On Designing and Implementing

Satisfiability Modulo Theory (SMT) Solvers

Summer School 2009, Nancy
\ferification Technology, Systems and Applications

Leonardo de Moura
Microsoft Research

Linear Arithmetic

@ Many approaches
© Graph-based for difference logic: a—b <3
e Fourier-Motzkin elimination:
t <azx, bx <ty = bt; <aty
e Standard Simplex
e General Form Simplex

Microsoft

Research

Difference Logic: a—b<5

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.

Microsoft

Research

Job shop scheduling

d; ; | Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3
mar = 8
Solution

t1,1 = 5, tLQ = 7, fgjl = 2,
to2 =0, t31 =0, t32 =3

Encoding
(11 ZO0OA(t12>2ti1+2)A(E12+1<8) A
(t21 > 0) A (t22 > t21 +3) A(t22+1 < 8) A
(tg,l > U) N (53?2 > 131 + 2) N (53?2 + 3 < 8) N
(11 > to1+3)V(ta1 >t11+2)) A
(trn >ts1+2)V(ts1 >t11+2))
((t2g >tz 1 +2)V (31 >t21+3)) A
(tr12=>taa+ 1)V (taoa >tia+1)) A
(t12 > t304+3)V(tza>tia+1)) A
((tao >1t324+3)V (tza2 >taa+1))

Microsoft’

Research

Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

11,1
S
f N0
z — ti1n <0 -2 N
z — ta1 <O | 0 4
z — t31 < 0 21— 2
tgjg — Z < 5 T !
tz1 — 132 < —2 -3 0 ;
t2n — t3n1 < —3 9 ! /
11 — 121 < —2 1"53.,2— — —""t3,1 /
, , - 5

Microsoft

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c +d-e =-1
a,b,c,de=>0

Microsoft

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c+d-e =-1
a,b,c,de=>0
ra\
(100-12) bl [3°
010-10{|/c|=]1
\001 1-3 d \-1)
e

Az =b and z > 0.

Microsoft

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 < We say a,b,c are the
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,de=>0
ra\
(100-12)b| (3]
010-10||c|=|1
Q)O 1 1-} d \-1)
e
Ar =0b and = > 0. "B

Research

Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 - Wesaya,b,carethe
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,de=>0
- \’a“ \ We say d,e are the
100-12||b| |3 non-basic (or non-
010-10||cl|=]|1 dependent) variables.
Q) 011 -3 d \-1)
e
Ar =b and 2 > 0. iy

Research

Standard Simplex

° Incrementality: add/remove equations
e Slow backtracking

© No theory propagation

Microsoft

Research

Fast Linear Arithmetic

» Simplex General Form

= Algorithm based on the dual simplex
© Non redundant proofs

o Efficient backtracking

e Efficient theory propagation

@ Support for string inequalities: t >0
© Preprocessing step

° |nteger problems:
Gomory cuts, Branch & Bound, GCD test

Microsoft

Research

General Form

General Form: Az =0 and [; < 2; < u;

Example:

r>0(x+y<2Vae+4+2y>6),(r+y=2Var+22y>4)
AN

si=x+Y,8 =+ 2y,

220,08 <2V8;=06), (8 =2V 53>4)

Only bounds (e.g., s; < 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.

From Definitions to a Tableau

S;=X+Y, S,=X+2y

Microsoft

Research

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Microsoft

Research

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

S;-X-y =0
S, -X-2y=0

Microsoft

Research

From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-x-y =0 s, s, are basic (dependent)
s,-Xx-2y=0 Xy are non-basic

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

s, +x+y =0

S,-Xx-2y=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0
S,-x-2y=0

s, +x+y =0
S,-Xx-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research

Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

sp-x-y =0 It is just substituting

52'@\’:0 ~__ equalsbyequals.
s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0

Microsoft

Research

Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s, and y
s;-X-y =0
S,-X-2y=0

It is just substituting
equals by equals.

s, +x+y =0

3 Key Property:
2 2y | i If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

-sl+x+y =0
S,-25;+x=0

Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s17x-y =0 It is just substituting
>2° @y =0 equals by equals.
Example:
M(X):l \7'5 +X+y =0 K 5
M(y) =1 S, - X - 2y 0 ey Property:
Mg)) =2 ’ ; If an assignment satisfies the
|v|(51) =3 -0 equations before a pivoting
: _Sl FXTY = step, then it will also satisfy

S;-25;+x=0 them after!

Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.
Equations + Bounds can be used to derive new bounds.
Example: v =y — 2z, y <2, 2 >3 ~x < —1.

The new bound may be inconsistent with the already known

bounds.

Example: + < —1, = > 0.

“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent

variables.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 j> M(a) =1
M(b) =0 M(b) = 1
M(c) =0 M(c) = 1
M(d) =0 M(d)=0
l=<c 1<c

Microsoft

Research

“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables. Of course, we may introduce new “problems”.

a=c—d
b=c+d
M(a)=0
M(b)=0
M(c)=0
M(d) =0
1<c

a<o

—.

a=c—d
b=c+d
M(a) =1
M(b) =1
M(c) =1
M(d) =0
1<c

a<o

Microsoft

Research

“Repairing Models”

If the assignment of a basic variable does not satisfy a
bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a=c—d
b-c+d
M(a) =
M(b) =
Mky-
M(d) =
1<a

c=a+d
b-a+2d
M(a) =
M(b) = 0 o B
M(c)=0
M(d) =

1<a

c=a+d
b=a+2d
M(a) =
M(b) =
M(c) =
M(d) =
1<a

Microsoft

Research

“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to

pivot.
The value of M(a) is too big. We can
T=b—c reduce it by:

4<0.1<b c<0 - reducing M(b)

’ ’ not possible b is at lower bound
M(a) =1 - increasing M(c)
Mib)) =1 not possible c is at upper bound
M(c)=0

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,,5,<0,0<c}isinconsistent

Microsoft

Research

“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,,5,<0,0<c}isinconsistent

{a<0, 1<a+d, c+d<0, 0<c}lisinconsistent Mﬁ”é“;earch

Strict Inequalities

The method described only handles non-strict inequalities (e.g.,
r < 2).

For integer problems, strict inequalities can be converted into

non-strict inequalities. © < 1 ~» o < 0.

For rational/real problems, strict inequalities can be converted into

non-strict inequalities usingasmall 0. © < 1 ~» 2 <1 — 0.
We do not compute a 0, we treat it symbolically.

0 is an infinitesimal parameter: (¢, k) = ¢ 4+ kd

» Initial state

o O O O

S

u

v

Equations
— ;l°—|-y
= 2+ 2y

= @Y

Bounds

R IR R & 2

Uu

Equations
= z+y
r+ 2y

T— 1

), (v<-2Vu<-1)

Bounds

» Asserting s > | assignment does not satisfy new bound.

s=21lw2>0

(y<1lVev>2),v<=2Ve 20),(v<-=2Vu<=1)

Model Equations Bounds

= 0 § = &4 g > 4

()

() = 0 4 = 2124y
M(&} = 0) = E—1
(1)
(v)

» Asserting s > 1 pivot s and x (s is a dependent variable).

g2 1,220

(F€1Vo22),lvs 2V 20),(0 £ -2VauL—1)

Model Equations Bounds
M) = 8 3 = ¥ s > 1
M(y) = 0 u = z+2y

)
)
M(s) = 0 = B—7
)
)

» Asserting s > | pivot s and ' (s is a dependent variable).

g2 1w >4
(y<1lvev>2),(v<-2Vv>0),(v<L-2Vu<-1)

Model Equations Bounds

= 0 Xy = S — y S Z J_

(2)

(y) = 0 u = x+ 2y
M(s) = 0 vo= x—y
()
(v)

» Asserting s > 1 pivot s and (s is a dependent variable).

