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First-Order Theorem Proving

Given: A set axioms and a hypothesis in first-order logic

A = {A1, . . . , An}, H

Question: Do the axioms logically imply the hypothesis?

A
?

|= H

An automated theorem prover tries to solve this question!
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First-Order Logic with Equality

I First order logic deals with

– Elements
– Relations between elements
– Functions over elements
– . . . and their combination

I Allows general statements using quantified variables

– There exists an X so that property P holds (∃X : P (X))
– For all possible values of X property P holds (∀X : P (X))

I Function and predicate symbols are uninterpreted

– No implicit background theory
– All properties have to be specified explicitely
– Exception: Equality is interpreted (as a congruence relation)
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Why First-Order Logic?

I Expressive:

– Can encode any computable problem
– Most tasks can be specified reasonably naturally
– Many other logics can be reasonably translated to first-order logic

I Automatizable:

– Sound and complete calculi for proof search exist
– Search procedures are reasonably efficient

I Stable:

– Logic is well-known and well-understood
– Semantics are clear (and somewhat intuitive)

First-order logic is a good compromise between
expressiveness and automatizability

Stephan Schulz 4



Mainstream Milestones

– Herbrand-Universe Enumeration+SAT [DP60]
– Resolution [Rob65]
– Model Elimination [Lov68]
– Paramodulation [RW69]
– Completion [KB70]
– Otter 1.0 (1989, McCune)
– Unfailing completion [BDP89, HR87]
– Superposition [BG90, NR92, BG94]
– SETHEO [LSBB92]
– Vampire [Vor95] (but kept hidden for years)
– First CASC competition at Rutgers, FLOC’96 (Sutcliffe, Suttner)
– Waldmeister [BH96]
– SPASS [WGR96]
– E [Sch99]
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Explicit Embedded

Abstract Machine

Implementation
Styles
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Explicit Embedded

Abstract Machine

E
SPASS
Waldmeister
Otter
Prover-9

Vampire

PTTP
Barcelona/Dedam

Gandalf

leanCOP

SETHEO (3.2)

S-SETHEO

SNARK
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Declarative
Functional

Explicit Embedded

Abstract Machine

E
SPASS
Waldmeister
Otter
Prover-9

Vampire

PTTP
Barcelona/Dedam

Gandalf

leanCOP

SETHEO (3.2)

S-SETHEO

SNARK

Imperative
OO
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Implementation Style (References)

Barcelona/Dedam [NRV97] E [Sch02, Sch04b]
Gandalf [Tam97] Otter [MW97]
PTTP [Sti92, Sti89] Prover-9 [McC08]
S-SETHEO [LS01b] SETHEO [LSBB92, MIL+97]
SPASS [Wei01, WSH+07] Snark [E.S08]
Vampire [RV02] Waldmeister [LH02, GHLS03]
leanCOP [OB03, Ott08]
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Formulae

I Formulas are recursively defined:

– Literals (elementary statements) are formulae
– If F is a formula, ∀X : F and ∃X : F are formulae
– Boolean combinations of formulae are formulae
– Parentheses are applied wherever necessary

I Example:

– ∀X : (∀Y : ((odd(X) ∧ odd(Y ))→ X 6' add(Y, 1)))
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Clauses

I Clauses are multisets written and interpreted as disjunctions of literals

– All variables implicitly universally quantified

I Example:

X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

I Alternative views: Implicational

X ' add(Y, 1) =⇒ (odd(X) ∨ odd(Y ))
or

(X ' add(Y, 1) ∧ ¬odd(X)) =⇒ odd(Y ))
or

(X ' add(Y, 1) ∧ ¬odd(Y )) =⇒ odd(X))
or (weirdly)

(¬odd(Y ) ∧ ¬odd(X)) =⇒ X 6' add(Y, 1)
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Literals

I X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

I – X 6' add(Y, 1) is a negative equational literal
– odd(X) and odd(X) are positive non-equational literals

I Conventions:

– s 6' t is a more convenient way of writing ¬s ' t
– We write s '̇ t to denote an equational literal that may be either positive or

negative
– s ' t is a more convenient way of writing ' (s, t)
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Literals

I X 6' add(Y, 1) ∨ odd(X) ∨ odd(Y )

I – X 6' add(Y, 1) is a negative equational literal
– odd(X) and odd(X) are positive non-equational literals

I Convention:

– s 6' t is a more convenient way of writing ¬s ' t
– We write s '̇ t to denote an equational literal that may be either positive or

negative
– Heresy: s ' t is a more conventient way of writing ' (s, t)
– Truth: odd(X) is a more convenient way of writing odd(X) ' >

Stephan Schulz 13



Equational Encoding Snag

I Problem:

– {X ' a),¬p(a)} is satisfiable
– What about {X ' a), p(a) 6' >}?

