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Introduction

Natural questions

e Can | reach Pontivy from Oxford?

What is the minimal time to reach
Pontivy from Oxford?

What is the minimal fuel consumption to
reach Pontivy from Oxford?

What if there is an unexpected event?

o Can | use my computer all the way?
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Introduction

A first model of the system

O o]
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Introduction

Can | reach Pontivy from Oxford?

Dover

o]

&=

This is a reachability question in a finite graph: Yes, | can!

5/45



second model of the system

10<x<12

14<x<15
x:=0

27<x<30

xi=

Introduction

12<x<15
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Introduction

How long will that take?

()

It is a reachability (and optimization) question
in a timed automaton: at least 350mn = 5h50mn!
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Introduction

An example of a timed automaton

7_<y§7'5

repairing

repair

problem, x:=0
2<yAx<56

y:=0

failsafe
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

23 problem

safe —> safe —— > alarm
X 0 23 0
Yy 0 23 23
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

23 problem 15.6
safe —> safe —— > alarm —— alarm
X 0 23 0 15.6
Yy 0 23 23 38.6
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

safe ﬁ) safe m—) alarm i) alarm ’dimi_) failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
failsafe
15.6
0
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

23 problem 15.6 delayed )
safe —> safe —— > alarm —— alarm ————— failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0

failsafe ‘2—3—> failsafe
15.6 17.9
0 2.3
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

safe ﬁ) safe proen alarm i) alarm feteved failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
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An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

23 problem 15.6 delayed )
safe —> safe —— alarm —— alarm failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
. 2.3 . repair . 22.1 .
failsafe ~—— failsafe ———> repairing ——> repairing
15.6 17.9 17.9 40
0 2.3 0 22.1
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Introduction

An example of a timed automaton

7_<y§7'5

repairing

repair

2<yAx<56

problem, x:=0

23 problem 15.6 delayed )
safe —> safe —— > alarm —— alarm ——— failsafe
X 0 23 0 15.6 15.6
y 0 23 23 38.6 0
. 2.3 . repair L. 22.1 . done
failsafe ~——> failsafe ———> repairing — repairing — safe
15.6 17.9 17.9 40 40
0 2.3 0 22.1 22.1
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Introduction

Timed automata

Theorem [AD90,CY92]

The (time-optimal) reachability problem is decidable (and
PSPACE-complete) for timed automata.

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[CY92] Courcoubeti: and i delay problems in real-time systems (Formal Methods in System Design).
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Introduction

Timed automata

Theorem [AD90,CY92]

The (time-optimal) reachability problem is decidable (and
PSPACE-complete) for timed automata.

finite bisimulation

timed automaton large (but finite) automaton
(region automaton)

[AD90] Alur, Dill. Automata for modeling real-time systems (ICALP'90).
[CY92] Courcoubeti: and i delay problems in real-time systems (Formal Methods in System Design).

8/45



Introduction

The region abstraction
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Introduction

The region abstraction
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@ ‘“compatibility” between regions and constraints
@ ‘“compatibility” between regions and time elapsing

~» an equivalence of finite index
a time-abstract bisimulation

9/45



Introduction

The region abstraction
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Modelling and optimizing resources in timed systems
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2. Modelling and optimizing resources in timed systems
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information
energy consumption,

e memory usage,

e price to pay,
o
]

bandwidth,

~> timed automata are not powerful enough!
@ A possible solution: use hybrid automata

The thermostat example

T<19

On
T=2.25-0.5T

(T<22)
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Modelling and optimizing resources in timed systems

Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption,
memory usage,

price to pay,
bandwidth,

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

[HKPV05] Henzinger, Kopke, Puri, Varaiya. What's decidable wbout hybrid automata? (SToC'95).
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Modelling resources in timed systems

@ System resources might be relevant and even crucial information

@ energy consumption,
memory usage,

price to pay,
bandwidth,

~ timed automata are not powerful enough!

