L’a):(—CT§)} J

Any solution to (CS) is a sound approximation of MFP.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 88 /286

Constraint-Based Formulation

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

Constraint system: variables A for g € Q, with Ag € L

Backward Analysis

e [Agun 2
(CS) o
Ay 3 fp(Aq) foreachq = q

By Knaster-Tarski Fixpoint Theorem,

MFP = |_|{aeQ—>L’a):<(_5§)} J

«—— ——

Any solution to (CS) is a sound approximation of MFP.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 88 /286

Live Variables Analysis (Revisited)

Control Flow Automaton: (Q, Qin, Qout, X, —)

Monotone Framework
@ Complete lattice (L, C) of data flow facts: (P(x), C)

@ Set F of monotonic transfer functions:

F = {Xo.genU (o \ Kill) | gen, kill € L}

Data Flow Instance
@ Initial data flow value: 0

@ Transfer mapping: f,o(¢) = Gen,, U (¢ \ Kill,p)

Backward analysis J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 89 /286

Available Expressions Analysis (Revisited)

Control Flow Automaton: (Q, Qin, Qout, X, —)

Monotone Framework
@ Complete lattice (L, C) of data flow facts: (P(SubExp(—)), 2)

@ Set F of monotonic transfer functions:

F = {Xo.genU (o \ Kill) | gen, kill € L}

Data Flow Instance
@ Initial data flow value: 0

@ Transfer mapping: f,o(¢) = Gen,, U (¢ \ Kill,p)

Forward analysis J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 90 /286

Constant Propagation Analysis (Revisited)

Control Flow Automaton: (Q, gin, Qout, X, —)

Constant Propagation Lattice for a Single Variable
(RU{L,T},C)

//‘\\\ | i Il\’ﬂeaRl;mgl
\\‘// ri[R {(g}

Monotone Framework
@ Complete lattice (L, C) of data flow facts: (x — (RU{L,T}),C)
@ Set F defined as the set of all monotonic transfer functions on L.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 91 /286

Constant Propagation Analysis (Revisited)

Control Flow Automaton: (Q, gin, Qout, X, —)

Monotone Framework

@ Complete lattice (L, C) of data flow facts: (x — (RU{L, T}),C)
@ Set F defined as the set of all monotonic transfer functions on L.

Data Flow Instance

@ Initial data flow value: T

@ Transfer mapping:

_ o(y) ify#x _
fie(9) = Ay.{[[% fyx fo(0) = ¢
Forward analysis J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 92 /286

Constant Propagation Analysis (Revisited)

Extension of [e] to valuations in X — (RU{L, T})

1l4+r = r+1L =

S = — e —
1l xr = rxl1l =

-

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 93 /286

Constant Propagation Analysis (Revisited)

Extension of [e] to valuations in X — (RU{L, T})

Expressions: [€e],

[elv = ¢ [c € Q]

X[y = v(x) [xe€x]

[er+e]v = [er]v +[e2]v

les-e]v = [eilv—[e]v

l4r = r+l1 = [er ey = [ei]v x [ev

S = — e —
1l xr = rxl1l =

-

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 93 /286

(Forward) MFP Computation by Kleene lteration

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

a «— Aqg.Ll
repeat
b «— a
—
a «— A(a)
until b = a
return a

Correction and termination

@ Returns MFP when it terminates

@ Always terminates when (L, C)
satisfies the ascending chain
condition

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 94 / 286

(Forward) MFP Computation by Kleene lteration

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

a «— Ag.L foreach g€ Q
repeat alg] « L
b« a algin] < 1
a «— K(a) repeat
until b = a foreach g€ Q
return a b[q] < alq]
| foreach g€ Q
: —r alg] — | fe(olgD)
Correction and termination e
@ Returns MFP when it terminates | ttil (Vg€ Q- blg] =a[q])
return a
@ Always terminates when (L, C)
satisfies the ascending chain

condition

Grégoire Sutre

Software Verification Data Flow Analysis VTSA'08 94 / 286

(Forward) MFP Computation by Kleene lteration

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

a «— Ag.L foreach g€ Q
repeat alg] « L
b« a algin] < 1
a «— K(a) repeat
until b = a foreach g€ Q
return a b[q] < alq]
| foreach g€ Q
: —r alg] — | fe(olgD)
Correction and termination e
@ Returns MFP when it terminates | 92t (V<€ Q- blg] = =[q])
return a
@ Always terminates when (L, C)
satisfies the ascending chain

condition

Grégoire Sutre

We can improve!