&2 L= 0

(y<1lVuv2>2),(v<-2Vv>0),vr<-2VvVu<-1)

Model Equations Bounds
M(z) = 0 r o= s—y g > 1

()

(y) = 0 it = &+7
M(s) = 0 v o= s—2y
(u)
(v)

» Asserting s > | update assignment.

52 Lag =D

(y<1lvwv>22),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations
M(z) = 0 r = §—1
M(y) = 0 U = S+Yy
M(s) = 1 v = §—2

M(u) = 0
(v) = 0

Bounds

s > 1

» Asserting s > | update dependent variables assignment.

g2 1w >0
(y<1lvoev>22),v<-2Vv>0),v< -2Vu<-1)

Model Equations Bounds
M(z) = r = Ss—1 g = 1
M(y) = U = B+

v = 8§—2

—

~
— — — P R, O

W ~
BT ol — ~— ~—
T = T =

Model Equations Bounds
M(z) = 1 r o= s—1 s > 1
My) = 0 u = s+vy
M(s) = 1 v = §— 24
Mu) = 1
M) =1

» Asserting » > () assignment satisfies new bound.

g21l.xg>20

WE1lvVe22),£-2V120),(v£-2vVu<—1)

Model Equations Bounds
() = 1 = 5=y 5 > 1
byl = 4 u = S+ r > 0

M(s) = 1 G
(u)
(v)

» Case split—y < 1

Model Equations Bounds
Mz) = 1 r = s—y s = 1
M(y) = 0 u = s+ 2 = 0
M(s) = 1 v = S— 24
Mu) = 1
Mwv) =1

» Case split —y < | assignment does not satisfies new bound.

§=Z21a2 20

(y<1lvov>2),(v<-2Vv2>20),v<-2vu<-1)

Model Equations
() = 1 r = Ss—u
(] = 0 u = s+

M(s) = 1 v = s—2y
(u)
(v)

Bounds

AVARN AV

Y

V

» Case split =y < | update assignment.

g1z >0

y<1lVv2>2),(v<-2Vy2>20),(v<-2Vu<-1)

Model Equations Bounds
Mz) = 1 r = s—y g > 1
M(y) = 144 4 = §+9 r > 0
Mgy = 1 v = §—2y i > 1
Miu) = 1
M@w) = 1

» Case split =y < | update dependent variables assignment.

g2 1lua >
(y<1vov>2),(v<-2Vv>0),v<-2Vu<-1)

Model Equations Bounds
Miz) = —0 F = §—=9 § 2 1
M(y) = 149 . = 8414 # = 0
M(s) = 1 v = §—~2 y > 1
M(u) = 2490
Mwv) = —1-26

» Bound violation

Model Equations Bounds
M(z) = —0 ¥ = 85— s > 1
M(y) = 1496 uw = s+uy g > 0
M(s) = 1 v = S—2 y > 1
Mu) = 249
Mv) = —-1-26

» Bound violation pivot 2 and s (2 is a dependent variables).

s>1.x2>0

(¥<1lVewz32),(vs —2Ve>20),(v<—=2Vu<—1)

Model Equations Bounds
M(z) = —0 r o= s§—y 8 2 1
My) = 144 u = s+y z > 0
M(s) = 1 v = §—2 b B
M(u) = 246
M(v) = —1-26

» Bound violation pivot 2 and s (is a dependent variables).

§Z2 1320

y<lve22),(v<-2vv>20),vL-2vu<-—1)

Equations

8~ 2

—1—2¢

Bounds
s = 1
g = 0
y > 1

~
=

—~

» Bound violation pivot and s (2 is a dependent variables).

s> 1.x2>0
(y<1lvVv2>22),v<-2Vv2>20),v<-2Vu<-1)

Bounds

Equations

Vv

1V

r+ 2y

V

» Bound violation update assignment.

g>Lzw>0

(y<1lvv>2),(v<-2Vrv20), (v -2Vu<-1)

Model Equations Bounds
M(z) = 0 5 = €Ty g 2 1
My) = 1+6 U = 42y £ > 0
M(s) = 1 v = T—9 - |
Mu) = 2490
Mv) = —1-26

» Bound violation update dependent variables assignment.

s=21.2 =10

Equations

x + 2y

<lVv>2),(v<-2Vv>0),v<-2Vu<-1)

Bounds

>

2

2+ 26
i

b

» Theory propagation > 0,y > 1 ~» u > 2

(y<1lvoev>2),(v<-2Vrv>0),v<-2Vu<-1)

Model Equations Bounds

IV
i

= 0 s = x+Y S

= 1490 i = -3 i ()

|V

V
p—a

— 2426

-~

(z)

(y)

M(s) = 149 v = T—Y y
(u)

(1) = —1-3

» Theory propagation u > 2 ~» —u < —1

(y<1Vuov >2),(v<=2Vy >0),(

Model

140
140
2+29
=] i

8. Lo >y

t

.l ‘1

Equations

T+Y
x4+ 2y

F— 1

o< —=2Vu<s—1)

Bounds
§ * 1
r > 0
y =& 1
U > 2

Equations

x+ 2y

Bounds

>

1V

vV V

N = D =

» Theory propagation v > 2 ~» —v < —2

s>21x>20

(Yy<ive>22),w<-2Ve>20),(v<L-2Vu<-—1)

Model Equations Bounds
M{z) = 0 5 = wty s > 1
My) = 1490 6 = %+ x > 0
M(s) = 1490 v = —Y y > 1
Mu) = 2+26 i > 2
Mwv) = —-1-9$6

» Conflict empty clause

(y<1Vwu22),(v<-2Ve20),(v<=

Model
M(z) = 0
M(y) = 149
M(s) = 1496
M(u) = 2420
M) = —-1-9¢

B2,

u

e >0

Equations
T+ 2y

T=—9Y

9

V u

< -1)
Bounds
s = 1
r = 0
iy > 1
U > 2

» Backtracking

s> 1.x>0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<-1)

u

Equations

TFY
i+ 2%
&Ti— ’y

» Assertingy < 1

(y<1Vv22),(v<-2Vv20), (< -2Vu< 1)

Model

—
~

(z)

(y) = 1+
M(s) = 1+6

(0} = 2496

(v)

-

- —1-96

g=>1a>10

Equations
=

— = y

» Asserting y < 1 assignment does not satisfy new bound.

g2>1.x2>0

(lj s 4L YVw > 2), (‘U < -2Vwv > 0) (1? < =2Vu< —1)

Model Equations Bounds

M(z) = 0 § = pLky 5 =2 1
M(y) = 149 U = B2 B 22 i)
= T—Yy y £ 1

()
(y)
M(s) = 140 v
(u)
(v)

» Asserting y < | update assignment.