@ A possible solution: use hybrid automata

Theorem [HKPV95]
The reachability problem is undecidable in hybrid automata. J

@ An alternative: weighted/priced timed automata [ALPO1,BFH+01]
~ hybrid variables do not constrain the system
hybrid variables are observer variables

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Modelling and optimizing resources in timed systems

A third model of the system

9<x<15
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Modelling and optimizing resources in timed systems

How much fuel will | use?

9<x<15

7
‘

It is a quantitative (optimization) problem
in a priced timed automaton: at least 68 anti-planet units!
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Modelling and optimizing resources in timed systems

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
20,

+5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0

+5

6o o S on o 2L 5 O
x 0 13 13 1.3 2
y 0 1.3

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
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6o o S on o 2L 5 O

X 0 13 1.3 1.3 2
y 0 1.3 0 0 0.7
cost :

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0

+5

6o o S on o 2L 5 O

X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
20,
+5
6o o S on o 2L 5 O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Modelling and optimizing resources in timed systems

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
~©
+5
6o o S on o 2L 5 O
X 0 1.3 1.3 1.3 2
y 0 1.3 0 0 0.7
cost : 6.5 + 0 + 0 + 0.7 + 7 = 142

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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20,
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Question: what is the optimal cost for reaching @?
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
20,

+5

Question: what is the optimal cost for reaching @?

min (5t +10(2—t)+1,5t+(2—t)+7)

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
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Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
20,

+5

Question: what is the optimal cost for reaching @?

0§|r:1;2 min (5t +102—¢t)+1, 5t+(2—t)+7)=9

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Modelling and optimizing resources in timed systems

Weighted /priced timed automata [ALPO1,BFH-+01]

x<2,c,y:=0
20,

+5

Question: what is the optimal cost for reaching @?

0§|r:1;2 min (5t +102—¢t)+1, 5t+(2—t)+7)=9

~» strategy: leave immediately fg, go to ¢3, and wait there 2 t.u.

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01).
[BFH-+01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaandrager. Minimum-cost reachability in priced timed automata (HSCC'01).
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Modelling and optimizing resources in timed systems

The region abstraction is not fine enough
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Modelling and optimizing resources in timed systems

The corner-point abstraction
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Modelling and optimizing resources in timed systems

The corner-point abstraction

£

We can somehow discretize the behaviours... }
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From timed to discrete behaviours

Optimal reachability as a linear programming problem J

17/45



Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem J

t1 t t3 ty ts

17/45



Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem J
ty ta t3 ty ts t+1<2
[} [} [} [} [} [e]
x<2
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From timed to discrete behaviours

Optimal reachability as a linear programming problem J
ty 2] t3 ty ts ti+t<2

[} [} [} [} [} [e]
y:=0  x<2 y=>5 try+t3+13>5
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Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem J
ty ta t3 ty ts t+1<2
o o o o o o .-
y:=0  x<2 y=>5 try+t3+13>5
Lemma

Let Z be a bounded zone and f be a function
n
f: (tl, ey tn) — Z citi+c
i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
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Modelling and optimizing resources in timed systems

From timed to discrete behaviours

Optimal reachability as a linear programming problem J
ty ta t3 ty ts t+1<2
o o o o o o .-
y:=0  x<2 y=>5 try+t3+13>5
Lemma

Let Z be a bounded zone and f be a function
n
f: (tl, ey tn) — Z citi+c
i=1

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7 in A, there exists a path I in A, such that
cost(M) < cost ()

[ is a “corner-point projection” of =]
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Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, ,
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Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N — 7o <€

For every nn > 0, there exists € > 0 s.t.

IN — 7 ||oo < € = |cost(N) — cost(m:)| <7

18/45



Modelling and optimizing resources in timed systems

Optimal-cost reachability

Theorem [ALP01,BFH+01,BBBR07]

The optimal-cost reachability problem is decidable (and
PSPACE-complete) in (priced) timed automata.

