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Linear Arithmetic

@ Many approaches
© Graph-based for difference logic: a—b <3
e Fourier-Motzkin elimination:
t <azx, bx <ty = bt; <aty
e Standard Simplex
e General Form Simplex
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Difference Logic: a—b<5

Very useful in practice!

Most arithmetical constraints in software
verification/analysis are in this fragment.
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Job shop scheduling

d; ; | Machine 1 Machine 2
Job 1 2 1
Job 2 3 1
Job 3 2 3
mar = 8
Solution

t1,1 = 5, tLQ = 7, fgjl = 2,
to2 =0, t31 =0, t32 =3

Encoding
(11 ZO0OA(t12>2ti1+2)A(E12+1<8) A
(t21 > 0) A (t22 > t21 +3) A(t22+1 < 8) A
(tg,l > U) N (53?2 > 131 + 2) N (53?2 + 3 < 8) N
(11 > to1+3)V(ta1 >t11+2)) A
(trn >ts1+2)V(ts1 >t11+2))
((t2g >tz 1 +2)V (31 >t21+3)) A
(tr12=>taa+ 1)V (taoa >tia+1)) A
(t12 > t304+3)V(tza>tia+1)) A
((tao >1t324+3)V (tza2 >taa+1))
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Difference Logic

Chasing negative cycles!
Algorithms based on Bellman-Ford (O(mn)).

11,1
S
f N0
z — ti1n <0 -2 N
z — ta1 <O | 0 4
z — t31 < 0 21— 2
tgjg — Z < 5 T !
tz1 — 132 < —2 -3 0 ;
t2n — t3n1 < —3 9 ! /
11 — 121 < —2 1"53.,2— — —""t3,1 /
, , - 5
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Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c +d-e =-1
a,b,c,de=>0
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Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3
b-d =1
c+d-e =-1
a,b,c,de=>0
ra\
(100-12) bl [3°
010-10{|/c|=]1
\001 1-3 d \-1)
e

Az =b and z > 0.
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Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 < We say a,b,c are the
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,de=>0
ra\
(100-12)b| (3]
010-10||c|=|1
Q)O 1 1-} d \-1)
e
Ar =0b and = > 0. "B

Research



Standard Simplex

Many solvers (e.g., ICS, Simplify) are based on the Standard Simplex.

a-d+2e =3 - Wesaya,b,carethe
b-d =1 basic (or dependent)
c+d-e =-1 variables
a,b,c,de=>0
- \’a“ \ We say d,e are the
100-12||b| |3 non-basic (or non-
010-10||cl|=]|1 dependent) variables.
Q) 011 -3 d \-1)
e
Ar =b and 2 > 0. iy
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Standard Simplex

° Incrementality: add/remove equations
e Slow backtracking

© No theory propagation
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Fast Linear Arithmetic

» Simplex General Form

= Algorithm based on the dual simplex
© Non redundant proofs

o Efficient backtracking

e Efficient theory propagation

@ Support for string inequalities: t >0
© Preprocessing step

° |nteger problems:
Gomory cuts, Branch & Bound, GCD test
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General Form

General Form: Az =0 and [; < 2; < u;

Example:

r>0(x+y<2Vae+4+2y>6),(r+y=2Var+22y>4)
AN

si=x+Y,8 =+ 2y,

220,08 <2V8;=06), (8 =2V 53>4)

Only bounds (e.g., s; < 2) are asserted during the search.

Unconstrained variables can be eliminated before the beginning of

the search.



From Definitions to a Tableau

S;=X+Y, S,=X+2y
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From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y
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From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

S;-X-y =0
S, -X-2y=0
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From Definitions to a Tableau

S;=X+Y, S,=X+2y

U

S, =X+Y,
S, =X+ 2y

Y

s,-x-y =0 s, s, are basic (dependent)
s,-Xx-2y=0 Xy are non-basic
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Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0
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Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0

S,-X-2y=0

s, +x+y =0

S,-Xx-2y=0
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Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s;-X-y =0
S,-x-2y=0

s, +x+y =0
S,-Xx-2y=0
s, +x+y =0
S,-25;+x=0
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Pivoting

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

sp-x-y =0 It is just substituting

52'@\’:0 ~__ equalsbyequals.
s, +x+y =0
S,-X-2y=0
s, +x+y =0
S,-25;+x=0
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Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!

It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.

Example: swap s, and y
s;-X-y =0
S,-X-2y=0

It is just substituting
equals by equals.

s, +x+y =0

3 Key Property:
2 2y | i If an assignment satisfies the
equations before a pivoting
step, then it will also satisfy
them after!

-sl+x+y =0
S,-25;+x=0




Definition:

PIVOtIng An assignment (model) is a mapping from

ariables to values

A way to swap a basic with a non-basic variable!
It is just equational reasoning.

Key invariant: a basic variable occurs in only one equation.
Example: swap s, and y

s17x-y =0 It is just substituting
>2° @y =0 equals by equals.
Example:
M(X):l \7'5 +X+y =0 K 5
M(y) =1 S, - X - 2y 0 ey Property:
Mg)) =2 ’ ; If an assignment satisfies the
|v|(51) =3 -0 equations before a pivoting
: _Sl FXTY = step, then it will also satisfy

S;-25;+x=0 them after!




Equations + Bounds + Assignment

An assignment (model) is a mapping from variables to values.
We maintain an assignment that satisfies all equations and bounds.

The assignment of non dependent variables implies the

assignment of dependent variables.
Equations + Bounds can be used to derive new bounds.
Example: v =y — 2z, y <2, 2 >3 ~x < —1.

The new bound may be inconsistent with the already known

bounds.

Example: + < —1, = > 0.



“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent

variables.

a=c—d a=c—d
b=c+d b=c+d
M(a) =0 j> M(a) =1
M(b) =0 M(b) = 1
M(c) =0 M(c) = 1
M(d) =0 M(d)=0
l=<c 1<c
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“Repairing Models”

If the assignment of a non-basic variable does not satisfy a
bound, then fix it and propagate the change to all dependent
variables. Of course, we may introduce new “problems”.

a=c—d
b=c+d
M(a)=0
M(b)=0
M(c)=0
M(d) =0
1<c

a<o

—.

a=c—d
b=c+d
M(a) =1
M(b) =1
M(c) =1
M(d) =0
1<c

a<o
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“Repairing Models”

If the assignment of a basic variable does not satisfy a
bound, then pivot it, fix it, and propagate the change to its
new dependent variables.

a=c—d
b-c+d
M(a) =
M(b) =
Mky-
M(d) =
1<a

c=a+d
b-a+2d
M(a) =
M(b) = 0 o B
M(c)=0
M(d) =

1<a

c=a+d
b=a+2d
M(a) =
M(b) =
M(c) =
M(d) =
1<a
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“Repairing Models”

Sometimes, a model cannot be repaired. It is pointless to

pivot.
The value of M(a) is too big. We can
T=b—c reduce it by:

4<0.1<b c<0 - reducing M(b)

’ ’ not possible b is at lower bound
M(a) =1 - increasing M(c)
Mib)) =1 not possible c is at upper bound
M(c)=0
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“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0
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“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,,5,<0,0<c}isinconsistent
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“Repairing Models”

Extracting proof from failed repair attempts is easy.
s,=a+d,s,=c+d

a=s;,—S,+C

a<0,1<s,5,<0,0<c

M(a) =1

M(s,) =1

M(s,) =0

M(c)=0

{a<0,1<s,,5,<0,0<c}isinconsistent

{a<0, 1<a+d, c+d<0, 0<c}lisinconsistent Mﬁ”é“;earch



Strict Inequalities

The method described only handles non-strict inequalities (e.g.,
r < 2).

