
Leonardo de Moura
Microsoft Research

Many approaches
Graph-based for difference logic: a – b  3

Fourier-Motzkin elimination:

Standard Simplex

General Form Simplex

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.

x := x + 1

x1 = x0 + 1

x1 - x0  1, x0 - x1  -1

Chasing negative cycles!

Algorithms based on Bellman-Ford (O(mn)).

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d = 1

c + d - e = -1

a, b, c, d, e ≥ 0

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1 1 -1

a

b

c

d

e

3

1

-1

=

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1 1 -1

a

b

c

d

e

3

1

-1

=

We say a,b,c are the
basic (or dependent)
variables

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a - d + 2e = 3

b - d = 1

c + d - e = -1

a, b, c, d, e ≥ 0

1 0 0 -1 2

0 1 0 -1 0

0 0 1 1 -1

a

b

c

d

e

3

1

-1

=

We say a,b,c are the
basic (or dependent)
variables

We say d,e are the
non-basic (or non-
dependent) variables.

Incrementality: add/remove equations

Slow backtracking

No theory propagation

Simplex General Form

Algorithm based on the dual simplex

Non redundant proofs

Efficient backtracking

Efficient theory propagation

Support for string inequalities: t > 0

Preprocessing step

Integer problems:
Gomory cuts, Branch & Bound, GCD test

s1  x + y, s2  x + 2y

s1  x + y, s2  x + 2y

s1 = x + y,

s2 = x + 2y

s1  x + y, s2  x + 2y

s1 = x + y,

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0

s1  x + y, s2  x + 2y

s1 = x + y,

s2 = x + 2y

s1 - x - y = 0

s2 - x - 2y = 0

s1, s2 are basic (dependent)

x,y are non-basic

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y

s1 - x - y = 0

s2 - x - 2y = 0

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting
equals by equals.

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s1 and y

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting
equals by equals.

Definition:

An assignment (model) is a mapping from
variables to values

Key Property:
If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s2 and y

s1 - x - y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - x - 2y = 0

-s1 + x + y = 0

s2 - 2s1 + x = 0

It is just substituting
equals by equals.

Definition:

An assignment (model) is a mapping from
variables to values

Key Property:
If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

Example:
M(x) = 1
M(y) = 1
M(s1) = 2
M(s2) = 3

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables. Of course, we may introduce new “problems”.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  c

a  0

a = c – d

b = c + d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  c

a  0

If the assignment of a basic variable does not satisfy a
bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a = c – d

b = c + d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a

c = a + d

b = a + 2d

M(a) = 0

M(b) = 0

M(c) = 0

M(d) = 0

1  a

c = a + d

b = a + 2d

M(a) = 1

M(b) = 1

M(c) = 1

M(d) = 0

1  a

Sometimes, a model cannot be repaired. It is pointless to
pivot.

a = b – c

a  0, 1  b, c  0

M(a) = 1

M(b) = 1

M(c) = 0

The value of M(a) is too big. We can
reduce it by:
- reducing M(b)

not possible b is at lower bound
- increasing M(c)

not possible c is at upper bound

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent

s1  a + d, s2  c + d

a = s1 – s2 + c

a  0, 1  s1, s2  0, 0  c

M(a) = 1

M(s1) = 1

M(s2) = 0

M(c) = 0

Extracting proof from failed repair attempts is easy.

{ a  0, 1  s1, s2  0, 0  c } is inconsistent

{ a  0, 1  a + d, c + d  0, 0  c } is inconsistent

SMT@Microsoft

SMT@Microsoft

SMT@Microsoft

Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.

Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not
satisfy its bounds, then select the smallest non-basic in the
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of
configurations. Then, any infinite trace will have cycles.

Array of rows (equations).

Each row is a dynamic array of tuples:

(coefficient, variable, pos_in_occs, is_dead)

Each variable x has a “set” (dynamic array) of occurrences:

(row_idx, pos_in_row, is_dead)

Each variable x has a “field” row*x+

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x

Each variable x has “fields”: lower*x+, upper*x+, and value*x+

rows: array of rows (equations).