[ALPO1] Alur, La Torre, Pappas. Optimal paths in weighted timed automata (HSCC'01)
[BFH-01] Behrmann, Fehnker, Hune, Larsen, Pettersson, Romijn, Vaand i ost reachability in priced timed automata (HSCC'01).
[BBBRO7] Bouyer, Brihaye, Bruyere, Raskin. On the optimal reachability problem (Formal Methods in System Design).
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Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

att?,x:=0

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
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Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

att?,x:=0
x=D
(x<D) C=p
c=pP R=¢

R=G

xi=0 a7

att!

z>S . z:=0

~» compute optimal infinite schedules that minimize

mean-cost(7) = lim sup

cost(7p)

n—+too reward(m,)

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
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Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

? e
att?,x:=0 D att!
. z>S ' z:=0
(x<D) C=p m
c=p R=g

R=G

xi=0 a7

~» compute optimal infinite schedules that minimize

t
mean-cost(7) = lim sup _cost(ma)
n—+too reward(m,)

A LY i

M, HF—k—kik—' A M, HA—Ak—Ak—A

AR VIR

M, H T M, HiF—— | | |

o L LT o L T T

ONORORO) ONORORO)

. .

Time 43516 Time 43516

Schedule with ratio ~1.455 Schedule with ratio ~1.478

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
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Modelling and optimizing resources in timed systems

Going further 1: mean-cost optimization

? e
att?,x:=0 D att!
. z>S ' z:=0
(x<D) C=p m
c=pP R=¢

R=G

xi=0 a7

~» compute optimal infinite schedules that minimize

t
mean-cost(7) = lim sup _cost(ma)
n—+too reward(m,)

Theorem [BBLOS]

The mean-cost optimization problem is decidable (and
PSPACE-complete) for priced timed automata.

~> the corner-point abstraction can be used

[BBLO8] Bouyer, Brinksma, Larsen. Optimal infinite scheduling for multi-priced timed automata (Formal Methods in System Designs).
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Modelling and optimizing resources in timed systems

From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
n
i—1 Citi
f - (t-17.__7 tn) — M
S ritir

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.
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From timed to discrete behaviours

o Finite behaviours: based on the following property

Lemma
Let Z be a bounded zone and f be a function
" citi+c
F it tr) oo G0 EE
Shqriti+r

well-defined on Z. Then infzf is obtained on the border of Z with integer coordinates.

~ for every finite path 7w in A, there exists a path [T in A, s.t.
mean-cost(I) < mean-cost(7)
o Infinite behaviours: decompose each sufficiently long projection
into cycles:

The (acyclic) linear part will be negligible!

~ the optimal cycle of A, is better than any infinite path of Al
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From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, ,
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Modelling and optimizing resources in timed systems

From discrete to timed behaviours

Approximation of abstract paths:

For any path I of A, , for any € > 0, there exists a path 7. of A s.t.

N =7 lee <€

For every n > 0, there exists € > 0 s.t.

[IM = 7.]|oo < & = |mean-cost(M) — mean-cost(7.)| < n

22/45



Modelling and optimizing resources in timed systems

Going further 2: concavely-priced cost functions

~» A general abstract framework for quantitative timed systems

Theorem [JTO08]

Optimal cost in concavely-priced timed automata is computable, if we
restrict to quasi-concave price functions. For the following cost functions,
the (decision) problem is even PSPACE-complete:

@ optimal-time and optimal-cost reachability;
@ optimal discrete discounted cost;
@ optimal average-time and average-cost;

@ optimal mean-cost.

v

~ a slight extension of corner-point abstraction can be used

[JT08] Judzinski, Trivedi. Concavely-priced timed automata (FORMATS'08).
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Modelling and optimizing resources in timed systems

Going further 3: discounted-time cost optimization

Globally, (z<8)

x=3,x:=0 (x<3) x=3
(x=3) deg deg
2 (Med)+5 +9
att
2 z>2,x,2:=0 ™ z>2,z:=0

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).
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Going further 3: discounted-time cost optimization

Globally, (z<8)
x=3,x:=0 x=3
(x<3

+9

z2>2,X,2:= z>2,z:=0

~» compute optimal infinite schedules that minimize
T, Th+1 - ani
discounted-cost (7 Z Al / Acost(£,) dt+)\ """ cost(€, = lny1)
n>0 -

71,41 T2,

if m= (Zo,Vo) — (ﬁl,vl) i) .-+ and Tn = ZignT"
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Going further 3: discounted-time cost optimization