I Solution:

– Two sorts: Individuals and Bools
– Variables range over individuals only
– Predicate terms are sort Bool

I Implemented that way in E
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Terms

I X 6' add(Y , 1) ∨ odd(X) ∨ odd(Y )

I – X, add(Y , 1), 1, and Y are terms
– X and Y are variables
– 1 is a constant term
– add(Y , 1) is a composite term with proper subterms 1 and Y
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Concrete Syntax

I Historically: Large variety of syntaxes

– Prolog-inspired, e.g. LOP (SETHEO, E)
– By committee, e.g. DFG-Syntax (SPASS)
– LISP-inspired (SNARK)
– Home-grown (Otter, Prover-9)
– TPTP-1/2 syntax (with TPTP2X converter)

I Recently: Quasi-standardizaton on TPTP-3 syntax [SSCG06, Sut09]

– Annotated clauses/formulas
– Can represent problems and proofs
– Support in Vampire, SPASS, E, E-SETHEO, iProver,
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A First-Order Prover - Bird’s Eye Perspective

FOF
Problem

CNF
Problem

Result/Proof

Prover
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A First-Order Prover - Bird’s X-Ray Perspective

Clausification

CNF 
refutation

FOF
Problem

CNF
Problem

CNF
Problem

Result/Proof
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Clausification

A
?

|= H =⇒ Clausifier =⇒ {C1, C2, . . . , C3}

...such that
{C1, C2, . . . , C3} is unsatisfiable

iff
A |= H holds
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Clausification

A
?

|= H =⇒ Magic =⇒ {C1, C2, . . . , C3}

...such that
{C1, C2, . . . , C3} is unsatisfiable

iff
A |= H holds
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Clausification

A
?

|= H =⇒ Magic =⇒ {C1, C2, . . . , C3}

White Magic: Standard conjunctive normal form with Skolemization [Lov78] [NW01]
(read once)

I Straightforward
I CNF can explode (and does, occasionally)

Black Magic: Miniscoping and definitions [NW01] (Read twice)

I Smaller CNF, exponential growths can be controlled
I Better (smaller) terms, less arity in Skolem functions
I Implemented in E

Forbidden Magic: Advanced Skolemization [NW01](Read five times)

I Implemented in FLOTTER
I Theoretically superior, but advantage in practice unclear
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Why FOF at all?

% All aircraft are either in lower or in upper airspace
fof(low_up_is_exhaustive, axiom,

(![X]:(lowairspace(X)|uppairspace(X)))).

fof(filter_equiv, conjecture, (
% Naive version: Display aircraft in the Abu Dhabi Approach area in
% lower airspace, display aircraft in the Dubai Approach area in lower
% airspace, display all aircraft in upper airspace, except for
% aircraft in military training region if they are actual military
% aircraft.

(![X]:(((a_d_app(X) & lowairspace(X))|(dub_app(X) & lowairspace(X))
|uppairspace(X))&
(~milregion(X)|~military(X))))
<=>

% Optimized version: Display all aircraft in either Approach, display
% aircraft in upper airspace, except military aircraft in the military
% training region

(![X]:((uppairspace(X) | dub_app(X) | a_d_app(X)) &
(~military(X) | ~milregion(X)))))).
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Why FOF at all?

cnf(i_0_1,plain,(lowairspace(X1)|uppairspace(X1))).
cnf(i_0_12,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_8,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_10,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_13,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_9,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_11,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_6,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_2,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_4,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_7,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~uppairspace(esk2_0))).
cnf(i_0_3,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~a_d_app(esk2_0))).
cnf(i_0_5,negated_conjecture,(military(esk1_0)|military(esk2_0)|~uppairspace(esk1_0)|~dub_app(esk2_0))).
cnf(i_0_36,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~a_d_app(esk1_0))).
cnf(i_0_24,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_32,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~a_d_app(esk2_0))).
cnf(i_0_34,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~dub_app(esk2_0))).
cnf(i_0_20,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_22,negated_conjecture,(milregion(esk1_0)|milregion(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|