For integer problems, strict inequalities can be converted into

non-strict inequalities. © < 1 ~» o < 0.

For rational/real problems, strict inequalities can be converted into

non-strict inequalities usingasmall 0. © < 1 ~» 2 <1 — 0.
We do not compute a 0, we treat it symbolically.

0 is an infinitesimal parameter: (¢, k) = ¢ 4+ kd



» Initial state

o O O O

S

u

v

Equations
— ;l°—|-y
= 2+ 2y

= @Y

Bounds



R IR R & 2

Uu

Equations
= z+y
r+ 2y

T— 1

), (v<-2Vu<-1)

Bounds



» Asserting s > | assignment does not satisfy new bound.

s=21lw2>0

(y<1lVev>2),v<=2Ve 20),(v<-=2Vu<=1)

Model Equations Bounds

= 0 § = &4 g > 4

()

() = 0 4 = 2124y
M(&} = 0 ) = E—1
(1)
(v)



» Asserting s > 1 pivot s and x (s is a dependent variable).

g2 1,220

(F€1Vo22),lvs 2V 20),(0 £ -2VauL—1)

Model Equations Bounds
M) = 8 3 = ¥ s > 1
M(y) = 0 u = z+2y

)
)
M(s) = 0 = B—7
)
)



» Asserting s > | pivot s and ' (s is a dependent variable).

g2 1w >4
(y<1lvev>2),(v<-2Vv>0),(v<L-2Vu<-1)

Model Equations Bounds

= 0 Xy = S — y S Z J_

(2)

(y) = 0 u = x+ 2y
M(s) = 0 vo= x—y
()
(v)



» Asserting s > 1 pivot s and (s is a dependent variable).

&2 L= 0

(y<1lVuv2>2),(v<-2Vv>0),vr<-2VvVu<-1)

Model Equations Bounds
M(z) = 0 r o= s—y g > 1

()

(y) = 0 it = &+7
M(s) = 0 v o= s—2y
(u)
(v)



» Asserting s > | update assignment.

52 Lag =D

(y<1lvwv>22),(v<-2Vv>0),(v<-2Vu<-1)

Model Equations
M(z) = 0 r = §—1
M(y) = 0 U = S+Yy
M(s) = 1 v = §—2

M(u) = 0
(v) = 0

Bounds

s > 1



» Asserting s > | update dependent variables assignment.

g2 1w >0
(y<1lvoev>22),v<-2Vv>0),v< -2Vu<-1)

Model Equations Bounds
M(z) = r = Ss—1 g = 1
M(y) = U = B+

v = 8§—2

—

~
— — — P R, O

W ~
BT ol — ~— ~—
T = T =



Model Equations Bounds
M(z) = 1 r o= s—1 s > 1
My) = 0 u = s+vy
M(s) = 1 v = §— 24
Mu) = 1
M) =1



» Asserting » > () assignment satisfies new bound.

g21l.xg>20

WE1lvVe22),£-2V120),(v£-2vVu<—1)

Model Equations Bounds
() = 1 = 5=y 5 > 1
byl = 4 u = S+ r > 0

M(s) = 1 G
(u)
(v)



» Case split—y < 1

Model Equations Bounds
Mz) = 1 r = s—y s = 1
M(y) = 0 u = s+ 2 = 0
M(s) = 1 v = S— 24
Mu) = 1
Mwv) =1



» Case split —y < | assignment does not satisfies new bound.

§=Z21a2 20

(y<1lvov>2),(v<-2Vv2>20),v<-2vu<-1)

Model Equations
() = 1 r = Ss—u
(] = 0 u = s+

M(s) = 1 v = s—2y
(u)
(v)

Bounds

AVARN AV

Y

V



» Case split =y < | update assignment.

g1z >0

y<1lVv2>2),(v<-2Vy2>20),(v<-2Vu<-1)

Model Equations Bounds
Mz) = 1 r = s—y g > 1
M(y) = 144 4 = §+9 r > 0
Mgy = 1 v = §—2y i > 1
Miu) = 1
M@w) = 1



» Case split =y < | update dependent variables assignment.

g2 1lua >
(y<1vov>2),(v<-2Vv>0),v<-2Vu<-1)

Model Equations Bounds
Miz) = —0 F = §—=9 § 2 1
M(y) = 149 . = 8414 # = 0
M(s) = 1 v = §—~2 y > 1
M(u) = 2490
Mwv) = —1-26



» Bound violation

Model Equations Bounds
M(z) = —0 ¥ = 85— s > 1
M(y) = 1496 uw = s+uy g > 0
M(s) = 1 v = S—2 y > 1
Mu) = 249
Mv) = —-1-26



» Bound violation pivot 2 and s (2 is a dependent variables).

s>1.x2>0

(¥<1lVewz32),(vs —2Ve>20),(v<—=2Vu<—1)

Model Equations Bounds
M(z) = —0 r o= s§—y 8 2 1
My) = 144 u = s+y z > 0
M(s) = 1 v = §—2 b B
M(u) = 246
M(v) = —1-26



» Bound violation pivot 2 and s ( is a dependent variables).

§Z2 1320

y<lve22),(v<-2vv>20),vL-2vu<-—1)

Equations

8~ 2

—1—2¢

Bounds
s = 1
g = 0
y > 1



~
=

—~

» Bound violation pivot  and s (2 is a dependent variables).

s> 1.x2>0
(y<1lvVv2>22),v<-2Vv2>20),v<-2Vu<-1)

Bounds

Equations

Vv

1V

r+ 2y

V



» Bound violation update assignment.

g>Lzw>0

(y<1lvv>2),(v<-2Vrv20), (v -2Vu<-1)

Model Equations Bounds
M(z) = 0 5 = €Ty g 2 1
My) = 1+6 U = 42y £ > 0
M(s) = 1 v = T—9 - |
Mu) = 2490
Mv) = —1-26



» Bound violation update dependent variables assignment.

s=21.2 =10

Equations

x + 2y

<lVv>2),(v<-2Vv>0),v<-2Vu<-1)

Bounds

>

2

2+ 26
i

b



» Theory propagation > 0,y > 1 ~» u > 2

(y<1lvoev>2),(v<-2Vrv>0),v<-2Vu<-1)

Model Equations Bounds

IV
i

= 0 s = x+Y S

= 1490 i = -3 i ()

|V

V
p—a

— 2426

-~

(z)

(y)

M(s) = 149 v = T—Y y
(u)