Globally, (z<8)

x=3,x:=0

(x<3) x=3
(x<3) deg deg
2 (Med }+5 +9
att
2 z>2,x,2:=0 ™ z>2,z:=0

~» compute optimal infinite schedules that minimize
discounted cost over time

I I I
I I AN
Vo if A = e !, the discounted cost of
| L that infinite schedule is ~ 2.16
I i I
| R
1 1 1 1
0 3 67 9

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).
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Going further 3: discounted-time cost optimization

Globally, (z<8)

x=3,x:=0

(x<3) x=3
(x=3) deg deg
2 +5 +9
att
*2 z>2,x,2:=0 ™ z>2,z:=0

~» compute optimal infinite schedules that minimize
discounted cost over time

Theorem [FLO8]

The optimal discounted cost is computable in EXPTIME in priced timed
automata.

~ the corner-point abstraction can be used

[FLO8] Fahrenberg, Larsen. Discount-optimal infinite runs in priced timed automata (INFINITY'08).
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Modelling and optimizing resources in timed systems

A fourth model of the system
What if there is an unexpected event?

3 3

10<x<12

14<x<15
x:=0

12<x<15

9<x<15
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A fourth model of the system
What if there is an unexpected event?

3
10<x<12 12<x<15

14<x<15
x:=0

.

~» modelled as timed games
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Modelling and optimizing resources in timed systems

A simple example of timed game

x<2,c,y:=0
~®
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A simple example of timed game

x<2,c,y:=0 -
< 41 !
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Modelling and optimizing resources in timed systems

Another example

x<1,x:=0
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Modelling and optimizing resources in timed systems

Decidability of timed games

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

[AMPS98] Asarin, Maler, Pnueli, Sifakis. Controller synthesis for timed automata (SSC'98).
[HK99] Henzinger, Kopke. Discrete-time control for rectangular hybrid automata (Theoretical Computer Science).
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Modelling and optimizing resources in timed systems

Decidability of timed games

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

~ classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

[AM99] Asarin, Maler. As soon as possible: time optimal control for timed automata (HSCC'99).
[BHPRO7] Brihaye, Henzinger, Prabhu, Raskin. Minimum-time reachability in timed games (ICALP'07).
[JTO7] Jurdzinnski, Trivedi. Reachability-time games on timed automata (ICALP'07).
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Modelling and optimizing resources in timed systems

Decidability of timed games

Theorem [AMPS98,HK99]

Safety and reachability control in timed automata are decidable and
EXPTIME-complete.

(the attractor is computable...)

~ classical regions are sufficient for solving such problems

Theorem [AM99,BHPR07,JT07]

Optimal-time reachability timed games are decidable and
EXPTIME-complete.

~ let's play with Uppaal Tiga! [BCD-+07]

[BCD--07] Behrmann, Cougnard, David, Fleury, Larsen, Lime. Uppaal-Tiga: Time for playing games! (CAV'07).
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Modelling and optimizing resources in timed systems

Back to the simple example

v o
x<2,c,y:=0 .7
~® @
=0 N S
(r=0) "~
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Question: what is the optimal cost we can ensure while reaching @?

. 1
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Modelling and optimizing resources in timed systems

Back to the simple example

Question: what is the optimal cost we can ensure while reaching @?

. 1
05”222 max ( 5t +10(2 —t)+ 1, 5t+(27t)+7)—14+§

~ strategy: wait in g, and when t = %, go to 0y

29/45



Modelling and optimizing resources in timed systems

Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...
e.g. [LMMO02,ABMO04,BCFLO4]

[LMMO2] La Torre, Mukhopadhyay, Murano. Optimal-reachability and control for acyclic weighted timed automata (TCS@02).
[ABMO4] Alur, Bernardsky, Madhusudan. Optimal reachability in weighted timed games (ICALP'04).
[BCFLO4] Bouyer, Cassez, Fleury, Larsen. Optimal strategies in priced timed game automata (FSTTCS'04).
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Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...
e.g. [LMMO02,ABMO04,BCFLO4]

Theorem [BBR05,BBMO06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more.