gs2b ezl

(y<1vev>2),(v<-2Vv>0),(v<-2Vu<—1)

Model Equations Bounds

M(z) = 0 g8 = my s > 1
M(y) = | u = &£4+2y & = D
< 1

()
(y)
M(s) = 1+6 V= @ Y
(u)
(v)

» Asserting y < | update dependent variables assignment.

g > 1 g 2> 1)

(p<1IVy 22)(v< =2Ve>0)lv<—-2Vu < =1)

Model Equations Bounds
M) = 0 s = z4Yy g 2 1
My = 1 u = T+ 2 & = 0
M(s) = 1 v = T—Y 7 |
M(u) = 2
M(v) = -1

» Theory propagation s > 1.y <1 ~0v > —1

8§ 2 1.8 20

(y<1lvv>2),(v<-2VvVv2>20),vr<-2Vu< -1)

N = = O

Equations

s —q
S+

8 — 2y

Bounds
5 =]
x > 0
y < 1

» Theory propagation v > —1 ~» —v < —2

g > L@ 8

(y<lvv>22),(v<-2vVv2>20),v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 r = Ss—1y g2 1
M(y) = 1 U = S+ x>z 0
M(s) = 1 v = s§—2y (ol Y
M(u) = 2 v > —1
M(v) = -1

» Boolean propagation

(0 = 1= 2)(v € =2 % 20). (v =2Va s —1)

Model
M(z) = 0
My = 1
M(s) = 1
M(u) = 2

(v)

u

fl’

Equations

= B—1
= S+
= §—2y

Bounds
s > 1
z = 0
y s A
v 2> —1

» Bound violation assignment does not satisfy new bound.

g2 L5228

(y<1vwv2>22),v<-2vv>20),wv<-2Vu<-1)

Model Equations Bounds
M(z) = 0 x = S—4y s 2 1
M) = 1 u = s+vy xr > 0
M(s) = 1 v = §—2 I |
M(u) = 2 v > 0
Mv) = -1

» Bound violation pivot © and s (u is a dependent variable).

g2 Lw=l

(y<1lvoe22),(v<L-2Vv2>20),v< -2Vu<-—1)

Model Equations Bounds
M(x) = 0 r = S—1 § 2= 1
My) = 1 u = s+49 = 0
M(s) = 1 v = S$—2y T |
M(u) = 2 v > 0

» Bound violation pivot 1 and s (u is a dependent variable).

(y<1lvev2>22),w<-2vev2>0),v<-2vVvu<-1)

g2 Le38

u

Equations

8— 1
ST+ Y
v+ 2y

Bounds
s > 1
z > 0
y < 1
v =2 U

» Bound violation pivot 12 and s (u is a dependent variable).

s>1,2>0

(y<1lvVv>2),(v<-2VvVv>0),v<-2Vu<-—1)

Model Equations Bounds
M{z) = 0 ¥ = Py g 2 1
My = 1 U = v4+3y z = 0
M(s) = 1 8§ = U-+20 y < 1
M(u) = 2 v > 0
M(v) = -1

» Bound violation update assignment.

g = lig >l

(y<1lvVv>2),v<-2vev>0),v<-2Vu<-—1)

Model Equations Bounds
M(z) = 0 ¥ = vy s = 1
Mgy = 1 u = v+ 3y g = 0
Mis) = 1 s —: ¥+2y g = 1
M(u) = 2 v > 0

» Bound violation update dependent variables assignment.

s>1Le>0
(y<1lvev>2),(v<-2Vv2>20),(vr<-2Vu<-—1)

Model Equations Bounds
M(z) = 1 r = v+y 5 2 d
My = 1 u = v+ 3y r > 0
M(s) = 2 8 = v4+29 y < 1
M(u) = 3 v =2 1

o p— —_

o

Equations

v+ 3y
v+ 2y

Bounds
s =2 1
B = 0
y < 1
v > 0

» Bound violation assignment does not satisfy new bound.

sg>=1.2>210

(y<1vev>22),v<2Vv>20),v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r = wFy s > 1
My) = 1 u = v+3y z = 0
M(s) = 2 § = wtly y < 1
M(u) = 3 v = 10
Mw) = 0 U < —1

» Bound violation pivot 1 and vy (u is a dependent variable).

g Lo
(y<1lvv>22),vt<2ve>0),v<-2vVu<-1)

Model Equations Bounds
M(z) = 1 # = Py s > 1
M(y) = 1 u = v+ 3y z > 0
M(s) = 2 g = 9 +2Y y < 1
M(u) = 3 v > 0
M(v) = 0 u < =1

» Bound violation pivot u and y (u is a dependent variable).

s 21,220

(y<1lvVev>22),w<-2vVrv>0),v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 & = m¥y s > 1
My = 1 y = su—3v r > 0
M(s) = 2 5 = w42y y < |
M(u) = 3 v > 0
M(v) = 0 i = —1

» Bound violation pivot « and y (u is a dependent variable).

g >1.3 20

(y<1vu22),(v<-2Vv20),(0<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r o= zu+3v § = 1
My) = 1 y = %—u — %—l r > 0
M(s) = 2 s = 2u+3v y < 1
Mlu) = 3 v > 0
M(v) = 0 u < -1

» Bound violation

s e

update assignment.

g>1,2>0

Equations

(y<1vev>2),v<-2Ve>0),v<-2Vu<—1)

Bounds
g &= 1
r = 0
y < 1
v = 0
u < —1

» Bound violation

update dependent variables assignment.

g2 1320

(y<1lvvz2),(v 2V 20),(v<2Vu<—1)

| | I
— W W= W

S

Y

Equations

Bounds
g = 1
T > 0
g = 1
v =2 0
u < -1

» Bound violations

| | |
LleS Qo= Cof

ok

=

y<1ve22),(v<-2Vvv2>20),(v <

Equations
— & 24
= 3u,+31.
1, _
U

2

— §u~+ ()]

QO =t QO [t

‘I.-,

—2Vu< —1)

Y
v

U

Bounds

vV IA IV IV

IA

» Bound violations pivot s and v (s is a dependent variable).

g > 1.e>0

<1V >2),(v<-2Vv=>20),(v<-2vVu<-1)

Model Equations Bounds
M(z) = —3 r o= su+ v - B
M(y) = —3 y = su—3v g = 0
M(s) = —3% § = %u. + 30 T |
Mu) = -1 v > 0
Mu) = 0 u < =1

» Bound violations pivot s and v (s is a dependent variable).

(y<1Vov2>2),(v

| |
Colby Qo= Qo

(=

="

-~

=

> 1>

—2Vv2>20), (v -2Vu < -1)

u

Equations

— & 2,
= 3UT 3V
__ Ee
= 3s5s—2u

Bounds
8 2 1
rz > U
gy £ 1
v 2 1
u < -1

» Bound violations pivot s and v (s is a dependent variable).

212 >0

(y<1ve>2),v<—-2Ve>0),(v<—2Vu<-1)

Model Equations Bounds
M(z) = —% r = 25s—u 5= 1
M(y) = —% Y = —& U g =2 9
M(s) = —% v = 3s5—2u y < 1
Mu) = -1 v > 0
Mw) = 0 u < -1

» Bound violations update assignment.

s>1.2>0

(y<1ivw >2),(v< -2V >0),(v:

~

Model Equations
() T = 28—
() y = —s+u

M(s) = 1 v = 35— 2u
(u)

(v)

/‘

—2Vu<-—1)
Bounds
=2 1
F Z
gy < 1
v > 0
u < —1

» Bound violations update dependent variables assignment.