(1) = —1-3



» Theory propagation u > 2 ~» —u < —1

(y<1Vuov >2),(v<=2Vy >0),(

Model

140
140
2+29
=] i

8. Lo >y

t

.l ‘1

Equations

T+Y
x4+ 2y

F— 1

o< —=2Vu<s—1)

Bounds
§ * 1
r > 0
y =& 1
U > 2



Equations

x+ 2y

Bounds

>

1V

vV V

N = D =



» Theory propagation v > 2 ~» —v < —2

s>21x>20

(Yy<ive>22),w<-2Ve>20),(v<L-2Vu<-—1)

Model Equations Bounds
M{z) = 0 5 = wty s > 1
My) = 1490 6 = %+ x > 0
M(s) = 1490 v = —Y y > 1
Mu) = 2+26 i > 2
Mwv) = —-1-9$6



» Conflict empty clause

(y<1Vwu22),(v<-2Ve20),(v<=

Model
M(z) = 0
M(y) = 149
M(s) = 1496
M(u) = 2420
M) = —-1-9¢

B2,

u

e >0

Equations
T+ 2y

T=—9Y

9

V u

< -1)
Bounds
s = 1
r = 0
iy > 1
U > 2



» Backtracking

s> 1.x>0

(y<1lvev>2),(v<-2Vv>0),(v<-2Vu<-1)

u

Equations

TFY
i+ 2%
&Ti— ’y




» Assertingy < 1

(y<1Vv22),(v<-2Vv20), (< -2Vu< 1)

Model

—
~

(z)

(y) = 1+
M(s) = 1+6

(0} = 2496

(v)

-

- —1-96

g=>1a>10

Equations
=

— = y




» Asserting y < 1 assignment does not satisfy new bound.

g2>1.x2>0

(lj s 4L YVw > 2), (‘U < -2Vwv > 0) (1? < =2Vu< —1)

Model Equations Bounds

M(z) = 0 § = pLky 5 =2 1
M(y) = 149 U = B2 B 22 i)
= T—Yy y £ 1

()
(y)
M(s) = 140 v
(u)
(v)



» Asserting y < | update assignment.

gs2b ezl

(y<1vev>2),(v<-2Vv>0),(v<-2Vu<—1)

Model Equations Bounds

M(z) = 0 g8 = my s > 1
M(y) = | u = &£4+2y & = D
< 1

()
(y)
M(s) = 1+6 V= @ Y
(u)
(v)



» Asserting y < | update dependent variables assignment.

g > 1 g 2> 1)

(p<1IVy 22)(v< =2Ve>0)lv<—-2Vu < =1)

Model Equations Bounds
M) = 0 s = z4Yy g 2 1
My = 1 u = T+ 2 & = 0
M(s) = 1 v = T—Y 7 |
M(u) = 2
M(v) = -1



» Theory propagation s > 1.y <1 ~0v > —1

8§ 2 1.8 20

(y<1lvv>2),(v<-2VvVv2>20),vr<-2Vu< -1)

N = = O

Equations

s —q
S+

8 — 2y

Bounds
5 = ]
x > 0
y < 1



» Theory propagation v > —1 ~» —v < —2

g > L@ 8

(y<lvv>22),(v<-2vVv2>20),v<-2Vu<-1)

Model Equations Bounds
M(z) = 0 r = Ss—1y g2 1
M(y) = 1 U = S+ x>z 0
M(s) = 1 v = s§—2y (ol Y
M(u) = 2 v > —1
M(v) = -1



» Boolean propagation

(0 = 1= 2)(v € =2 % 20). (v =2Va s —1)

Model
M(z) = 0
My = 1
M(s) = 1
M(u) = 2

(v)

u

fl’

Equations

= B—1
= S+
= §—2y

Bounds
s > 1
z = 0
y s A
v 2> —1



» Bound violation assignment does not satisfy new bound.

g2 L5228

(y<1vwv2>22),v<-2vv>20),wv<-2Vu<-1)

Model Equations Bounds
M(z) = 0 x = S—4y s 2 1
M) = 1 u = s+vy xr > 0
M(s) = 1 v = §—2 I |
M(u) = 2 v > 0
Mv) = -1



» Bound violation pivot © and s (u is a dependent variable).

g2 Lw=l

(y<1lvoe22),(v<L-2Vv2>20),v< -2Vu<-—1)

Model Equations Bounds
M(x) = 0 r = S—1 § 2= 1
My) = 1 u = s+49 = 0
M(s) = 1 v = S$—2y T |
M(u) = 2 v > 0



» Bound violation pivot 1 and s (u is a dependent variable).

(y<1lvev2>22),w<-2vev2>0),v<-2vVvu<-1)

g2 Le38

u

Equations

8— 1
ST+ Y
v+ 2y

Bounds
s > 1
z > 0
y < 1
v =2 U



» Bound violation pivot 12 and s (u is a dependent variable).

s>1,2>0

(y<1lvVv>2),(v<-2VvVv>0),v<-2Vu<-—1)

Model Equations Bounds
M{z) = 0 ¥ = Py g 2 1
My = 1 U = v4+3y z = 0
M(s) = 1 8§ = U-+20 y < 1
M(u) = 2 v > 0
M(v) = -1



» Bound violation update assignment.

g = lig >l

(y<1lvVv>2),v<-2vev>0),v<-2Vu<-—1)

Model Equations Bounds
M(z) = 0 ¥ = vy s = 1
Mgy = 1 u = v+ 3y g = 0
Mis) = 1 s —: ¥+2y g = 1
M(u) = 2 v > 0



» Bound violation update dependent variables assignment.

s>1Le>0
(y<1lvev>2),(v<-2Vv2>20),(vr<-2Vu<-—1)

Model Equations Bounds
M(z) = 1 r = v+y 5 2 d
My = 1 u = v+ 3y r > 0
M(s) = 2 8 = v4+29 y < 1
M(u) = 3 v =2 1



o p— —_

o

Equations

v+ 3y
v+ 2y

Bounds
s =2 1
B = 0
y < 1
v > 0



» Bound violation assignment does not satisfy new bound.

sg>=1.2>210

(y<1vev>22),v<2Vv>20),v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r = wFy s > 1
My) = 1 u = v+3y z = 0
M(s) = 2 § = wtly y < 1
M(u) = 3 v = 10
Mw) = 0 U < —1



» Bound violation pivot 1 and vy (u is a dependent variable).

g Lo
(y<1lvv>22),vt<2ve>0),v<-2vVu<-1)

Model Equations Bounds
M(z) = 1 # = Py s > 1
M(y) = 1 u = v+ 3y z > 0
M(s) = 2 g = 9 +2Y y < 1
M(u) = 3 v > 0
M(v) = 0 u < =1



» Bound violation pivot u and y (u is a dependent variable).

s 21,220

(y<1lvVev>22),w<-2vVrv>0),v<-2Vu<-1)

Model Equations Bounds
M(z) = 1 & = m¥y s > 1
My = 1 y = su—3v r > 0
M(s) = 2 5 = w42y y < |
M(u) = 3 v > 0
M(v) = 0 i = —1



» Bound violation pivot « and y (u is a dependent variable).