Each row is a dynamic array of tuples:

(coefficient, variable, pos_in_occs, is_dead)

occs[x]: Each variable x has a “set” (dynamic array) of
occurrences:

(row_idx, pos_in_row, is_dead)

row[x]:

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x

Other “fields”: lower[x], upper[x], and value[x]

atoms[x]: atoms (assigned/unassigned) that contains x

s1  a + b, s2  c – b

p1  a  0, p2  1  s1, p3  1  s2

p1, p2 were already assigned

a - s1 + s2 + c = 0

b- c + s2 = 0

a  0, 1  s1

M(a) = 0 value[a] = 0

M(b) = -1 value[a] = -1

M(c) = 0 value[c] = 0

M(s1) = 1 value[s1] = 1

M(s2) = 1 value[s2] = 1

rows = [

[(1, a, 0, t), (-1, s1, 0, t), (1, s2, 1, t), (1, c, 0, t)],

[(1,b, 0, t), (-1, c, 1, t), (1, s2, 2, t)]]

occs[a] = [(0, 0, f)]

occs[b] = [(1,0,f)]

occs[c] = [(0,3,f), (1,1,f)]

occs[s1] = [(0,1,f)]

occs[s2] = [(0,0,t), (0,2,f), (1,2,f)]

row[a] = 0, row[b] = 1, row[c] = -1, …

upper[a] = 0, lower[s1] = 1

atoms[a] = {p1}, atoms[s1] = {p2}, …

In practice, we need a combination of theories.

b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories T1  T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for

T1  T2?

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:

The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0, -1, 1, -2, 2, …, +, -, *, >, <, ≥, }

Array symbols: { read, write }

It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5)

It is a different name for our “naming” subterms procedure.

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

b + 2 = c, v6 ≠ v7

v1  3, v2  write(a, b, v1), v3  c-2, v4  read(v2, v3),

v5  c-b+1, v6  f(v4), v7  f(v5)

b + 2 = c, v1  3, v3  c-2, v5  c-b+1,

v2  write(a, b, v1), v4  read(v2, v3),

v6  f(v4), v7  f(v5), v6 ≠ v7

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

The union of two consistent, disjoint, stably infinite
theories is consistent.

A theory T is convex iff

for all finite sets S of literals and

for all a1 = b1 …  an = bn

S implies a1 = b1 …  an = bn

iff

S implies ai = bi for some 1  i  n

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.

formulas of the form s1 ≠ r1 …  sn ≠ rn  t = t’

Linear rational arithmetic is convex.

Linear integer arithmetic is not convex

1  a  2, b = 1, c = 2 implies a = b  a = c

Nonlinear arithmetic

a2 = 1, b = 1, c = -1 implies a = b  a = c

Theory of bit-vectors

Theory of arrays

c1 = read(write(a, i, c2), j), c3 = read(a, j)

implies c1 = c2  c1 = c3

EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add

f(a1, a2, a3) ≠ f(0, 1, 0)

EUF is convex (O(n log n))

IDL is non-convex (O(nm))

EUF  IDL is NP-Complete

Reduce 3CNF to EUF  IDL

For each boolean variable pi add 0  ai  1

For each clause p1  p2  p3 add

f(a1, a2, a3) ≠ f(0, 1, 0)

a1 ≠ 0  a2 ≠ 1  a3 ≠ 0

implies

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  c-2,

v5  c-b+1

Arrays

v2  write(a, b, v1),
v4  read(v2, v3)

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  c-2,

v5  c-b+1

Arrays

v2  write(a, b, v1),
v4  read(v2, v3)

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7

Substituting c

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7

Propagating v3 = b

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

v3 = b

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7,

v3 = b

Deducing v4 = v1

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7,

v3 = b

Propagating v4 = v1

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7,

v3 = b,

v4 = v1

Propagating v5 = v1

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1Congruence: v6 = v7

b + 2 = c, f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

Arithmetic

b + 2 = c,

v1  3,

v3  b,

v5  3,

v4 = v1

Arrays

v2  write(a, b, v1),
v4  read(v2, v3),

v3 = b,

v4 = v1

EUF

v6  f(v4),

v7  f(v5),

v6 ≠ v7,

v3 = b,

v4 = v1,

v5 = v1 ,

v6 = v7

Unsatisfiable

Deterministic procedure may fail for non-convex theories.