5213 >0

(y<1lvev>2),(v<-2vv>0),v<-2vVvu< -1)

Model Equations Bounds
M(z) = 3 r = 2s—u 8 = 1
My) = -2 Yy = —Ss+u 3 2= 1
M(s) = 1 v = 3s—2u y < 1
M(u) = -1 v > 0
M(v) = 5 w L =1

» Found satisfying assignment

Equations

28 — U
— S,
3s — 2u

Bounds

1V

1V

.’l,

u

IA

1
0
1
0

IV

IA

=g

Correctness

Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not
satisfy its bounds, then select the smallest non-basic in the
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of
configurations. Then, any infinite trace will have cycles.

Microsoft

Research

Data-structures

Array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)
Each variable x has a “set” (dynamic array) of occurrences:
(row_idx, pos_in_row, is_dead)
Each variable x has a “field” row[x]
row[x] is -1 if x is non basic
otherwise, row[x] contains the idx of the row containing x
Each variable x has “fields”: lower[x], upper[x], and value[x]

Microsoft

Research

Data-structures

rows: array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)

occs[x]: Each variable x has a “set” (dynamic array) of
occurrences:

(row_idx, pos_in_row, is_dead)
row[x]:

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x
Other “fields”: lower|[x], upper[x], and value[x]
atoms[x]: atoms (assigned/unassigned) that contains x

Microsoft

Research

Data-structures

5153+b,SZEC—b
p;=a=<0,p,=1<s;,p3=1=<s5,
p,, P, Wwere already assigned
a-S;+s,+cC= 0

b-c+s,=0

a<0,1<s,

M(a)=0 value[a] =0
M(b)=-1 wvalue[a] =-1
M(c)=0 value[c]=0
M(s;) =1 value[s;]=1
M(s,) =1 value[s,] =1

rows = [
[(11 da, OI t)r (_11 S1/ O) t)r (11 Sy, 11 t)r (1) C, O) t)])
[(1rbr O; t)l (_11 C, 1) t)l (1; 521 2; t)]]

occs[a] = [(0, O, f)]

occs[b] =[(1,0,)]

occs[c] = [(0,3,f), (1,1,f)]
occs[s,] = [(0,1,f)]

occs[s,] =[(0,0,t), (0,2,f), (1,2,f)]

row[a] =0, row[b] =1, row[c] =-1, ...
upper[a] =0, lower[s;] =1
atoms[a] = {p,}, atoms[s;] = {p,}, ...

Microsoft

Research

Combining Theories

In practice, we need a combination of theories.
b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
A theory is a set (potentially infinite) of first-order sentences.

Main questions:
Is the union of two theories T1 U T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for
T1UT2?

Microsoft

Research

Disjoint Theories

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0, -1, 1, -2, 2, ..., +, -, *, >, <, 2, <}
Array symbols: { read, write }

Microsoft

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), vy =c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

Microsoft

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), vy =c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

U

b+2=c,v,=3,v;=c-2, v. =c-b+1,
v, = write(a, b, v,), v, =read(v,, v;), S
Ve =f(v,), v, = f(Ve), v # v, Research

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Microsoft

Research

Important Result

The union of two consistent, disjoint, stably infinite
theories is consistent.

Microsoft

Research

Convexity

A theory T is convex iff
for all finite sets S of literals and
foralla,=b,v..va, =b,
Simpliesa, =b,v..va, =b,
iff
Simplies a,=b, forsome 1<i<n

Microsoft

Research

Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.
formulas of the form s, #r,v ... vs #r vit=t

Linear rational arithmetic is convex.

Microsoft

Research

Convexity: Negative Results

Linear integer arithmetic is not convex
1<a<2,b=1,c=2 impliesa=bva=c

Nonlinear arithmetic

a’=1,b=1,c=-1limpliesa=bva=c

Theory of bit-vectors

Theory of arrays
c, = read(write(a, i, ¢,), j), c; = read(a, j)
impliesc,=c,vc,=¢g

Microsoft

Research

Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a,<1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

Microsoft

Research

Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a,<1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

@ implies

a;Zz0va,#z1va;#0

Microsoft

Research

Nelson-Oppen Combination

Let 71 and 7 5 be consistent, stably infinite theories over disjoint
(countable) signhatures. Assume satisfiability of conjunction of
literals can decided in O(77(n)) and O(T5(n)) time respectively.
Then,

1. The combined theory 7 is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in 7 can be
decided in O(2"" x (Ty(n) + Ta(n)).

3. If 7, and 7 5 are convex, then so is 7 and satisfiability in 7 is
in O(n® x (T1(n) + Ta(n))).

Microsoft

Research

Nelson-Oppen Combination

The combination procedure:

Initial State: ¢ is a conjunction of literals over X1 U X.o.

Purification: Preserving satisfiability transform ¢ into ¢; A @9,
such that, ¢; € ;.

Interaction: Guess a partition of V(o) M V(¢9) into disjoint
subsets. Express it as conjunction of literals .
Example. The partition {2}, {29, 23}, {24} is represented
as Iy # To, T, F T4.T9 F Ty, To = I3.

Component Procedures : Use individual procedures to decide
whether ¢; A 1) is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Microsoft

Research

Soundness

Each step is satisfiability preserving.
Say ¢ is satisfiable (in the combination).
» Purification: ¢ A @9 is satisfiable.
» Iteration: for some partition 10, &1 A &9 A 1) is satisfiable.
» Component procedures: ¢ A 1’ and ¢y A 1) are both
satisfiable in component theories.
» Therefore, if the procedure return unsatisfiable, then ¢ is

unsatisfiable.

Microsoft

Research

Completeness

Suppose the procedure returns satisfiable.

»

»

Let 1/ be the partition and A and 3 be models of 71 A 1 A
and TQ A E)g A ’l_*
The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

A| and | B| such that
h(A(z)) = B(x) for each shared variable.

Let /1 be a bijection between

Extend B to B by interpretations of symbols in X

B(f)(b1.....bn) = h(A(f)(R7 (b1). ..., A7 (bn)))

B is a model of:

Tl A\ (_;':-3'1 A\ TZ AN, 5 . A .ET___-']

oft’
Research

NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.

Interaction: Deduce an equality r — -
TiF (= 2=y

Update ¢9 := @9 A 2 = 1. And vice-versa. Repeat until no
further changes.

Component Procedures : Use individual procedures to decide
whether ¢, is satisfiable.

Remark: 7; F (&; = x = y) iff ¢; A\ 2 # y is not satisfiable in

Tz' . osaoft
Kesearch

NO deterministic procedure

Assume the theories are convex.
» Suppose ¢; is satisfiable.
» Let £ be the set of equalities T =2 () = k) such that,
Tt o= Ti—05.
» By convexity, 7, I/ ¢; = \/px; = x4
» 0; AN \g v # xy is satisfiable.
» The proof now is identical to the nondeterministic case.

» Sharing equalities is sufficient, because a theory 7 ; can
assume that -2 =+ yB whenever » = v is not implied by 7 o
and vice versa.