g >1.3 20

(y<1vu22),(v<-2Vv20),(0<-2Vu<-1)

Model Equations Bounds
M(z) = 1 r o= zu+3v § = 1
My) = 1 y = %—u — %—l r > 0
M(s) = 2 s = 2u+3v y < 1
Mlu) = 3 v > 0
M(v) = 0 u < -1



» Bound violation

s e

update assignment.

g>1,2>0

Equations

(y<1vev>2),v<-2Ve>0),v<-2Vu<—1)

Bounds
g &= 1
r = 0
y < 1
v = 0
u < —1



» Bound violation

update dependent variables assignment.

g2 1320

(y<1lvvz2),(v 2V 20),(v<2Vu<—1)

| | I
— W W= W

S

Y

Equations

Bounds
g = 1
T > 0
g = 1
v =2 0
u < -1



» Bound violations

| | |
LleS Qo= Cof

ok

=

y<1ve22),(v<-2Vvv2>20),(v <

Equations
— & 24
= 3u,+31.
1, _
U

2

— §u~+ ()]

QO =t QO [t

‘I.-,

—2Vu< —1)

Y
v

U

Bounds

vV IA IV IV

IA



» Bound violations pivot s and v (s is a dependent variable).

g > 1.e>0

<1V >2),(v<-2Vv=>20),(v<-2vVu<-1)

Model Equations Bounds
M(z) = —3 r o= su+ v - B
M(y) = —3 y = su—3v g = 0
M(s) = —3% § = %u. + 30 T |
Mu) = -1 v > 0
Mu) = 0 u < =1



» Bound violations pivot s and v (s is a dependent variable).

(y<1Vov2>2),(v

| |
Colby Qo= Qo

(=

="

-~

=

> 1>

—2Vv2>20), (v -2Vu < -1)

u

Equations

— & 2,
= 3UT 3V
__ Ee
= 3s5s—2u

Bounds
8 2 1
rz > U
gy £ 1
v 2 1
u < -1



» Bound violations pivot s and v (s is a dependent variable).

212 >0

(y<1ve>2),v<—-2Ve>0),(v<—2Vu<-1)

Model Equations Bounds
M(z) = —% r = 25s—u 5= 1
M(y) = —% Y = —& U g =2 9
M(s) = —% v = 3s5—2u y < 1
Mu) = -1 v > 0
Mw) = 0 u < -1



» Bound violations update assignment.

s>1.2>0

(y<1ivw >2),(v< -2V >0),(v:

~

Model Equations
() T = 28—
() y = —s+u

M(s) = 1 v = 35— 2u
(u)

(v)

/‘

—2Vu<-—1)
Bounds
=2 1
F Z
gy < 1
v > 0
u < —1



» Bound violations update dependent variables assignment.

5213 >0

(y<1lvev>2),(v<-2vv>0),v<-2vVvu< -1)

Model Equations Bounds
M(z) = 3 r = 2s—u 8 = 1
My) = -2 Yy = —Ss+u 3 2= 1
M(s) = 1 v = 3s—2u y < 1
M(u) = -1 v > 0
M(v) = 5 w L =1



» Found satisfying assignment

Equations

28 — U
— S,
3s — 2u

Bounds

1V

1V

.’l,

u

IA

1
0
1
0

IV

IA

=g



Correctness

Completeness: trivial

Soundness: also trivial

Termination: non trivial.

We cannot choose arbitrary variable to pivot.
Assume the variables are ordered.

Bland’s rule: select the smallest basic variable c that does not
satisfy its bounds, then select the smallest non-basic in the
row of c that can be used for pivoting.

Too technical.

Uses the fact that a tableau has a finite number of
configurations. Then, any infinite trace will have cycles.

Microsoft
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Data-structures

Array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)
Each variable x has a “set” (dynamic array) of occurrences:
(row_idx, pos_in_row, is_dead)
Each variable x has a “field” row[x]
row[x] is -1 if x is non basic
otherwise, row[x] contains the idx of the row containing x
Each variable x has “fields”: lower[x], upper[x], and value[x]

Microsoft
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Data-structures

rows: array of rows (equations).
Each row is a dynamic array of tuples:
(coefficient, variable, pos_in_occs, is_dead)

occs[x]: Each variable x has a “set” (dynamic array) of
occurrences:

(row_idx, pos_in_row, is_dead)
row[x]:

row[x] is -1 if x is non basic

otherwise, row[x] contains the idx of the row containing x
Other “fields”: lower|[x], upper[x], and value[x]
atoms[x]: atoms (assigned/unassigned) that contains x

Microsoft
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Data-structures

5153+b,SZEC—b
p;=a=<0,p,=1<s;,p3=1=<s5,
p,, P, Wwere already assigned
a-S;+s,+cC= 0

b-c+s,=0

a<0,1<s,

M(a)=0 value[a] =0
M(b)=-1 wvalue[a] =-1
M(c)=0  value[c]=0
M(s;) =1 value[s;]=1
M(s,) =1 value[s,] =1

rows = [
[(11 da, OI t)r (_11 S1/ O) t)r (11 Sy, 11 t)r (1) C, O) t)])
[(1rbr O; t)l (_11 C, 1) t)l (1; 521 2; t)] ]

occs[a] = [(0, O, f)]

occs[b] =[(1,0,)]

occs[c] = [(0,3,f), (1,1,f)]
occs[s,] = [(0,1,f)]

occs[s,] =[(0,0,t), (0,2,f), (1,2,f)]

row[a] =0, row[b] =1, row[c] =-1, ...
upper[a] =0, lower[s;] =1
atoms[a] = {p,}, atoms[s;] = {p,}, ...

Microsoft
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Combining Theories

In practice, we need a combination of theories.
b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
A theory is a set (potentially infinite) of first-order sentences.

Main questions:
Is the union of two theories T1 U T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for
T1UT2?

Microsoft
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Disjoint Theories

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0, -1, 1, -2, 2, ..., +, -, *, >, <, 2, <}
Array symbols: { read, write }

Microsoft
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Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), vy =c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

Microsoft
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Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,%V,

v, =3, v, =write(a, b, v;), vy =c¢-2, v, = read(v,, v;),
V5 = C'b+1, V6 = f(V4), V7 = f(VS)

U

b+2=c,v,=3,v;=c-2, v. =c-b+1,
v, = write(a, b, v,), v, =read(v,, v;), S
Ve =f(v,), v, = f(Ve), v # v, Research



Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Microsoft
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Important Result

The union of two consistent, disjoint, stably infinite
theories is consistent.
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Convexity

A theory T is convex iff
for all finite sets S of literals and
foralla,=b,v..va, =b,
Simpliesa, =b,v..va, =b,
iff
Simplies a,=b, forsome 1<i<n

Microsoft
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Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.
formulas of the form s, #r,v ... vs #r vit=t

Linear rational arithmetic is convex.