0  a  1, 0  b  1, 0  c  1,

f(a) ≠ f(b),

f(a) ≠ f(c),

f(b) ≠ f(c)

Model mutation without pivoting

For each non basic variable xj compute [Lj, Uj]

Each row containing xj enforces a limit on how much it can
be increase and/or decreased without violating the bounds
of the basic variable in the row.

We say a variable is fixed if the lower and upper bound are the same.

1  x  1

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma 2x1 + x2,

we use M(P) to denote 2M(x1) + M(x2)

M

M M

M M

A reduction function reduces the satifiability problem for a
complex theory into the satisfiability problem of a simpler
theory.

Ackermannization is a reduction function.

EUF

Annotated
Program

Verification
Condition F

pre/post conditions

invariants

and other annotations

BIG

and-or

tree

(ground)

 Axioms

(non-ground)

Control & Data

Flow

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

 h,o,f:
IsHeap(h)  o ≠ null  read(h, o, alloc) = t

read(h,o, f) = null  read(h, read(h,o,f),alloc) = t

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

 o, f:
o ≠ null  read(h0, o, alloc) = t 

read(h1,o,f) = read(h0,o,f)  (o,f)  M

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

 i,j: i  j  read(a,i)  read(b,j)

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
 x: p(x,x)

 x,y,z: p(x,y), p(y,z)  p(x,z)

 x,y: p(x,y), p(y,x)  x = y

Quantifiers, quantifiers, quantifiers, …

Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!

Grand challenge: Microsoft Hypervisor

70k lines of dense C code

VCs have several Mb

Thousands of non ground clauses

Developers are willing to wait at most 5 min per VC

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c Trigger

SMT solvers use heuristic quantifier instantiation.

E-matching (matching modulo equalities).

Example:

 x: f(g(x)) = x { f(g(x)) }

a = g(b),

b = c,

f(a)  c

x=b f(g(b)) = b

Equalities and ground terms come

from the partial model M

Integrates smoothly with DPLL.

Software verification problems are big & shallow.

Decides useful theories:

Arrays

Partial orders

…

E-matching is NP-Hard.

In practice

Problem Indexing Technique

Fast retrieval E-matching code trees

Incremental E-Matching Inverted path index

Trigger:

f(x1, g(x1, a), h(x2), b)

Instructions:

1. init(f, 2)
2. check(r4, b, 3)
3. bind(r2, g, r5, 4)
4. compare(r1, r5, 5)
5. check(r6, a, 6)
6. bind(r3, h, r7, 7)
7. yield(r1, r7)

Compiler

Similar triggers share several
instructions.

Combine code sequences
in a code tree

Limitations

E-matching needs ground seeds.

x: p(x),

x: not p(x)

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { f(g(x)) }

g(a) = c,

g(b) = c,

a  b Trigger is too

restrictive

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b More “liberal”

trigger

Limitations

E-matching needs ground seeds.

Bad user provided triggers:

x: f(g(x))=x { g(x) }

g(a) = c,

g(b) = c,

a  b,

f(g(a)) = a,

f(g(b)) = b
a=b

Limitations

E-matching needs ground seeds.

Bad user provided triggers.

It is not refutationally complete.

False positives

Tight integration: DPLL + Saturation solver.

BIG

and-or

tree

(ground)

Axioms

(non-ground)



Inference rule:

DPLL() is parametric.

Examples:

Resolution

Superposition calculus

…

M | F

Partial model
Set of clauses

p(a) | p(a)q(a), x: p(x)r(x), x: p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x)

p(a) | p(a)q(a), p(x)r(x), p(x)s(x), r(x)s(x)

Resolution

Using ground atoms from M:
M | F

Main issue: backtracking.