Software Verification Data Flow Analysis VTSA'08 94 / 286

(Forward) MFP Computation by Round-Robin Iteration

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

foreach ge Q
alg] — L
alqin] « 1
do
change <« false
foreach q = ¢
new « fy(alq])
if new [Z a[q']
alq] — alg] U new
change <« true
while change
return a

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 95 /286

(Forward) MFP Computation by Round-Robin Iteration

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

The foreach loop iterates over
foreach g€ Q i iti .
alg] — 1 ransitions in —.
alg; — 1
qu'"] Propagation of facts
change « false @ benefits from previous
foreach q = ¢ propagations
new — fop(alq]) @ records whether there was
if new [Z a[q'] -,
alg’] <« a[q'] U new achang)
change < true
CHELLG) Ehamers Correct and always faster than
return a . :
Kleene iteration

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 95 /286

(Forward) MFP Computation by Worklist Iteration

wl «— nil

foreach ¢ % q
wl < cons((q,op,q), wl)
foreach ge Q
alqg] <« L
algin] < @
while wl #nil
(9,0p,q") — head (wl)
wl <« tail (wl)
new — f.(alq])
if new £ a[q]
alg’] < alg]l U new
foreach q¢ = q”’

wl < cons((q’,op’,q"), wl)
return a

v

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 96 / 286

(Forward) MFP Computation by Worklist Iteration

Vs Round-Robin
© Less computations

wl «— nil

foreach ¢ % q

wl < cons((q,op,q), wl)
foreach ge Q

alqg] <« L
algin] < @
while wl #nil

(9,0p,q") — head (wl)

wl <« tail (wl)

new — f(ald])

if new £ a[q]
alg] < alg] U new

® Overhead

foreach q¢ = q”’
wl < cons((q’,op’,q"), wl)
return a

v

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 96 / 286

Optimization of MFP Computation with SCCs

@ Decompose control flow automaton into strongly connected
components

@ Transitions between SCCs induce a partial order between SCCs

© Compute the MFP solution component after component, following
the partial order between SCCs

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 97 / 286

Optimization of MFP Computation with SCCs

@ Decompose control flow automaton into strongly connected
components

@ Transitions between SCCs induce a partial order between SCCs

© Compute the MFP solution component after component, following
the partial order between SCCs

This optimization often pays off in practice

Further optimizations are possible. ..

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 97 / 286

Loss of Precision with the MFP Solution

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
a1 T T T
®| L 1 T
| L 1 T
Q4 L uE L
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

b4 % zZ
g1 T T T
Qo 1 T T
s . 1 1
qa € €L il
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

b4 % zZ
g1 T T T
Qo 1 T T
s . 1 1
qa € €L il
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
qa € €L il
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs € €L il
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs 1 2 T
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs 1 2 T
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
iUz 201 T
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs T T T
as L 1 L

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs T T T
gs T T T

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
g1 T T T
Qo 1 T T
as 2 T T
Qs T T T
gs T T T

At gs, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Loss of Precision with the MFP Solution

X y z
a1 T T T
Qo 1 T T
as 2 T T
Q4 T T T
gs T T T

Loss of Precision

Cause: application of | | at g4 to
At gs, we have z = 3 | merge data flow information

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 98 /286

Alternative Approach for Better Precision

Control Paths from g; to gs

At g5, we have z = 3 J

Software Verification Data Flow Analysis VTSA'08 99 /286

Alternative Approach for Better Precision

Control Paths from g; to gs

At g5, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 99 /286

Alternative Approach for Better Precision

Control Paths from g; to gs

At g5, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 99 /286

Alternative Approach for Better Precision

Control Paths from g; to gs

At g5, we have z = 3 J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 99 /286

Meet Over All Paths (MOP) Solution

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

Forward Meet Over All Paths Solution
MOP = Aq. || {fin, 00 fony(2)

QInﬂCﬁ“'qkﬂ’Q}

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 100/ 286

Meet Over All Paths (MOP) Solution

Consider a data flow instance ((L,C), F, Q, Qin, Qout, X, —, f,1).

Forward Meet Over All Paths Solution

Not Computable in General

MOP(q) = 1 is undecidable for
constant propagation

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 100/ 286

MOP = MFP in Distributive Frameworks

A monotone framework ((L, C), F) is distributive if every f € F is
completely additive:

FLUX) = L {f(8)]de X} (for all X C L)

For any data flow instance over a distributive monotone framework,

MOP = MFP
MOP = MFP

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 101 /286

MOP = MFP in Distributive Frameworks

A monotone framework ((L, C), F) is distributive if every f € F is
completely additive:

FLUX) = L {f(8)]de X} (for all X C L)

For any data flow instance over a distributive monotone framework,

MOP = MFP
MOP = MFP

In a distributive framework, applying | | “early” does not lose precision:
fops (fopz(d’) U fops(w)) = fops 0 fop, (@) U fops © fop, ()

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 101 /286

Examples of Distributive Monotone Frameworks

Gen/Kill Monotone Frameworks

@ Complete lattice (L, C) of data flow facts:

L = P(S) for some set S Cis Cor2

@ Set F of monotonic transfer functions:

F = {Xo.genU (o \ Kill) | gen, kill € L}

All gen/kill monotone frameworks are distributive

@ Live Variables @ Uninitialized Variables

@ Available Expressions ° ...