Microsoft
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Convexity: Negative Results

Linear integer arithmetic is not convex
1<a<2,b=1,c=2 impliesa=bva=c

Nonlinear arithmetic

a’=1,b=1,c=-1limpliesa=bva=c

Theory of bit-vectors

Theory of arrays
c, = read(write(a, i, ¢,), j), c; = read(a, j)
impliesc,=c,vc,=¢g

Microsoft
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Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a,<1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

Microsoft
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Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a,<1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

@ implies

a;Zz0va,#z1va;#0

Microsoft
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Nelson-Oppen Combination

Let 71 and 7 5 be consistent, stably infinite theories over disjoint
(countable) signhatures. Assume satisfiability of conjunction of
literals can decided in O(77(n)) and O(T5(n)) time respectively.
Then,

1. The combined theory 7 is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in 7 can be
decided in O(2"" x (Ty(n) + Ta(n)).

3. If 7, and 7 5 are convex, then so is 7 and satisfiability in 7 is
in O(n® x (T1(n) + Ta(n))).

Microsoft
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Nelson-Oppen Combination

The combination procedure:

Initial State: ¢ is a conjunction of literals over X1 U X.o.

Purification: Preserving satisfiability transform ¢ into ¢; A @9,
such that, ¢; € ;.

Interaction: Guess a partition of V(o) M V(¢9) into disjoint
subsets. Express it as conjunction of literals .
Example. The partition {2}, {29, 23}, {24} is represented
as Iy # To, T, F T4.T9 F Ty, To = I3.

Component Procedures : Use individual procedures to decide
whether ¢; A 1) is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Microsoft
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Soundness

Each step is satisfiability preserving.
Say ¢ is satisfiable (in the combination).
» Purification: ¢ A @9 is satisfiable.
» Iteration: for some partition 10, &1 A &9 A 1) is satisfiable.
» Component procedures: ¢ A 1’ and ¢y A 1) are both
satisfiable in component theories.
» Therefore, if the procedure return unsatisfiable, then ¢ is

unsatisfiable.

Microsoft
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Completeness

Suppose the procedure returns satisfiable.

»

»

Let 1/ be the partition and A and 3 be models of 71 A 1 A
and TQ A E)g A ’l_*
The component theories are stably infinite. So, assume the

models are infinite (of same cardinality).

A| and | B| such that
h(A(z)) = B(x) for each shared variable.

Let /1 be a bijection between

Extend B to B by interpretations of symbols in X

B(f)(b1.....bn) = h(A(f)(R7 (b1). ..., A7 (bn)))

B is a model of:

Tl A\ (_;':-3'1 A\ TZ AN, 5 . A .ET___-']

oft’
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NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.

Interaction: Deduce an equality r — -
TiF (= 2=y

Update ¢9 := @9 A 2 = 1. And vice-versa. Repeat until no
further changes.

Component Procedures : Use individual procedures to decide
whether ¢, is satisfiable.

Remark: 7; F (&; = x = y) iff ¢; A\ 2 # y is not satisfiable in

Tz' . osaoft
Kesearch



NO deterministic procedure

Assume the theories are convex.
» Suppose ¢; is satisfiable.
» Let £ be the set of equalities T =2 () = k) such that,
Tt o= Ti—05.
» By convexity, 7, I/ ¢; = \/px; = x4
» 0; AN \g v # xy is satisfiable.
» The proof now is identical to the nondeterministic case.

» Sharing equalities is sufficient, because a theory 7 ; can
assume that -2 =+ yB whenever » = v is not implied by 7 o
and vice versa.

Microsoft
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays

b+2=c, v, = write(a, b, v,),
v, =3, v, =read(v,, v;)

V3 =C-2,

Ve = Cc-b+1

EUF

ve = f(v,),
v, = f(ve),
Vg % Vs

Microsoft
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(v,, v;) v, = f(ve),
V3 =C-2, Ve # V7

Ve = C-b+1

Substituting c

Microsoft
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(vy, v3), v, = f(ve),
v;=Dh, Ve # V7

Ve =3

Propagating v;=b
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve = f(v,),
v, =3, v, =read(v,, v3), v, = f(ve),
v,=b, v;=b Vg # V-,
Ve =3 V3 =

Deducing v, = v,
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, = read(v,, v3), v, = f(ve),
v,=b, V3 =D, Vg % Vs,
Vs =3 Va=Va Vs =

Propagating v, = v,
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v,=3, v, =read(v,, vs), v, = f(ve),
v,=b, V3 =D, Vg % Vs,
v553, Va=Vq V3 =D,
V, =V, Va=Vy

Propagating v. = v,
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF

b+2=c, v, = write(a, b, v,), Ve = f(vy),

v, =3, v, =read(vy, v3), v, = f(vg),

V3 =b, V3= b, Vg # V-,

Ve =3, Va =V V3 =D,

V, =V, V=V,
Vs =V,

Congruence: v, =V,
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NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve = f(v,),
v, =3, v, = read(v,, v3), v, = f(ve),
v,=b, V3 =D, Vg £ V5,
VSE3, Va=Vq V3 =D,
V, =V, Ve = Vy
Ve =V,

Unsatisfiable

Microsoft
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NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

0<a<1,0<b<1,0<c<],
f(a) = f(b),
f(a) # f(c),
f(b) = f(c)

Microsoft
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Combining Procedures in Practice

Propagate all implied equalities.
» Deterministic Nelson-Oppen.
» Complete only for convex theories.

» It may be expensive for some theories.

Delayed Theory Combination.
» Nondeterministic Nelson-Oppen.

» Create set of interface equalities (r = ) between shared
variables.
» Use SAT solver to guess the partition.

» Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables. Microsoft
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Combining Procedures in Practice

Common to these methods is that they are pessimistic about which

equalities are propagated.
Model-based Theory Combination
» Optimistic approach.
» Use a candidate model M; for one of the theories 7 ; and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.
if M, =7,UT;U{u=uv} then propagate u = v .
» If not, use backtracking to fix the model.

» Itis cheaper to enumerate equalities that are implied in a

particular model than of all models.

Microsoft
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Example

r=f(y—1),f(z) #f(¥),0<x<1,0<y <1
Purifying

Microsoft
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Example

= flz)plm) # ), 0 <2< 1,0 L4 <1,

o2
|
=
|
fmcd
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TE Ta

Literals Eq. Classes Mode:1 Literals Model
r= f(z) {2, f(2)F | Blz)=% L1 | Alp) =0
f(z) # f(y) | {y} E(y) = *o 0<y<1|A(y) =0

{z} E(z) = %3 r=y—1 | A(2) = -1

{f(2)} E(f) = {x1— %4

{f(y)} *g b k5

*3 > %1,

else — *¢ |

Assume X =y




Example

TE T4
Literals Eq. Classes Model Literals Model
r= f(2) .y, f(z) | Ble)= % O L | AlE] =0
f(z) # f(y) | {z} E(y) = = 0<y<1|A(y)=0
T=1 {f(@), f(y)} | B(z) = o z=y—1|A(2) =-1
E(f)={x1— %5 |z=1y
¥o — ¥
else — 4}

Unsatisfiable




Example

TE T4
Literals Eq. Classes | Model Literals Model
5 = fi(2) {z, fl2)} | Elz) =2% 0£g<£1 | Alz)=10
f(x) # f(y) | {y} E(y) = *2 0<y<1]|A(y) =0
%Ly {z} E(2) = x3 z=y—1|A(z) =-1
(f@)} |E(f)={n—r*, |2#y
{f(w)} kg > kg
*3: > %],
else — g}

Backtrack, and assert = = /.
7 4 model need to be fixed.