~dub_app(esk2_0))).
cnf(i_0_37,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~a_d_app(esk1_0))).
cnf(i_0_25,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|

~dub_app(esk1_0))).
cnf(i_0_33,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|

~a_d_app(esk2_0))).
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cnf(i_0_35,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_21,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_23,negated_conjecture,(milregion(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_30,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~a_d_app(esk1_0))).

cnf(i_0_18,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_26,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~a_d_app(esk2_0))).

cnf(i_0_28,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_14,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_16,negated_conjecture,(milregion(esk2_0)|military(esk1_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_31,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~a_d_app(esk1_0))).

cnf(i_0_19,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~uppairspace(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_27,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~a_d_app(esk2_0))).

cnf(i_0_29,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_15,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~a_d_app(esk2_0)|
~dub_app(esk1_0))).

cnf(i_0_17,negated_conjecture,(military(esk1_0)|military(esk2_0)|~lowairspace(esk1_0)|~dub_app(esk1_0)|
~dub_app(esk2_0))).

cnf(i_0_44,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X1)|
dub_app(X1))).

cnf(i_0_39,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_46,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X2)|a_d_app(X1)|
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dub_app(X1))).
cnf(i_0_45,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|uppairspace(X1)|a_d_app(X1)|

dub_app(X2)|dub_app(X1))).
cnf(i_0_47,negated_conjecture,(uppairspace(X2)|uppairspace(X1)|a_d_app(X2)|a_d_app(X1)|dub_app(X2)|

dub_app(X1))).
cnf(i_0_41,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|a_d_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_40,negated_conjecture,(lowairspace(X2)|uppairspace(X2)|dub_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_42,negated_conjecture,(uppairspace(X2)|a_d_app(X2)|dub_app(X2)|~milregion(X1)|~military(X1))).
cnf(i_0_43,negated_conjecture,(uppairspace(X1)|a_d_app(X1)|dub_app(X1)|~milregion(X2)|~military(X2))).
cnf(i_0_38,negated_conjecture,(~milregion(X2)|~milregion(X1)|~military(X2)|~military(X1))).
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Lazy Developer’s Clausification

A
?

|= H =⇒
E

FLOTTER
Vampire

=⇒ {C1, C2, . . . , C3}

I iProver (uses E, Vampire)

I E-SETHEO (uses E, FLOTTER)

I Fampire (uses FLOTTER)
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A First-Order Prover - Bird’s X-Ray Perspective

Clausification

CNF 
refutation

FOF
Problem

CNF
Problem

CNF
Problem

Result/Proof
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CNF Saturation

I Basic idea: Proof state is a set of clauses S

– Goal: Show unsatisfiability of S
– Method: Derive empty clause via deduction
– Problem: Proof state explosion

I Generation: Deduce new clauses

– Logical core of the calculus
– Necessary for completeness
– Lead to explosion is proof state size

=⇒ Restrict as much as possible

I Simplification: Remove or simplify clauses from S

– Critical for acceptable performance
– Burns most CPU cycles

=⇒ Efficient implementation necessary
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Rewriting

I Ordered application of equations

– Replace equals with equals. . .
– . . . if this decreases term size with respect to given ordering >

s ' t u '̇ v ∨R

s ' t u[p← σ(t)] '̇ v ∨R

I Conditions:

– u|p = σ(s)
– σ(s) > σ(t)
– Some restrictions on rewriting >-maximal terms in a clause apply

I Note: If s > t, we call s ' t a rewrite rule

– Implies σ(s) > σ(t), no ordering check necessary
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Paramodulation/Superposition

I Superposition: “Lazy conditional speculative rewriting”

– Conditional: Uses non-unit clauses
∗ One positive literal is seen as potential rewrite rule
∗ All other literals are seen as (positive and negative) conditions

– Lazy: Conditions are not solved, but appended to result
– Speculative:
∗ Replaces potentially larger terms
∗ Applies to instances of clauses (generated by unification)
∗ Original clauses remain (generating inference)

s ' t ∨ S u '̇ v ∨R

σ(u[p← t] '̇ v ∨ S ∨R)

I Conditions:

– σ = mgu(u|p, s) and u|p is not a variable
– σ(s) 6< σ(t) and σ(u) 6< σ(v)
– σ(s ' t) is >-maximal in σ(s ' t ∨ S) (and no negative literal is selected)
– σ(u '̇ v) is maximal (and no negative literal is selected) or selected
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Subsumption

I Idea: Only keep the most general clauses

– If one clause is subsumed by another, discard it

C σ(C) ∨R

C

I Examples:

– p(X) subsumes p(a) ∨ q(f(X), a) (σ = {X ← a})
– p(X) ∨ p(Y ) does not multi-set-subsume p(a) ∨ q(f(X), a)
– q(X, Y ) ∨ q(X, a) subsumes q(a, a) ∨ q(a, b)

I Subsumption is hard (NP-complete)

– n! permutations in non-equational clause with n literals
– n!2n permutations in equational clause with n literals

Stephan Schulz 31



Term Orderings

I Superposition is instantiated with a ground-completable simplification ordering
> on terms

– > is Noetherian
– > is compatible with term structure: t1 > t2 implies s[t1]p > s[t2]p
– > is compatible with substitutions: t1 > t2 implies σ(t1) > σ(t2)
– > has the subterm-property: s > s|p
– In practice: LPO, KBO, RPO

I Ordering evaluation is one of the major costs in superposition-based theorem
proving

I Efficient implementation of orderings: [Löc06, L0̈6]
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Generalized Redundancy Elimination

I A clause is redundant in S, if all its ground instances are implied by > smaller
ground instances of other clauses in S

– May require addition of smaller implied clauses!

I Examples:

– Rewriting (rewritten clause added!)
– Tautology deletion (implied by empty clause)
– Redundant literal elimination: l ∨ l ∨R replaced by l ∨R
– False literal elimination: s 6' s ∨R replaced by R

I Literature:

– Theoretical results: [BG94, BG98, NR01]
– Some important refinements used in E: [Sch02, Sch04b, RV01, Sch09]

Stephan Schulz 33



The Basic Given-Clause Algorithm

I Completeness requires consideration of all possible persistent clause combinations
for generating inferences

– For superposition: All 2-clause combinations
– Other inferences: Typically a single clause

I Given-clause algorithm replaces complex bookkeeping with simple invariant:

– Proofstate S = P ∪ U , P initially empty
– All inferences between clauses in P have been performed

I The algorithm:

while U 6= {}
g = delete best(U)
if g == �

SUCCESS, Proof found
P = P ∪ {g}
U = U∪generate(g, P )

SUCCESS, original U is satisfiable
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DISCOUNT Loop

I Aim: Integrate simplification into given clause algorithm

I The algorithm (as implemented in E):

while U 6= {}
g = delete best(U)
g = simplify(g,P )
if g == �

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c ∈ P |c redundant or simplifiable w.r.t. g}
P = (P\T ) ∪ {g}
T = T∪generate(g, P )
foreach c ∈ T

c =cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable
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What is so hard about this?
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What is so hard about this?

I Data from simple TPTP example NUM030-1+rm eq rstfp.lop
(solved by E in 30 seconds on ancient Apple Powerbook):

– Initial clauses: 160
– Processed clauses: 16,322
– Generated clauses: 204,436
– Paramodulations: 204,395
– Current number of processed clauses: 1,885
– Current number of unprocessed clauses: 94,442
– Number of terms: 5,628,929

I Hard problems run for days!

– Millions of clauses generated (and stored)
– Many millions of terms stored and rewritten
– Each rewrite attempt must consider many (>> 10000) rules
– Subsumption must test many (>> 10000) candidates for each subsumption

attempt
– Heuristic must find best clause out of millions
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Proof State Development
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Proof State Development
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Quadratic growth

Proof state behavior for ring theory example RNG043-2 (Default Mode)

I Growth is roughly quadratic in the number of processed clauses
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Literature on Proof Procedures

I New Waldmeister Loop: [GHLS03]

I Comparisons: [RV03]

I Best discussion of E Loop: [Sch02]
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Exercise: Installing and Running E

I Goto http://www.eprover.org

I Find the download section

I Find and read the README

I Download the source tarball

I Following the README, build the system in a local user directory

I Run the prover on one of the included examples to demonstrates that it works.
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Operating System