Hypothetical clauses:

H  C

(regular) Clause(hypothesis)

Ground literals

Track literals

from M used to

derive C

p(a) | p(a)q(a), p(x)r(x)

p(a) | p(a)q(a), p(x)r(x), p(a)r(a)

p(a), p(x)r(x)

r(a)

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a), r(a) | p(a)q(a), p(a)r(a), p(a)r(a), …

p(a) is removed from M

p(a) | p(a)q(a), p(a)r(a), …

Saturation solver ignores non-unit ground
clauses.

p(a) | p(a)q(a), p(x)r(x)

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

BIG

and-or tree

(ground)

Axioms

(non-ground)

DPLL

+

Theories

Saturation

Solver

Saturation solver ignores non-unit ground
clauses.

It is still refutanionally complete if:
 has the reduction property.

Ground literals

Ground clauses

Problem

Interpreted symtbols

(f(a) > 2), f(x) > 5

It is refutationally complete if

Interpreted symbols only occur in ground
clauses

Non ground clauses are variable inactive

“Good” ordering is used

x1, x2: p(x1, x2)  f(x1) = f(x2) + 1,

p(a,b), a < b + 1

p(x1, x2)  f(x1) = f(x2) + 1,

p(a,b), a < b + 1

Variables appear only as arguments of
uninterpreted symbols.

f(g(x1) + a) < g(x1)  h(f(x1), x2) = 0

f(x1+x2)  f(x1) + f(x2)

Given a set of formulas F,
build an equisatisfiable set of quantifier-free formulas F*

Suppose
1. We have a clause C[f(x)] containing f(x).
2. We have f(t).


Instantiate x with t: C[f(t)].

“Domain” of f is the set of ground terms Af

t  Af if there is a ground term f(t)

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0

Copy quantifier-free formulas

“Domains”:
Af: { a }
Ag: { }
Ah: { c }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,

“Domains”:
Af : { a }
Ag : { }
Ah : { c }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a)

“Domains”:
Af : { a }
Ag : { [f(a), b] }
Ah : { c }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),

“Domains”:
Af : { a }
Ag : { [f(a), b] }
Ah : { c }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0

“Domains”:
Af : { a }
Ag : { [f(a), b] }
Ah : { c, b }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0

“Domains”:
Af : { a }
Ag : { [f(a), b]}
Ah : { c, b }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

“Domains”:
Af : { a }
Ag : { [f(a), b], [f(a), c] }
Ah : { c, b }

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

a  2, b  2, c  3
f  { 2  0, …}
h  { 2  0, 3  1, …}
g  { [0,2] -1, [0,3] 0, …}

M

Given a model M for F*,
Build a model M for F

Define a projection function f s.t.
range of f is M(Af), and
f (v) = v if v  M(Af)

Then,
M(f)(v) = M(f)(f(v))

M(Af) M(f(Af))

M(Af)

M(f(Af))

M(f)
M(Af)

f

M(f)

M(f)

Given a model M for F*,
Build a model M for F

In our example, we have: h(b) and h(c)
 Ah = { b, c }, and M(Ah) = { 2, 3 }

h = { 2  2, 3  3, else  3 }

M(h)
{ 2  0, 3  1, …}

M(h)
{ 2  0, 3  1, else  1}

M(h) = x. if(x=2, 0, 1)

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F F*
h(c) = 1,
f(a) = 0,
g(f(a),b) + 1  f(a),
g(f(a), b) = 0  h(b) = 0,
g(f(a), c) = 0  h(c) = 0

M

a  2, b  2, c  3
f x. 2
h x. if(x=2, 0, 1)
g  x,y. if(x=0y=2,-1, 0)

M
a  2, b  2, c  3
f  { 2  0, …}
h  { 2  0, 3  1, …}
g  { [0,2] -1, [0,3] 0, …}

M

a  2, b  2, c  3
f x. 2
h x. if(x=2, 0, 1)
g  x,y. if(x=0y=2,-1, 0)

x1, x2: if(x1=0x2=2,-1,0) = 0  if(x2=2,0,1) = 0 is valid

Does M satisfies?
x1, x2 : g(x1, x2) = 0  h(x2) = 0

x1, x2: if(x1=0x2=2,-1,0)  0  if(x2=2,0,1)  0 is unsat

if(s1=0s2=2,-1,0)  0  if(s2=2,0,1)  0 is unsat

Suppose M does not satisfy C[f(x)].