Example

TE T 4
Literals Eq. Classes | Model Literals Model
= f(z) 18, fl2)} | BE(2)=%x 0<a<] | Alz)=0
f(x) # f(y) | {v} E(y) = *2 0<y<1l|A(y)=1
Ty {2} E(z) = %3 z2=y—1|[A(2)=0
{f(2)} E(f)={x1—*1, |2#Yy
{f(v)} *9 > %5
*3 — *1,
else — ¢}

Assume x =2z



Tk T 4

Literals Eq. Classes | Model Literals Model
r= f(2) {x, 2, E(x) =% O0<aer<1]|A(x)=0
fla) # fy) | flx), f(2)} | E(y) =% 0<y<1|Ay)=1
r#Y {y} E(z) == z=y—1|A(2)=0
T =z ()} E(f)={x1—*. |z#y

ko = %3 r ==z

else — 4}

Satisfiable




Example

TE T A

Literals Eq. Classes | Model Literals Model
r= fl2) fo, 2 E(x) = %1 0<e<L1|A(z) =0
f(z) # f(y) | f(z), f(2)} | E(y) = *2 0<y<1|A(y)=1
ey {y} E(z) =% x=y—1|A(2)=0
T =2 1f(y)} E(f) ={x1— = TFY

%9 = %3, b= 2

else — x4}

Let /2 be the bijection between |E'| and | A|.

]l:{*lf—'ro,*QP—" 1,*3*—?_1.*4f—>

2,...}




TE Ta
Literals Model Literals Model
#= if(2) E{2) = %4 0 €z <1 | Alz)=0
f(x) # f(y) | E(y) = *2 0<y<1]|A(y) =
Tty E(z) =% z=y—1|A(2)=0
v =2 B(f)y={nar+, |z#y |AF)={0—0
%o — %3 = 1— -1
else — 4} else — 2}

Extending A using /.

h =tz 0,59 Lixges—Loxirs 2,. ..




Model Mutation

Sometimes M () = M (y) by accident.

N
/\f(a?z-) >0 N 2: 20
i=1

Model mutation: diversify the current model.



Freedom Intervals

Model mutation without pivoting
For each non basic variable x; compute [L;, U]

Each row containing x; enforces a limit on how much it can
be increase and/or decreased without violating the bounds
of the basic variable in the row.



Opportunistic Equality Propagation

We say a variable is fixed if the lower and upper bound are the same.
1<x<1

A polynomial P is fixed if all its variables are fixed.

Given a fixed polynomial P of the forma 2x; + x,,
we use M(P) to denote 2M(x,) + M(x,)



Opportunistic Equality Propagation

FixedEq
<z <uy <z Luy=— z=21x; if
EqRow
By =it d” = Ey=11; if
EqOffsetRows
v =2+ P .
— ¥; = if
r; = T + Po
EqRows
v, =P+ P
— X; =25 if
r; =P+ Py

lz' = U; = lj — ’U‘j

P is fixed, andM(F’) = 0

|
|

P and P are fixed, and
M(P) =M(F)

P; and P are fixed, and
M(P1) = M(F%)



Non-stably infinite theories in practice

Bit-vector theory is not stably-infinite.
How can we support it?

Solution: add a predicate fS-bV(f[f) to the bit-vector theory (intuition:

is-bv(x) is true iff 2 is a bitvector).

The result of the bit-vector operation op(:zt, y) is not specified if

—is-bv(a) or —is-bv(y).

The new bit-vector theory is stably-infinite.



Reduction Functions

A reduction function reduces the satifiability problem for a
complex theory into the satisfiability problem of a simpler
theory.

Ackermannization is a reduction function.



Reduction Functions

Theory of commutative functions.
» Vo, y.f(2.y) = f(y, 2)
» Reduction to EUF
» Forevery f(a,b)in¢,do ¢ := o A f(a,b) = f(b,a).



\eritying Compilers

Annotated Verification

Program Condition F

N
pre/post conditions
Invariants
and other annotations

Microsoft
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Verification conditions: Structure

Y AXioms
(non-ground)

Control & Data
Flow



Main Challenge

e Quantifiers, quantifiers, quantifiers, ...

© Modeling the runtime

Y h,o,f:
IsHeap(h) A o # null A read(h, o, alloc) =t
—
read(h,o, f) = null v read(h, read(h,o,f),alloc) =t

Microsoft

Research



Main Challenge

e Quantifiers, quantifiers, quantifiers, ...
° Modeling the runtime

© Frame axioms

Y o, f:
o # null A read(h,, o, alloc) =t =
read(h,,0,f) = read(h,,0,f) v (0,f) e M

Microsoft
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Main Challenge

e Quantifiers, quantifiers, quantifiers, ...
© Modeling the runtime

® Frame axioms

@ User provided assertions

Vi,j: i <j=read(a,i) <read(b,j)

Microsoft
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Main Challenge

e

“

e

a

Quantifiers, quantifiers, quantifiers, ...

Modeling the runtime
Frame axioms

User provided assertions
Theories

vV x: p(x,x)

v x,y,2: p(x,y), ply,z) = p(x,2)
vV x,y: p(xy), ply,x) = x=y

Microsoft
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Main Challenge

e

e

e

e

Quantifiers, quantifiers, quantifiers, ...
Modeling the runtime

Frame axioms

User provided assertions

Theories
Solver must be fast in satisfiable instances.

We want to find bugs!

Microsoft
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Some statistics

e Grand challenge: Microsoft Hypervisor

e 70k lines of dense C code

@ VCs have several Mb

e Thousands of non ground clauses

@ Developers are willing to wait at most 5 min per VC

Microsoft
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IMany Approaches

Heuristic quantifier instantiation

Combining SMT with Saturation provers

Complete quantifier instantiation

Decidable fragments

Model based quantifier instantiation

Microsoft
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E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
e E-matching (matching modulo equalities).

° Example:
v x: f(g(x)) = x { f(g(x)) }
a = g(b),
b=c,
f(a) # C Trigger }

Microsoft
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E-matching & Quantifier instantiation

o SMT solvers use heuristic quantifier instantiation.
© E-matching (matching modulo equalities).
° Example:

v x: f(g(x)) = x { f(g(x)) }

=g(b
e b flglb) b

f(a) #

Equalities and ground terms come
from the partial model M

MICrosorn™
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E-matching: why do we use it?