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays

b+2=c, v, = write(a, b, v,),
v, =3, v, =read(v,, v;)

V3 =C-2,

Ve = Cc-b+1

EUF

ve = f(v,),
v, = f(ve),
Vg % Vs

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(v,, v;) v, = f(ve),
V3 =C-2, Ve # V7

Ve = C-b+1

Substituting c

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(vy, v3), v, = f(ve),
v;=Dh, Ve # V7

Ve =3

Propagating v;=b

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(v,, v3), v, = f(ve),
v,=b, v;=b Vg # V-,
Ve =3 V3 =

Deducing v, = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, = read(v,, v3), v, = f(ve),
v,=b, V3 =D, Vg % Vs,
Vs =3 Va=Va Vs =

Propagating v, = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v,=3, v, =read(v,, vs), v, = f(ve),
v,=b, V3 =D, Vg % Vs,
v553, Va=Vq V3 =D,
V, =V, Va=Vy

Propagating v. = v,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF

b+2=c, v, = write(a, b, v,), Ve = f(vy),

v, =3, v, =read(vy, v3), v, = f(vg),

V3 =b, V3= b, Vg # V-,

Ve =3, Va =V V3 =D,

V, =V, V=V,
Vs =V,

Congruence: v, =V,

Microsoft

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, = read(v,, v3), v, = f(ve),
v,=b, V3 =D, Vg £ V5,
VSE3, Va=Vq V3 =D,
V, =V, Ve = Vy
Ve =V,

Unsatisfiable

Microsoft

Research

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

0<a<1,0<b<1,0<c<],
f(a) = f(b),
f(a) # f(c),
f(b) = f(c)

Microsoft

Research

Combining Procedures in Practice

Propagate all implied equalities.
» Deterministic Nelson-Oppen.
» Complete only for convex theories.

» It may be expensive for some theories.

Delayed Theory Combination.
» Nondeterministic Nelson-Oppen.

» Create set of interface equalities (r =) between shared
variables.
» Use SAT solver to guess the partition.

» Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables. Microsoft

Research

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which

equalities are propagated.
Model-based Theory Combination
» Optimistic approach.
» Use a candidate model M; for one of the theories 7 ; and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.
if M, =7,UT;U{u=uv} then propagate u = v .
» If not, use backtracking to fix the model.

» Itis cheaper to enumerate equalities that are implied in a

particular model than of all models.

Microsoft

Research

Example

r=f(y—1),f(z) #f(¥),0<x<1,0<y <1
Purifying

Microsoft

Research

Example

= flz)plm) #), 0 <2< 1,0 L4 <1,

o2
|
=
|
fmcd

Microsoft

Research

TE Ta

Literals Eq. Classes Mode:1 Literals Model
r= f(z) {2, f(2)F | Blz)=% L1 | Alp) =0
f(z) # f(y) | {y} E(y) = *o 0<y<1|A(y) =0

{z} E(z) = %3 r=y—1 | A(2) = -1

{f(2)} E(f) = {x1— %4

{f(y)} *g b k5

*3 > %1,

else — *¢ |

Assume X =y

Example

TE T4
Literals Eq. Classes Model Literals Model
r= f(2) .y, f(z) | Ble)= % O L | AlE] =0
f(z) # f(y) | {z} E(y) = = 0<y<1|A(y)=0
T=1 {f(@), f(y)} | B(z) = o z=y—1|A(2) =-1
E(f)={x1— %5 |z=1y
¥o — ¥
else — 4}

Unsatisfiable

Example

TE T4
Literals Eq. Classes | Model Literals Model
5 = fi(2) {z, fl2)} | Elz) =2% 0£g<£1 | Alz)=10
f(x) # f(y) | {y} E(y) = *2 0<y<1]|A(y) =0
%Ly {z} E(2) = x3 z=y—1|A(z) =-1
(f@)} |E(f)={n—r*, |2#y
{f(w)} kg > kg
*3: > %],
else — g}

Backtrack, and assert = = /.
7 4 model need to be fixed.

Example

TE T 4
Literals Eq. Classes | Model Literals Model
= f(z) 18, fl2)} | BE(2)=%x 0<a<] | Alz)=0
f(x) # f(y) | {v} E(y) = *2 0<y<1l|A(y)=1
Ty {2} E(z) = %3 z2=y—1|[A(2)=0
{f(2)} E(f)={x1—*1, |2#Yy
{f(v)} *9 > %5
*3 — *1,
else — ¢}

Assume x =2z

Tk T 4

Literals Eq. Classes | Model Literals Model
r= f(2) {x, 2, E(x) =% O0<aer<1]|A(x)=0
fla) # fy) | flx), f(2)} | E(y) =% 0<y<1|Ay)=1
r#Y {y} E(z) == z=y—1|A(2)=0
T =z ()} E(f)={x1—*. |z#y

ko = %3 r ==z

else — 4}

Satisfiable

Example

TE T A

Literals Eq. Classes | Model Literals Model
r= fl2) fo, 2 E(x) = %1 0<e<L1|A(z) =0
f(z) # f(y) | f(z), f(2)} | E(y) = *2 0<y<1|A(y)=1
ey {y} E(z) =% x=y—1|A(2)=0
T =2 1f(y)} E(f) ={x1— = TFY

%9 = %3, b= 2

else — x4}

Let /2 be the bijection between |E'| and | A|.

]l:{*lf—'ro,*QP—" 1,*3*—?_1.*4f—>

2,...}

TE Ta
Literals Model Literals Model
#= if(2) E{2) = %4 0 €z <1 | Alz)=0
f(x) # f(y) | E(y) = *2 0<y<1]|A(y) =
Tty E(z) =% z=y—1|A(2)=0
v =2 B(f)y={nar+, |z#y |AF)={0—0
%o — %3 = 1— -1
else — 4} else — 2}

Extending A using /.

h =tz 0,59 Lixges—Loxirs 2,. ..

Model Mutation

Sometimes M () = M (y) by accident.

N
/\f(a?z-) >0 N 2: 20
i=1

Model mutation: diversify the current model.

Freedom Intervals

Model mutation without pivoting
For each non basic variable x; compute [L;, U]

Each row containing x; enforces a limit on how much it can
be increase and/or decreased without violating the bounds
of the basic variable in the row.

Opportunistic Equality Propagation

We say a variable is fixed if the lower and upper bound are the same.
1<x<1

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma 2x; + x,,
we use M(P) to denote 2M(x,) + M(x,)

Opportunistic Equality Propagation

FixedEq
<z <uy <z Luy=— z=21x; if
EqRow
By =it d” = Ey=11; if
EqOffsetRows
v =2+ P .
— ¥; = if
r; = T + Po
EqRows
v, =P+ P
— X; =25 if
r; =P+ Py

lz' = U; = lj — ’U‘j

P is fixed, andM(F’) = 0

|
|

P and P are fixed, and
M(P) =M(F)

P; and P are fixed, and
M(P1) = M(F%)

Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?

Solution: add a predicate fS-bV(f[f) to the bit-vector theory (intuition:

is-bv(x) is true iff 2 is a bitvector).

The result of the bit-vector operation op(:zt, y) is not specified if

—is-bv(a) or —is-bv(y).

The new bit-vector theory is stably-infinite.