[BBRO5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).
[BBMOG6] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
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Optimal reachability in priced timed games

This topic has been fairly hot these last couple of years...
e.g. [LMMO02,ABMO04,BCFLO4]

Theorem [BBR05,BBMO06]

Optimal timed games are undecidable, as soon as automata have three
clocks or more. )
Theorem [BLMRO6]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

[BBRO5] Brihaye, Bruyére, Raskin. On optimal timed strategies (FORMATS'05).
[BBMO06] Bouyer, Brihaye, Markey. Improved undecidability results on weighted timed automata (Information Processing Letters).
[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).
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Modelling and optimizing resources in timed systems

The positive side

Theorem [BLMRO6]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

@ Key: resetting the clock somehow resets the history...

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).
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The positive side

Theorem [BLMRO06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

@ Key: resetting the clock somehow resets the history...

@ Memoryless strategies can be non-optimal...

@ However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).
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Modelling and optimizing resources in timed systems

The positive side

Theorem [BLMRO06]

Turn-based optimal timed games are decidable in 3EXPTIME when
automata have a single clock. They are PTIME-hard.

@ Key: resetting the clock somehow resets the history...

@ Memoryless strategies can be non-optimal...

+2 1
X
(XS]-) U __________ *©
~
x<1l™
0 s x>0

@ However, by unfolding and removing one by one the locations,we
can synthesize memoryless almost-optimal winning strategies.

@ Rather involved proof of correctness for a simple algorithm.

[BLMRO6] Bouyer, Larsen, Markey, Rasmussen. Almost-optimal strategies in one-clock priced timed automata (FSTTCS'06).
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Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )
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The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J
Add™ (x) Add™ (x)
y=L1y:=0 y=L1,y:=0 y=1,y:=0 y=1,y:=0
z:=0 Q x=1,x:=0 Q z=1,z2:=0 z:=0 Q x=1,x:=0 Q z=1,z:=
|9 |9 \9 \9
.0 I ool O
The cost is increased by xy The cost is increased by 1—xg
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The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

720 ee— — —
L0, = Add"(x) ———> Add"(x) ———> Add~(y) —2>©

S~

"~ 220 o — r—
’ — A () ——— Add () ——— Ada") ——(0)
° In@, cost = 2x9 + (1 — y0) +2

In © cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
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The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

JE S — [ — —
» 0 f j— Add ™" (x) =—> Add"(x) — Add™ (y) _2>©

S~

. T —
<0 e Add ™ (x) - Add™ (x) —— Add" () —1>©

-

° In@, cost =2xp + (1 — yo) +2
In © cost =2(1 —xp) +yo +1

o if yp < 2xp, player 2 chooses the first branch: cost > 3
if yo > 2xp, player 2 chooses the second branch: cost > 3

32/45



Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. )

z=0 - . -,
L0, = Add"(x) ———> Add"(x) ———> Add~(y) —2>©
.- - - E - . +

S~

. o -
<o = Add™ (x) —— Add™ (x) ——— Add () —1>©

-

° In@, cost =2xp + (1 — yo) +2
In © cost =2(1—xp) +y +1
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Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Given two clocks x and y, we can check whether y = 2x. J

=0 - . "
L0, Add*(x) ——— Add"(x) ———> Add"(y) _2>©
,' - b N E - - +

S~

~. 2=0
<0 e Add ™ (x) - Add™ (x) —— Add" () —1>©

-

° In@, cost = 2xg + (1 — yo) + 2
In © cost =2(1—xp) +y +1
o if yp < 2xp, player 2 chooses the first branch: cost > 3

if yo > 2xp, player 2 chooses the second branch: cost > 3
if yo = 2xp, in both branches, cost =3

o Player 1 has a winning strategy with cost < 3 iff yp = 2x

32/45



Modelling and optimizing resources in timed systems

The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the values of

two clocks:
1 1

- E 3¢
when entering the corresponding module.

X
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Modelling and optimizing resources in timed systems
The negative side: why is that hard?

Player 1 will simulate a two-counter machine:
@ each instruction is encoded as a module;

@ the values ¢; and ¢, of the counters are encoded by the values of
two clocks:

1 q 1
X = E an y = 3T2
when entering the corresponding module.