° |ntegrates smoothly with DPLL.
o Software verification problems are big & shallow.
e Decides useful theories:

© Arrays

e Partial orders

e

Microsoft
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Efficient E-matching

e E-matching is NP-Hard.
@ |n practice

Problem Indexing Technique

Incremental E-Matching Inverted path index
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E-matching code trees

Trigger: Instructions:

f(x1, g(x1, a), h(x2), b) . init(f, 2)
check(r4, b, 3)

4 . bind(r2, g, r5, 4)

I i | . compare(rl, r5, 5)
. |rr;| art.rlggers share severa . check(r, a, 6)
instructions. . bind(r3, h, r7, 7)

. yield(r1, r7)

Combine code sequences
in a code tree

Microsoft
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© E-matching needs ground seeds.
vx: p(x),
Vx: not p(x)

Microsoft
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e E-matching needs ground seeds.
@ Bad user provided triggers:

vx: f(g(x))=x { f(g(x)) }

g(a) =c,

g(b) =c,

1+b Trigger Is too
restrictive

Microsoft
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e E-matching needs ground seeds.
@ Bad user provided triggers:

Vx: f(g(x))=x{ g(x) }

g(a) =c,

g(b) =rc,

a=Db More “liberal”
trigger

Microsoft
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© E-matching needs ground seeds.
e Bad user provided triggers:

vx: H(g(x))=x{g(x) }

gla)=c,

g(b) =c,

a+b,

flg(a)) = a, )
f(g(b)) = b ) ot
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E-matching:

© E-matching needs ground seeds.
@ Bad user provided triggers.
e |tis not refutationally complete.

False positives

Microsoft

Research



» Tight integration: DPLL + Saturation solver.
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DPLL( )

@ Inference rule:
c, ... C,

C
e DPLL(I') is parametric.

° Examples:
@ Resolution
@ Superposition calculus

e
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DPLL(I)
M | F
LPartiaI nﬁ &f clauses J
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DPLL(I): Deduce |

p(a) | p(a)va(a), Vx: —=p(x)vr(x), Vx: p(x)vs(x)

mmmmmm
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DPLL(I): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

mmmmmm
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DPLL(I'): Deduce |

p(a) | p(a)va(a), —p(x)vr(x), p(x)vs(x)

A 4

Resolution

p(a) | p(a)val(a), =p(x)vr(x), p(x)vs(x), r(x)vs(x)

mmmmmm
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DPLL(I): Deduce |I

@ Using ground atoms from M:
M| F
© Main issue: backtracking.  Track literals
® Hypothetical clauses: from M used to

%erive C

%"’
(hypothesis)
Ground literals

(regular) Clause
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DPLL(I'): Deduce Il

p(a) | p(a)vala), =p(x)vr(x)

p(a), —p(x)vr(x)

N 4 r(a)

p(a) | p(a)vala), ﬂp(X)vr(X)fp(a)Sr(a)

mmmmmm
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DPLL(I"): Backtracking

p(a), r(a) | p(a)va(a), —p(a)v—r(a), p(a)>r(a), ..

mmmmmm
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DPLL(I"): Backtracking

pla), (@) | plalvalal, —pla)v—r(a), i), .

p(a) is removed from M

vV

—p(a) | p(a)va(a), —p(a)v—r(a), ...

mmmmmm
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DPLL(I ): Improvement

e Saturation solver ignores non-unit ground
clauses.

p(a) | p(@(a), —p(x)vr(x)

Microsoft
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DPLL(I): Improvement

@ Saturation solver ignores non-unit ground
clauses.

o |t is still refutanionally complete if:
e I has the reduction property.

Axioms "\SO/
7
(non-ground) ~ ¢~

and-or tree
(ground)
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Research



DPLL(I): Improvement

e Saturation solver ignores non-unit ground
clauses.

o |t is still refutanionally complete if:
e I has the reduction property.

|
. Ground literals

Saturation b
Solver *
Theories

Ground clauses
: /
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® Interpreted symtbols
—(f(@)>2), f(x)>5

e |tis refutationally complete if

® Interpreted symbols only occur in ground
clauses

= Non ground clauses are variable inactive
* “Good” ordering is used

Microsoft
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Notation Remainder

VX, Xyt =p(Xq, X,) Vv f(xq) = f(x,) + 1,
p(a,b),a<b+1

Microsoft
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Notation Remainder

—p(xy, X5) v f(x;) = f(x,) + 1,
p(a,b),a<b+1
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Essentially uninterpreted fragment

e Variables appear only as arguments of
uninterpreted symbols.

flalx,) +a) < g(x)) v h(f(x)), x,) =0 ¥

flx,01,) < () + (x,) ()

Microsoft
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Basic Idea

Given a set of formulas F,
build an equisatisfiable set of quantifier-free formulas F*

“Domain” of f is the set of ground terms A,
t e A; if thereisaground term f(t)

Suppose

1. We have a clause C[f(x)] containing f(x).
2. We have f(t).
->

Instantiate x with t: C[f(t)].
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F F*
8(X1, X;) =0 v h(x,) =0,
g(f(x,),b) + 1 <f(xy),
h(c) =1,
f(a)=0

Microsoft
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F F*
8y %) =0V hix) =0,  h(c)=1,
g(f(x,),b) + 1 <1(x,), f(a) =0
h(c) = 1 I
f(a)=0

Copy quantifier-free formulas

“Domains”:
Ac{a}
Ay}
A:{c}

Microsoft
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F F*
8(x,, %) = 0 v h(x;) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), f(a) =0,
hk)il, :i>
f(a)=0

“Domains”:
Ac:{a}
A}
A,:{c}

Microsoft
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F F*
8(x,, %) = 0 v h(x) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :i> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a)

f(a)=0

“Domains”:
Ac:{a}
Ag:{[f(a), b] }
A,:{c}

Microsoft
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F F*
g(x4, x;) =0 v h(x,) =0, h(c)=1,
g(f(x,),b) + 1 <f(x,), :i> f(a) =0,
h(c) =1, g(f(a),b) + 1 <f(a),

f(a)=0

“Domains”:
Ac:{a}

Ag: {[f(a), b] }
A,:{c}
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F F*
8(x1, %,) = 0 v h(x)) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a),

f(a)=0 g(f(a), b)=0v h(b)=0

“Domains”:
Ac:{a}

A, :{[f(a), b] }
A,:{c, b}
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F F*
g(x4, x;) =0 v h(x,) =0, h(c) =1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 <f(a),

f(a) = 0 a(f(a), b) =0 v h(b) = 0

“Domains”:
Ac:{a}

A, :{[f(a), b]}
A,:{c, b}
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F F*
8(x1, %,) = 0 v h(x)) = 0, h(c) = 1,
g(f(x,),b) + 1 <f(x,), :j> f(a) =0,
h(c) =1, g(f(a),b) + 1 < f(a),

fa)=0 a(f(a), b) =0 v h(b) = 0,
g(f(a),c)=0vh(c)=0

“Domains”:

Ac:{a}

A, {[f(a), b], [f(a), c] }
A,:{c b}
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F F*

8(x,, %) = 0 v h{x;) = 0, h(c) = 1,

g(f(x,),b) + 1 <f(x,), j‘> f(a) =0,

h(c) =1, g(f(a),b) + 1 < f(a),

f(a)=0 g(f(a), b) =0 v h(b) =0,

g(f(a),c)=0vh(c)=0
v
M

a—>2,b—>2,c—>3
f—>{2->0,..}

h—>{2—>0,3->1,..}
g —>1{[0,2]—>-1,1[0,3]—>0, ...}

Microsoft

Research



Basic Idea (cont.)