Reduction Functions

A reduction function reduces the satifiability problem for a
complex theory into the satisfiability problem of a simpler
theory.

Ackermannization is a reduction function.

Reduction Functions

Theory of commutative functions.
» Vo, y.f(2.y) = f(y, 2)
» Reduction to EUF
» Forevery f(a,b)in¢,do ¢ := o A f(a,b) = f(b,a).

\eritying Compilers

Annotated Verification

Program Condition F

N
pre/post conditions
Invariants
and other annotations

Microsoft

Research

Verification conditions: Structure

Y AXioms
(non-ground)

Control & Data
Flow

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

© Modeling the runtime

Y h,o,f:
IsHeap(h) A o # null A read(h, o, alloc) =t
—
read(h,o, f) = null v read(h, read(h,o,f),alloc) =t

Microsoft

Research

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...
° Modeling the runtime

© Frame axioms

Y o, f:
o # null A read(h,, o, alloc) =t =
read(h,,0,f) = read(h,,0,f) v (0,f) e M

Microsoft

Research

Main Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

® Frame axioms

@ User provided assertions

Vi,j: i <j=read(a,i) <read(b,j)

Microsoft

Research

Main Challenge

e

“

e

a

Quantifiers, quantifiers, quantifiers, ...

Modeling the runtime
Frame axioms

User provided assertions
Theories

vV x: p(x,x)

v x,y,2: p(x,y), ply,z) = p(x,2)
vV x,y: p(xy), ply,x) = x=y

Microsoft

Research

Main Challenge

e

e

e

e

Quantifiers, quantifiers, quantifiers, ...
Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!

Microsoft

Research

Some statistics

e Grand challenge: Microsoft Hypervisor

e 70k lines of dense C code

@ VCs have several Mb

e Thousands of non ground clauses

@ Developers are willing to wait at most 5 min per VC

Microsoft

Research

IMany Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Microsoft

Research

E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).

° Example:
v x: f(g(x)) = x { f(g(x)) }
a = g(b),
b=c,
f(a) # C Trigger }

Microsoft

Research

E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
© E-matching (matching modulo equalities).
° Example:

v x: f(g(x)) = x { f(g(x)) }

=g(b
e b flglb) b

f(a) #

Equalities and ground terms come
from the partial model M

MICrosorn™
Research

E-matching: why do we use it?

° |ntegrates smoothly with DPLL.
o Software verification problems are big & shallow.
e Decides useful theories:

© Arrays

e Partial orders

e

Microsoft

Research

Efficient E-matching

e E-matching is NP-Hard.
@ |n practice

Problem Indexing Technique

Incremental E-Matching Inverted path index

Microsoft

Research

E-matching code trees

Trigger: Instructions:

f(x1, g(x1, a), h(x2), b) . init(f, 2)
check(r4, b, 3)

4 . bind(r2, g, r5, 4)

I i | . compare(rl, r5, 5)
. |rr;| art.rlggers share severa . check(r, a, 6)
instructions. . bind(r3, h, r7, 7)

. yield(r1, r7)

Combine code sequences
in a code tree

Microsoft

Research

© E-matching needs ground seeds.
vx: p(x),
Vx: not p(x)

Microsoft

Research

e E-matching needs ground seeds.
@ Bad user provided triggers:

vx: f(g(x))=x { f(g(x)) }

g(a) =c,

g(b) =c,

1+b Trigger Is too
restrictive

Microsoft

Research

e E-matching needs ground seeds.
@ Bad user provided triggers:

Vx: f(g(x))=x{ g(x) }

g(a) =c,

g(b) =rc,

a=Db More “liberal”
trigger

Microsoft

Research

© E-matching needs ground seeds.
e Bad user provided triggers:

vx: H(g(x))=x{g(x) }

gla)=c,

g(b) =c,

a+b,

flg(a)) = a,)
f(g(b)) = b) ot

Microsoft

Research

E-matching:

© E-matching needs ground seeds.
@ Bad user provided triggers.
e |tis not refutationally complete.

False positives

Microsoft

Research

» Tight integration: DPLL + Saturation solver.

Microsoft

Research

DPLL()

@ Inference rule:
c, ... C,

C
e DPLL(I') is parametric.

° Examples:
@ Resolution
@ Superposition calculus

e

Microsoft

Research

DPLL(I)
M | F
LPartiaI nﬁ &f clauses J

Microsoft

Research

DPLL(I): Deduce |

p(a) | p(a)va(a), Vx: —=p(x)vr(x), Vx: p(x)vs(x)

mmmmmm

Research

DPLL(I): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

mmmmmm

Research

DPLL(I'): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

A 4

Resolution

p(a) | p(a)val(a), =p(x)vr(x), p(x)vs(x), r(x)vs(x)

mmmmmm

Research

DPLL(I): Deduce |I

@ Using ground atoms from M:
M| F
© Main issue: backtracking. Track literals
® Hypothetical clauses: from M used to

%erive C

%"’
(hypothesis)
Ground literals

(regular) Clause

Microsoft

Research

DPLL(I'): Deduce Il

p(a) | p(a)vala), =p(x)vr(x)

p(a), —p(x)vr(x)

N 4 r(a)

p(a) | p(a)vala), ﬂp(X)vr(X)fp(a)Sr(a)

mmmmmm

Research

DPLL(I"): Backtracking

p(a), r(a) | p(a)va(a), —p(a)v—r(a), p(a)>r(a), ..

mmmmmm

Research

DPLL(I"): Backtracking

pla), (@) | plalvalal, —pla)v—r(a), i), .

p(a) is removed from M

vV

—p(a) | p(a)va(a), —p(a)v—r(a), ...

mmmmmm

Research

DPLL(I): Improvement

e Saturation solver ignores non-unit ground
clauses.

p(a) | p(@(a), —p(x)vr(x)

Microsoft

Research

DPLL(I): Improvement

@ Saturation solver ignores non-unit ground
clauses.

o |t is still refutanionally complete if:
e I has the reduction property.

Axioms "\SO/
7
(non-ground) ~ ¢~

and-or tree
(ground)

Microsoft

Research

DPLL(I): Improvement

e Saturation solver ignores non-unit ground
clauses.

o |t is still refutanionally complete if:
e I has the reduction property.

|
. Ground literals

Saturation b
Solver *
Theories

Ground clauses
: /

Microsoft

Research

® Interpreted symtbols
—(f(@)>2), f(x)>5

e |tis refutationally complete if

® Interpreted symbols only occur in ground
clauses

= Non ground clauses are variable inactive
* “Good” ordering is used

Microsoft

Research

Notation Remainder

VX, Xyt =p(Xq, X,) Vv f(xq) = f(x,) + 1,
p(a,b),a<b+1

Microsoft

Research

Notation Remainder

—p(xy, X5) v f(x;) = f(x,) + 1,
p(a,b),a<b+1

Microsoft

Research

Essentially uninterpreted fragment

e Variables appear only as arguments of
uninterpreted symbols.

flalx,) +a) < g(x)) v h(f(x)), x,) =0 ¥

flx,01,) < () + (x,) ()

Microsoft

Research

Basic Idea

Given a set of formulas F,
build an equisatisfiable set of quantifier-free formulas F*

“Domain” of f is the set of ground terms A,
t e A; if thereisaground term f(t)

Suppose

1. We have a clause C[f(x)] containing f(x).
2. We have f(t).
->

Instantiate x with t: C[f(t)].