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 102 /286

Sign Analysis: Monotone Framework

Control Flow Automaton: (Q, gin, Qout, X, —)

(Simplified) Sign Lattice for a Single Variable: (Sign,C)

| ¢ | Meaning |

-

_/l\+ j {re[RHrr<0}

\‘/ J(; {reﬂ?{é;>0}
i 1L

Monotone Framework

@ Complete lattice (L, C) of data flow facts: (x — Sign, C)
@ Set F defined as the set of all monotonic transfer functions on L.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 103 /286

Sign Analysis: Data Flow Instance

Control Flow Automaton: (Q, gin, Qout, X, —)

Monotone Framework
@ Complete lattice (L, C) of data flow facts: (x — Sign, C)
@ Set F defined as the set of all monotonic transfer functions on L.

Data Flow Instance
@ Initial data flow value: T

@ Transfer mapping:

_ o(y) ify#x _
fie(9) = ”'{H% fyx fo(0) = ¢
Forward analysis J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 104 / 286

Sign Analysis: Transfer Mapping

Need to define [e] for valuations v in x — {—,0,+, L, T}

Expressions: [e],

[c]v = sign(c) [ce<Q]

[xlv = v(x) [xex]
[er+ex]v = [er]v & [ez]v
[ei1-e]v = [edlveleav
[er xe]v = [ei]v®[e2]v
— ife<0
sign(c) =<0 ifc=0
+ ife>0

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 105 /286

Sign Analysis: Transfer Mapping

Need to define [e] for valuations v in x — {—,0,+, L, T}

Expressions: [e], “Abstract” Addition

[e]v = sign(c) [ce<Q] [oTL]-JO]+]T]
IxXly = v(x) [x € X] L] Lf{LfL]L
lei+e]y = [ev @ ey — L= TT
les - : oflL[-Jo[+]T
1-e]y = [edveledv Tl Tl+1+1T
[er xe]v = [ei]v®[e2]v TINL(T|TIT|T
- fe<0 Tables al ired for:
sign(c)= 0 ifc=0 ables also required for:

. @ “abstract” subtraction

+ ife>0 o

@ “abstract” multiplication

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 105 /286

Sign Analysis: Transfer Mapping

Need to define [e] fc -aluations vinx — {—,0,+, L, T}

Exprossons 10 QTN i

[cly = sign(c) [ce Cs
[xXly = v(x) [xex]
[e1+e]y = [e]v @ [e2]v
[e1-e]y = [elvolezlv
[e1+ ey = [edv@fe]y |
— ife<0
sign(c) =420 ifc=0 Tables also required for:
+ ife>0 @ “abstract” subtraction

@ “abstract” multiplication

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 105 /286

Sign Analysis: Transfer Mapping

Need to define [e] f aluations vin X — {—,0,+, L, T}

T © /1,
[ely = sign(c) [cet G[ab—'_-

[[Xﬂ v
- ”/-,.
Does this data flow instance @Ofp
really perform sign analysis? J
Is the analysis correct?
Is it precise? .
.uultiplication

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 105 /286

What About Correctness of Data Flow Analyses?

Desired
Analysis

Framework

Transfer

<Q7 Qin, Qout,
X, =)

Program

Solution

MFP
MOP

Grégoire Sutre

Software Verification

Data Flow Analysis

VTSA'08

106/ 286

What About Correctness of Data Flow Analyses?

Desired
Analysis

<07 ql'n7X7_)> Sl

Semantics

Framework

Transfer

<Q7 Qin, Qout,
X, =)

Program

Solution

MFP
MOP

Grégoire Sutre

Software Verification

Data Flow Analysis

VTSA'08

106/ 286

What About Correctness of Data Flow Analyses?

Desired
Analysis

Framework

Solution
N MFP
Transfer > MOP
<Q7 ql'na qouta
<quinvxv_)> i I Xa_)>
Semantics Program

soundly approximates

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 106 / 286

What About Correctness of Data Flow Analyses?

Framework |

R \\6(\3‘\\!5\6
’ ' \0(Ga‘o Solution
(00 w - o MFP
s © MOP
\ 00((60\(\ (Q, Gin, Gour,
ain> X, =) |< """ X, =)
Semantics Program

soundly approximates

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 106 / 286

How to Systematically Ensure Correctness?

Data flow facts have an intended meaning.

The transfer mapping is designed according to this intended meaning.

We need a formal link to relate data flow facts and transfer functions
with the formal semantics. J

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 107 / 286

How to Systematically Ensure Correctness?

Data flow facts have an intended meaning.

The transfer mapping is designed according to this intended meaning.

We need a formal link to relate data flow facts and transfer functions
with the formal semantics. J

Solution: Abstract Interpretation

« This paper is devoted to the systematic and correct design of
program analysis frameworks with respect to a formal semantics. »

P. Cousot & R. Cousot. Systematic Design of Program Analysis Frameworks.
Sixth Annual Symposium on Principles of Programming Languages, 1979.

Grégoire Sutre Software Verification Data Flow Analysis VTSA'08 107 / 286