Given a model M for F*,
Build a model M™ for F

Define a projection function 7 s.t.
range of . is M(A;), and
e (v)=v if ve M(A)

Then,
M7™(f)(v) = M(f)(mv))
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Basic Idea (cont.)
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Basic Idea (cont.)

Given a model M for F*,
Build a model M™ for F

In our example, we have: h(b) and h(c)
—>A, ={b,c}, and M(A,)={2,3}

,={2—>2,3—>3,else >3}

M(h) M*(h)
{250,3>1,..) j> {2-50,3>1,else —> 1}

M™(h) = Ax. if(x=2, 0, 1)
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F F*

8(x;, ;) =0 Vv h(x;) =0, h(c) =1,

g(f(x,),b) + 1 <f(x,), f(a) =0,

h(c) =1, g(f(a),b) + 1 <f(a),

f(a)=0 g(f(a), b) =0 v h(b) =0,
g(f(a),c)=0v h(c)=0

V™ M v

a—>2,b—>2c—>3 a—>2,b—>2,c—>3

f— Ax. 2 @f—>{2—>0,...}

h — Ax. if(x=2, 0, 1) h—>{2—->0,3->1,..}

g — Ax,y. if(x=0ny=2,-1,0) &—>1[0,2]>-1,[0,3]>0, ...}

Microsoft
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Example: Model Checking

MTC
a—>2,b—>2,c—-3
f— Ax. 2 Does M™ satisfies?
h — Ax. if(x=2, 0, 1) VX4, X, : 8(Xy, X,) =0V h(x,) =0
g — Ax,y. if(x=0Ay=2,-1, 0) @

VX4, X1 if(x;=0Ax,=2,-1,0) = 0 v if(x,=2,0,1) =0 is valid

U

x4, X,: if(x;=0Ax,=2,-1,0) # 0 A if(x,=2,0,1) #0 is unsat

if(s;=01s,=2,-1,0) # 0 A if(s,=2,0,1) #0 is unsat

Research



Why does it work?

Suppose M™ does not satisfy C[f(x)].

Then for some value v,
M™{x —v} falsifies C[f(x)].

M™{x —m(v)} also falsifies C[f(x)].

But, thereisatermt € A; s.t. M(t) = mi(v)
Moreover, we instantiated C[f(x)] with t.

So, M must not satisfy C[f(t)].
Contradiction: M is a model for F*.

Microsoft
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Refinement 1: Lazy construction

* F* may be very big (or infinite).
@ Lazy-construction
e Build F* incrementally, F* is the limit of the sequence
FFcFc. cFc..
e |If FXis unsat then F is unsat.
e |f FXis sat, then build (candidate) M~™
o If M™satisfies all quantifiers in F then return sat.
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Refinement 2: Model-based instantiation

Suppose M™does not satisfy a clause C[f(x)] in F.

Add an instance C[f(t)] which “blocks” this spurious model.
Issue: how to find t?

Use model checking,

and the “inverse” mapping 7! from values to terms (in A;).
niv)=t if  M™(t) = m(v)
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Model-based instantiation: Example

F FO M7
Vx,: f(x,) <0, f(a) =1, a—2, b—3
fla)=1, [ f(b)=-1 1) f—ohx.if(x=2,1,-1)
f(b) =-1 L
Model Checking VvXx;: f(x;) <O
notif(s;=2,1,-1)<0

F iyt
f(a) =1, S;—> 2
unsat <:] f(z) 4 <:] nf'11(2) .
f(a)<O

Microsoft
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Infinite F*

e |s our procedure refutationally complete?

® FOL Compactness

A set of sentences is unsatisfiable
iff
it contains an unsatisfiable finite subset.

© Atheory T is a set of sentences, then
apply compactness to F*UT
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Infinite F*: Example

F
Vx4 f(x,) < f(f(x,)),
Vx,: f(x,) <a,

Unsatisfiable

1 < (0).
F*
f(0) < f(f(0)), f(f(0)) < f(f(f(0))), ...
f(0) < a, f(f(0)) < a, ... < Every finite subset
1 < f(0) of F* is satisfiable.
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Infinite F*: What is wrong?

@ Theory of linear arithmetic T, is the set of all first-order
sentences that are true in the standard structure Z.

= T, has non-standard models.
e F and F* are satisfiable in a non-standard model.

e Alternative: a theory is a class of structures.
» Compactness does not hold.
e Fand F* are still equisatisfiable.
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A: and Set Constraints

Given a clause C,[x,, ..., X ]
Let

S, ;be the set of ground terms used to instantiate x;in
clause C,[x,, ..., x,]

How to characterize S, .?

a ground term t te Ay
t[xlr " Xn] t[Sk’li vee Sk,n] C Af’j
Xi Sk,i = Af,j

Microsoft
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Ac: Example

F A
g(x,, X,) =0 Vv h(x,) =0, S11=A;1, S, = Afg’z, S1,=An1
g(f(x,),b) + 1 <f(x,), [> S;1 =AM, f(S;1) S A, b eA,,
h(C) = 11 C Ah,l
f(a)=0 a € A,

U

A;: least solution

Use A; to generate F* <:j 21,1 = E f(‘;‘) 1 51,2 ={b,c}
21=14
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Complexity

o Agis stratified then the least solution (and F*) is finite

t[Sk 1/ s Sicn] S A level(S ;) < level(A;))
Sy = As; level(S, ;) = level(A;;)

© New decidable fragment: NEXPTIME-Hard.

= The least solution of Aris exponential in the worst case.
aeS,;, beS;, f,(S,5,)<S,, ... f.(S,,S,) = S,.1

© F* can be doubly exponential in the size of F.
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Extensions

= Arithmetical literals: t: must be monotonic.

—(x;<x)) Sii = Sy,
—|(Xi < t), —|(t Sxi) te Sk,i
X, =t {t+1, t-1} < S, ;
e Offsets:
X+ r Syitr < Ay
Af,j'l'('r) Sy,

Microsoft
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Extensions: Example

Shifting

—(0 < x,) v =(x; £ n) v f(xy) = g(x,+2)
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More Extensions

@ Many-sorted logic
© Pseudo-Macros

0 < glxy) v f(g(xy)) = xy,
0 < glx,) v h(g(xy)) = 2%,
g(a) <0

Microsoft
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Conclusion

Powerful, mature, and versatile tools like SMT solvers can now be

exploited in very useful ways.

The construction and application of satisfiability procedures is an

active research area with exciting challenges.
SMT is hot at Microsoft.
Z3 is a new SMT solver.

Main applications:
» Test-case generation.
» Verifying compiler.

» Model Checking & Predicate Abstraction.
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Books

© Bradley & Manna: The Calculus of Computation

@ Kroening & Strichman: Decision Procedures, An
Algorithmic Point of View

» Chapter in the Handbook of Satisfiability
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Web Links

Z3:

http://research.microsoft.com/projects/z3

http://research.microsoft.com/~leonardo

» Slides & Papers
http://www.smtlib.org
http://www.smtcomp.org
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