Then for some value v,
M{x v} falsifies C[f(x)].

M{x f(v)} also falsifies C[f(x)].

But, there is a term t  Af s.t. M(t) = f(v)
Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)].
Contradiction: M is a model for F*.

F* may be very big (or infinite).

Lazy-construction
Build F* incrementally, F* is the limit of the sequence

F0  F1  …  Fk  …

If Fk is unsat then F is unsat.

If Fk is sat, then build (candidate) M

If M satisfies all quantifiers in F then return sat.

Suppose Mdoes not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which “blocks” this spurious model.
Issue: how to find t?

Use model checking,
and the “inverse” mapping f

-1 from values to terms (in Af).
f

-1(v) = t if M(t) = f(v)

F

x1: f(x1) < 0,

f(a) = 1,

f(b) = -1

F0

f(a) = 1,

f(b) = -1

M

a2, b3

f x. if(x = 2, 1, -1)

Model Checking x1: f(x1) < 0

not if(s1= 2, 1, -1) < 0

s1 2

f
-1(2) = a

F1

f(a) = 1,

f(b) = -1

f(a) < 0

unsat

Is our procedure refutationally complete?

FOL Compactness
A set of sentences is unsatisfiable

iff

it contains an unsatisfiable finite subset.

A theory T is a set of sentences, then

apply compactness to F*T

F

x1: f(x1) < f(f(x1)),

x1: f(x1) < a,

1 < f(0).

F*

f(0) < f(f(0)), f(f(0)) < f(f(f(0))), …

f(0) < a, f(f(0)) < a, …

1 < f(0)
Every finite subset

of F* is satisfiable.

Unsatisfiable

Theory of linear arithmetic TZ is the set of all first-order
sentences that are true in the standard structure Z.

Tz has non-standard models.

F and F* are satisfiable in a non-standard model.

Alternative: a theory is a class of structures.

Compactness does not hold.

F and F* are still equisatisfiable.

Given a clause Ck[x1, …, xn]

Let

Sk,i be the set of ground terms used to instantiate xi in
clause Ck[x1, …, xn]

How to characterize Sk,i?

F
j-th argument of f in Ck

F

system of set constraints

a ground term t t  Af,j

t[x1, …, xn] t[Sk,1, …, Sk,n]  Af,j

xi Sk,i = Af,j

g(x1, x2) = 0  h(x2) = 0,
g(f(x1),b) + 1  f(x1),
h(c) = 1,
f(a) = 0

F

S1,1 = Ag,1, S1,2 = Ag,2, S1,2 = Ah,1

S2,1 = Af,1, f(S2,1)  Ag,1, b  Ag,2

c  Ah,1

a  Af,1

F

S1,1 = { f(a) }, S1,2 = { b, c }
S2,1 = { a }

F: least solution

Use F to generate F*

F is stratified then the least solution (and F*) is finite

New decidable fragment: NEXPTIME-Hard.

The least solution of F is exponential in the worst case.

aS1, bS1, f1(S1, S1)  S2, …, fn(Sn, Sn)  Sn+1

F* can be doubly exponential in the size of F.

t[Sk,1, …, Sk,n]  Af,j level(Sk,i) < level(Af,j)

Sk,i = Af,j level(Sk,i) = level(Af,j)

Arithmetical literals: f must be monotonic.

Offsets:

Literal of Ck F

(xi xj) Sk,i = Sk,j

(xi  t), (txi) t  Sk,i

xi = t {t+1, t-1}  Sk,i

j-th argument of f in Ck F

xi + r Sk,i+r  Af,j

Af,j+(-r)  Sk,i

Shifting

(0  x1)  (x1  n)  f(x1) = g(x1+2)

Many-sorted logic

Pseudo-Macros

0  g(x1)  f(g(x1)) = x1,
0  g(x1)  h(g(x1)) = 2x1,
g(a) < 0

Bradley & Manna: The Calculus of Computation

Kroening & Strichman: Decision Procedures, An
Algorithmic Point of View

Chapter in the Handbook of Satisfiability