The two-counter machine has an halting computation iff player 1 has a
winning strategy to ensure a cost no more than 3.

Globally, (x<1,y<1,u<1)
x=1,x:=0 x=1,x:=0
V y=1,y:=0 V y=1,y:=0 Test, (x=2z)

A
u:=0 Q z:=0 Q
\J

u=1,u:=0 I

(u=0)
O
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Managing resources

Outline

3. Managing resources
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A fifth model of the system

14<x<15
x:=0

27<x<30

-2

xi=

Managing resources
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Managing resources

Can | work with my computer all the way?

+5

(Oxford)
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Managing resources

Can | work with my computer all the way?

Energy is not only consumed, but can be regained.
~ the aim is to continuously satisfy some energy constraints.

battery
charge

40

20
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N W s
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An example of resource management
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An example of resource management
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-3 +6 —6
Lo @ £>
%:O x=1
4
3
2
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An example of resource management
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Managing resources

An example of resource management
Globally (x<1)

@ Lower-weak-upper-bound problem: can we “weakly” stay within
bounds?
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An example of resource management

Globally (x<1)

-3 +6 —6
Lo (Zz) Lo
%:—O x=1

4

3

2

1

0 0 1

@ Lower—bound problem ~» L
@ Lower-upper-bound problem ~» L+U
o Lower-weak-upper-bound problem ~ L+W
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Only partial results so far [BFLMS08]

Managing resources

0 clock! exist. problem univ. problem games

€ UP N co-UP
L e PTIME € PTIME PTIME.hard
€ NP N co-NP

L+W
+ € PTIME € PTIME PTIME-hard
L+U € PRIRAdE € PTIME EXPTIME-c.

NP-hard

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Managing resources

Only partial results so far [BFLMS08]

n clocks | exist. problem univ. problem games
L
L+W
L+U undecidable

[BFLMS08] Bouyer, Fahrenberg, Larsen, Markey, Srba. Infinite runs in weighted timed automata with energy constraints (FORMATS'08).
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Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?
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Relation with mean-payoff games

Definition
Mean-payoff games: in a weighted game graph, does there exists a
strategy s.t. the mean-cost of any play is nonnegative?

Lemma
L-games and L+W-games are determined, and memoryless strategies are
sufficient to win. )

@ from mean-payoff games to L-games or L+W-games: play in the
same game graph G with initial credit —M > 0 (where M is the sum
of negative costs in G).

e from L-games to mean-payoff games: transform the game as follows:

P ~ O P — 0 O
- - To

to initial state

38/45
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Theorem
The single-clock L+ U-games are undecidable. J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5-—
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Theorem J

The single-clock L+U-games are undecidable.

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1
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when entering the corresponding module.

e=5—

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.
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Single-clock L+U-games

Theorem
The single-clock L+U-games are undecidable. J

We encode the behaviour of a two-counter machine:
@ each instruction is encoded as a module;
@ the values ¢; and ¢, of the counters are encoded by the energy level
1

2¢ . 3@

when entering the corresponding module.

e=5—

There is an infinite execution in the two-counter machine iff there is a
strategy in the single-clock timed game under which the energy level
remains between 0 and 5.

~>  We present a generic construction
for incrementing/decrementing the counters.
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Generic module for incrementing/decrementing

L, 5 —6 +30 +30 o
() {m) (m2) (ms) )—=
Y \ J ¢ J |G ) —J

1
y x:=0 :
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Generic module for incrementing/decrementing

-6 —6 +30 +30 —a
= —()—(— ) ——=

O (UL = (S —J

; x:=0 | x:=0

Y
+5 -5

x=1 x=1

_module ok _module ok |

energy

5—e
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Generic module for incrementing/decrementing

—6 +30

—6 +30 —«
-0 =1
z (=) () ™) () )
: x:=0 : x:=0
Y
+5 -5
x=1 x=1
_module ok _module ok |
energy

5—e

a=3: increment ¢

°

@ o=2: increment ¢
@ o=12: decrement ¢
°

a=18: decrement o,

Managing resources
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Outline

4. Conclusion
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Conclusion

Some applications

Tools
o Uppaal (timed automata)
@ Uppaal Cora (priced timed automata)
e Uppaal Tiga (timed games)