Microsoft

Research

F F*
8(X1, X;) =0 v h(x,) =0,
g(f(x,),b) + 1 <f(xy),
h(c) =1,
f(a)=0

Microsoft

Research

F F*
8y %) =0V hix) =0, h(c)=1,
g(f(x,),b) + 1 <1(x,), f(a) =0
h(c) = 1 I
f(a)=0

Copy quantifier-free formulas

“Domains”:
Ac{a}
Ay}
A:{c}

Microsoft

Research

F F*
8(x,, %) = 0 v h(x;) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), f(a) =0,
hk)il, :i>
f(a)=0

“Domains”:
Ac:{a}
A}
A,:{c}

Microsoft

Research

F F*
8(x,, %) = 0 v h(x) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :i> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a)

f(a)=0

“Domains”:
Ac:{a}
Ag:{[f(a), b] }
A,:{c}

Microsoft

Research

F F*
g(x4, x;) =0 v h(x,) =0, h(c)=1,
g(f(x,),b) + 1 <f(x,), :i> f(a) =0,
h(c) =1, g(f(a),b) + 1 <f(a),

f(a)=0

“Domains”:
Ac:{a}

Ag: {[f(a), b] }
A,:{c}

Microsoft

Research

F F*
8(x1, %,) = 0 v h(x)) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a),

f(a)=0 g(f(a), b)=0v h(b)=0

“Domains”:
Ac:{a}

A, :{[f(a), b] }
A,:{c, b}

Microsoft

Research

F F*
g(x4, x;) =0 v h(x,) =0, h(c) =1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 <f(a),

f(a) = 0 a(f(a), b) =0 v h(b) = 0

“Domains”:
Ac:{a}

A, :{[f(a), b]}
A,:{c, b}

Microsoft

Research

F F*
8(x1, %,) = 0 v h(x)) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a),

fa)=0 a(f(a), b) =0 v h(b) = 0,
g(f(a),c)=0vh(c)=0

“Domains”:

Ac:{a}

A, {[f(a), b], [f(a), c] }
A,:{c b}

Microsoft

Research

F F*

8(x,, %) = 0 v h{x;) = 0, h(c) = 1,

g(f(x,),b) + 1 <f(x,), j‘> f(a) =0,

h(c) =1, g(f(a),b) + 1 < f(a),

f(a)=0 g(f(a), b) =0 v h(b) =0,

g(f(a),c)=0vh(c)=0
v
M

a—>2,b—>2,c—>3
f—>{2->0,..}

h—>{2—>0,3->1,..}
g —>1{[0,2]—>-1,1[0,3]—>0, ...}

Microsoft

Research

Basic Idea (cont.)

Given a model M for F*,
Build a model M™ for F

Define a projection function 7 s.t.
range of . is M(A;), and
e (v)=v if ve M(A)

Then,
M7™(f)(v) = M(f)(mv))

Microsoft

Research

Basic Idea (cont.)

Microsoft

Research

Basic Idea (cont.)

Given a model M for F*,
Build a model M™ for F

In our example, we have: h(b) and h(c)
—>A, ={b,c}, and M(A,)={2,3}

,={2—>2,3—>3,else >3}

M(h) M*(h)
{250,3>1,..) j> {2-50,3>1,else —> 1}

M™(h) = Ax. if(x=2, 0, 1)

Microsoft

Research

F F*

8(x;, ;) =0 Vv h(x;) =0, h(c) =1,

g(f(x,),b) + 1 <f(x,), f(a) =0,

h(c) =1, g(f(a),b) + 1 <f(a),

f(a)=0 g(f(a), b) =0 v h(b) =0,
g(f(a),c)=0v h(c)=0

V™ M v

a—>2,b—>2c—>3 a—>2,b—>2,c—>3

f— Ax. 2 @f—>{2—>0,...}

h — Ax. if(x=2, 0, 1) h—>{2—->0,3->1,..}

g — Ax,y. if(x=0ny=2,-1,0) &—>1[0,2]>-1,[0,3]>0, ...}

Microsoft

Research

Example: Model Checking

MTC
a—>2,b—>2,c—-3
f— Ax. 2 Does M™ satisfies?
h — Ax. if(x=2, 0, 1) VX4, X, : 8(Xy, X,) =0V h(x,) =0
g — Ax,y. if(x=0Ay=2,-1, 0) @

VX4, X1 if(x;=0Ax,=2,-1,0) = 0 v if(x,=2,0,1) =0 is valid

U

x4, X,: if(x;=0Ax,=2,-1,0) # 0 A if(x,=2,0,1) #0 is unsat

if(s;=01s,=2,-1,0) # 0 A if(s,=2,0,1) #0 is unsat

Research

Why does it work?

Suppose M™ does not satisfy C[f(x)].

Then for some value v,
M™{x —v} falsifies C[f(x)].

M™{x —m(v)} also falsifies C[f(x)].

But, thereisatermt € A; s.t. M(t) = mi(v)
Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)].
Contradiction: M is a model for F*.

Microsoft

Research

Refinement 1: Lazy construction

* F* may be very big (or infinite).
@ Lazy-construction
e Build F* incrementally, F* is the limit of the sequence
FFcFc. cFc..
e |If FXis unsat then F is unsat.
e |f FXis sat, then build (candidate) M~™
o If M™satisfies all quantifiers in F then return sat.

Microsoft

Research

Refinement 2: Model-based instantiation

Suppose M™does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which “blocks” this spurious model.
Issue: how to find t?

Use model checking,

and the “inverse” mapping 7! from values to terms (in A;).
niv)=t if M™(t) = m(v)

Microsoft

Research

Model-based instantiation: Example

F FO M7
Vx,: f(x,) <0, f(a) =1, a—2, b—3
fla)=1, [f(b)=-1 1) f—ohx.if(x=2,1,-1)
f(b) =-1 L
Model Checking VvXx;: f(x;) <O
notif(s;=2,1,-1)<0

F iyt
f(a) =1, S;—> 2
unsat <:] f(z) 4 <:] nf'11(2) .
f(a)<O

Microsoft

Research

Infinite F*

e |s our procedure refutationally complete?

® FOL Compactness

A set of sentences is unsatisfiable
iff
it contains an unsatisfiable finite subset.

© Atheory T is a set of sentences, then
apply compactness to F*UT

Microsoft

Research

Infinite F*: Example

F
Vx4 f(x,) < f(f(x,)),
Vx,: f(x,) <a,

Unsatisfiable

1 < (0).
F*
f(0) < f(f(0)), f(f(0)) < f(f(f(0))), ...
f(0) < a, f(f(0)) < a, ... < Every finite subset
1 < f(0) of F* is satisfiable.

Microsoft

Research

Infinite F*: What is wrong?

@ Theory of linear arithmetic T, is the set of all first-order
sentences that are true in the standard structure Z.

= T, has non-standard models.
e F and F* are satisfiable in a non-standard model.

e Alternative: a theory is a class of structures.
» Compactness does not hold.
e Fand F* are still equisatisfiable.

Microsoft

Research

A: and Set Constraints

Given a clause C,[x,, ..., X]
Let

S, ;be the set of ground terms used to instantiate x;in
clause C,[x,, ..., x,]

How to characterize S, .?

a ground term t te Ay
t[xlr " Xn] t[Sk’li vee Sk,n] C Af’j
Xi Sk,i = Af,j

Microsoft

Research

Ac: Example

F A
g(x,, X,) =0 Vv h(x,) =0, S11=A;1, S, = Afg’z, S1,=An1
g(f(x,),b) + 1 <f(x,), [> S;1 =AM, f(S;1) S A, b eA,,
h(C) = 11 C Ah,l
f(a)=0 a € A,

U

A;: least solution

Use A; to generate F* <:j 21,1 = E f(‘;‘) 1 51,2 ={b,c}
21=14

Microsoft

Research

Complexity

o Agis stratified then the least solution (and F*) is finite

t[Sk 1/ s Sicn] S A level(S ;) < level(A;))
Sy = As; level(S, ;) = level(A;;)

© New decidable fragment: NEXPTIME-Hard.

= The least solution of Aris exponential in the worst case.
aeS,;, beS;, f,(S,5,)<S,, ... f.(S,,S,) = S,.1

© F* can be doubly exponential in the size of F.

Microsoft

Research

Extensions

= Arithmetical literals: t: must be monotonic.

—(x;<x)) Sii = Sy,
—|(Xi < t), —|(t Sxi) te Sk,i
X, =t {t+1, t-1} < S, ;
e Offsets:
X+ r Syitr < Ay
Af,j'l'('r) Sy,

Microsoft

Research

Extensions: Example

Shifting

—(0 < x,) v =(x; £ n) v f(xy) = g(x,+2)

Microsoft

Research

More Extensions

@ Many-sorted logic
© Pseudo-Macros

0 < glxy) v f(g(xy)) = xy,
0 < glx,) v h(g(xy)) = 2%,
g(a) <0

Microsoft

Research

Conclusion

Powerful, mature, and versatile tools like SMT solvers can now be

exploited in very useful ways.

The construction and application of satisfiability procedures is an

active research area with exciting challenges.
SMT is hot at Microsoft.
Z3 is a new SMT solver.

Main applications:
» Test-case generation.
» Verifying compiler.

» Model Checking & Predicate Abstraction.

Microsoft

Research

Books

© Bradley & Manna: The Calculus of Computation

@ Kroening & Strichman: Decision Procedures, An
Algorithmic Point of View

» Chapter in the Handbook of Satisfiability

Microsoft

Research

Web Links

Z3:

http://research.microsoft.com/projects/z3

http://research.microsoft.com/~leonardo

» Slides & Papers
http://www.smtlib.org
http://www.smtcomp.org

Microsoft

Research

References

[Ack54] W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the Foundation of
Mathematics, 1954

[AE!C+D2] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT based approach
for solving formulas over boolean and linear mathematical propositions. In Proc. of CADE02, 2002

[BDS00] C. Barrett, D. Dill, and A. Stump. A framework for cooperating decision procedures. In 17th
International Conference on Computer-Aided Deduction, volume 1831 of Lecture Notes in Artificial
Intelligence, pages 79-97. Springer-Verlag, 2000

[BdMS05] C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo Theories Competition.
In Int. Conference on Computer Aided Verification (CAV'05), pages 20—23. Springer, 2005

[BDS02] C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by incremental
translation to SAT. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the 14th
International Conference on Computer Aided Verification (CAV '02), volume 2404 of Lecture Notes in
Computer Science, pages 236—249_ Springer-Verlag, July 2002. Copenhagen, Denmark

[EBC+DE M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and
R. Sebastiani. Efficient satisfiability modulo theories via delayed theory combination. In fnt. Conf. on
Computer-Aided Verification (CAV), volume 3576 of LNCS. Springer, 2005

[Chv83] V. Chvatal. Linear Programming. W. H. Freeman, 1983

References

[CG96] B. Cherkassky and A. Goldberg. Negative-cycle detection algorithms. In Evropean Symposium on
Algorithms, pages 349-363, 1996

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5(7):394-397, July 1962

[DNSO03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, 2003

[DST80] P J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem.
Journal of the Association for Computing Machinery, 27(4).758—771, 1980

[dMRO02] L.de Moura and H. Ruelt. Lemmas on demand for satisfiability solvers. In FProceedings of the
Fitth International Symposium on the Theory and Applications of Satisfiability Testing (SAT 2002).
Cincinnati, Ohio, 2002

[DdM06] B. Dutertre and L. de Moura. Integrating simplex with DPLL(T"). Technical report, CSL, SR
International, 2006

[dMBO7b] L. de Moura and N. Bjerner. Efficient E-Matching for SMT solvers. In CADE-21, pages
183198, 2007

References

[dMBO7¢] L. de Moura and M. Bjerner. Model Based Theory Combination. In SMT07, 2007

[dMBO7a] L. de Moura and N. Bjerner. Relevancy Propagation . Technical Report MSR-TR-2007-140,
Microsoft Research, 2007

[dMBO08a] L. de Moura and N. Bjerner. Z3: An Efficient SMT Solver. In TACAS 08, 2008
[dMBO08c] L. de Moura and N. Bjerner. Engineering DPLL(T) + Saturation. In [JCAR'08, 2008

[dMB08b] L. de Moura and N. Bjerner. Deciding Effectively Propositional Logic using DPLL and
substitution sets. In IJCAR08, 2008

[GHN+E4] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editors, Int. Conference on Computer Aided Verification (CAV
04), volume 3114 of LNCS, pages 175-188. Springer, 2004

[MSS96] J. Marques-Silva and K. A. Sakallah. GRASP - A New Search Algorithm for Satisfiability. In Proc.
of ICCAD 96, 1996

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Transactions
on Programming Languages and Systems, 1(2):245-257, 1979

[NO0O5] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation and its application to
difference logic. In Int. Conference on Computer Aided Verification (CAV'05), pages 321-334.
Springer, 2005

References

[Opp80] D. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403—411, 1980

[PRSS99] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small
domains instantiations. Lecture Notes in Computer Science, 1633455469, 1999

[Pug92] William Pugh. The Omega test: a fast and practical integer programming algorithm for
dependence analysis. In Communications of the ACM, volume 8, pages 102-114, August 1992

[RT03] 5. Ranise and C. Tinelli. The smt-lib format: An initial proposal. In Proceedings of the 1st
International Workshop on Pragmatics of Decision Procedures in Automated Reasoning
(PDPAR03), Miami, Florida, pages 94—111, 2003

[RS01] H. Ruess and N. Shankar. Deconstructing shostak. In 16th Annual IEEE Symposium on Logic in
Computer Science, pages 19-28, June 2001

[SLB03] S. Seshia, S. Lahir, and R. Bryant. A hybrid SAT-based decision procedure for separation logic
with uninterpreted functions. In Proc. 40th Design Automation Conference, pages 425-430. ACM
Press, 2003

[Sho81] R. Shostak. Deciding linear inequalities by computing loop residues. Journal of the ACM,
28(4):769-779, October 1981

References

[dMB09] L de MouraandN.Bjgrner. Generalized and Efficient Array Decision Procedures.

FMCAD, 2009.
[GdMO09] Y.Ge andL. de Moura. Complete Quantifier Instantiation for quantified SMT

formulas, CAV, 2009.