Case studies
@ A lacquer production scheduling problem [BBHMO05]
@ Task graph scheduling problems [AKMO03]
@ An oil pump control problem [CJL-+09]

[BBHMO5] Behrmann, Brinksma, Hendriks, Mader. Scheduling lacquer production by reachability analysis - A case study (IFAC'05).
[AKMO3] Abdeddaim, Kerbaa, Maler. Task graph scheduling using timed automata (IPDPS'03).
[CJL+09] Cassez, Jessen, Larsen, Raskin, Reynier. Automatic synthesis of robust and optimal controllers - An industrial case study (HSCC'09).
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Task graph scheduling problems

Compute Dx(Cx(A+B))+(A+B)+(CxD) using two processors:

‘L
AT
‘f‘\
o

py (fast): Py (slow): - -
time time c
i | 2 picoseconds aF | 5 picoseconds ‘
X | 3 picoseconds X | 7 picoseconds T .
3 4
. energy energy Dx
ide | 10 Watt ide | 20 Watts
in use | 90 Watts in use | 30 Watts Ts Te
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Modelling the task graph scheduling problem

@ Processors

(x<3)

Py x=2 x=3
done; done;

(x=2)  x=o x:=0
Ps: y=5 y=7

doney
addy

(y<5)  x=0

doney
multy

x:=0

O = @ = 0

(y<7)
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Modelling the task graph scheduling problem

° Processors
@ Tasks

done; done; Ta: t1 Aty

add; multy < > 4

add:

(x<2) (x<3) !

S , Ts: ts
. y= y= < >

P! add;
doney m doney
addy multy

(v<5) -0 x—0 (r<7)

done;

done;

O O
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Modelling the task graph scheduling problem

@ Processors
@ Tasks
Py x=2 x=3
: Ty —
done; done; t1 At ty:=1
O = @ =0 O~ 00
(x=2) x:=0 x:=0 (x<3) T ' '
5+ t3 ts:=1
)
. =5 =7
P Y v O—0—0
doney doney
(v<5)  x.—o x—0 (r<7)

@ Modelling energy

Py x=2 x=3
done;
add;
(x<2) x:=0 x:=0 (x<3)
y=5 y=7
donep
addy
(y<5) =0 x:=0 (v<7)

44/45



Conclusion

Modelling the task graph scheduling problem

@ Processors

P x=2 x=3
1
done; done;
(x=2)  x=o x=0 (x=3)
Ps: y=5 y=7
doney doney
(v<5)  x—0 x=0 (<7)
@ Modelling energy
P x=2 x=3
@ done;
add;
(3 A oo (x<3)
=5 =7
Py Y v
@ doney
addy
(y<5) x:=0 x:=0 (v<7)

@ Tasks

add; done;

)
N4
t: t5:=1
O—0=--0

done;

Ts:

@ Modelling uncertainty

. x>1 x>1
P S il N Y i
done; done;
%M
(x=2) x:=0 x:=0 (x<3)
. y=>3 y=2
P S il N Y i
donep donep
@Qg/\mmm/@
(x=2) x:=0 x:=0 (x<3)
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quantitative constraints on timed systems:
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e natural (optimization/management) questions have been posed...
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o models based on hybrid automata
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Conclusion

Conclusion

@ Priced/weighted timed automata, a model for representing
quantitative constraints on timed systems:

useful for modelling resources in timed systems
natural (optimization/management) questions have been posed...
. and not all of them have been answered!
mentioned here:
all works on model-checking issues (extensions of CTL, LTL)

models based on hybrid automata
o weighted o-minimal hybrid games [BBCO7]
o weighted strong reset hybrid games [BBJLRO7]

various tools have been developed:
Uppaal, Uppaal Cora, Uppaal Tiga

@ Current and further work:

further cost functions (e.g. exponential)

computation of approximate optimal values

further investigation of safe games + several cost variables?
discounted-time optimal games

link between discounted-time games and mean-cost games?
computation of equilibria
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