I Pick a UNIX variant

– Widely used
– Free
– Stable
– Much better support for remote tests and automation
– Everybody else uses it ;-)

I Aim for portability

– Theorem provers have minimal requirements
– Text input/output
– POSIX is sufficient
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Language API/Libraries

I Pick your language

I High-level/funtional or declarative languages come with rich datatypes and
libraries

– Can cover ”Generic data types”
– Can even cover 90% of ”Logical data types”

I C offers nearly full control

– Much better for low-level performance
– . . . if you can make it happen!
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Memory Consumption
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Memory Management

I Nearly all memory in a saturating prover is taken up by very few data types

– Terms
– Literals
– Clauses
– Clause evaluations
– (Indices)

I These data types are frequently created and destroyed

– Prime target for freelist based memory management
– Backed directly by system malloc()
– Allocating and chopping up large blocks does not pay off!

I Result:

– Allocating temporary data structures is O(1)
– Overhead is very small
– Speedup 20%-50% depending on OS/processor/libC version
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Memory Management illustrated
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Exercise: Influence of Memory Management

I E can be build with 2 different workin memory management schemes

– Vanilla libC malloc()
∗ Add compiler option -DUSE_SYSTEM_MEM in E/Makefile.vars

– Freelists backed by malloc() (see above)
∗ Default version

I Compare the performance yourself:

– Run default E a couple of times with output disabled
– eprover -s --resources-info LUSK6ext.lop
– Take note of the reported times
– Enable use of system malloc(), then make rebuild
– Rerun the tests and compare the times
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Makefile.vars

...
BUILDFLAGS = -DPRINT_SOMEERRORS_STDOUT \

-DMEMORY_RESERVE_PARANOID \
-DPRINT_TSTP_STATUS \

-DSTACK_SIZE=32768 \
-DUSE_SYSTEM_MEM \
# -DFULL_MEM_STATS\
# -DPRINT_RW_STATE # -DMEASURE_EXPENSIVE

...
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Generic Data types

I (Dynamic) Stacks

I (Dynamic) Arrays

I Hashes

I Singly linked lists

I Doubly linked lists

I Tries

I Splay trees [ST85]

I Skip lists [Pug90]
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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First-Order Terms

I Terms are words over the alphabet F ∪ V ∪ {′(′,′ )′,′ ,′ }, where. . .

I Variables: V = {X, Y, Z,X1, . . .}

I Function symbols: F = {f/2, g/1, a/0, b/0, . . .}

I Definition of terms:

– X ∈ V is a term
– f/n ∈ F, t1, . . . , tn are terms  f(t1, . . . , tn) is a term
– Nothing else is a term

Terms are by far the most frequent objects in a typical proof state!
 Term representation is critical!
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Representing Function Symbols and Variables

I Naive: Representing function symbols as strings: "f", "g", "add"

– May be ok for f , g, add
– Users write unordered pair, universal class, . . .

I Solution: Signature table

– Map each function symbol to unique small positive integer
– Represent function symbol by this integer
– Maintain table with meta-information for function symbols indexed by assigned

code

I Handling variables:

– Rename variables to {X1, X2, . . .}
– Represent Xi by −i
– Disjoint from function symbol codes!

From now on, assume this always done!
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Representing Terms

I Naive: Represent terms as strings "f(g(X), f(g(X),a))"

I More compact: "fgXfgXa"

– Seems to be very memory-efficient!
– But: Inconvenient for manipulation!

I Terms as ordered trees

– Nodes are labeled with function symbols or variables
– Successor nodes are subterms
– Leaf nodes correspond to variables or constants
– Obvious approach, used in many systems!
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Abstract Term Trees

I Example term: f(g(X), f(g(X), a))

a

f

g

X

f

g

X
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LISP-Style Term Trees

a

f

g

X

f

g

X

g

I Argument lists are represented as linked lists

I Implemented e.g. in PCL tools for DISCOUNT and Waldmeister
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C/ASM Style Term Trees

0

f 2

g 1

X

f 2

g 1

X

a

I Argument lists are represented by arrays with length

I Implemented e.g. in DISCOUNT (as an evil hack)
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C/ASM Style Term Trees

X

f 2

f 2

a 0

g 1

X g 1

I In this version: Isomorphic subterms have isomorphic representation!
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Exercise: Term Datatype in E

I E’s basic term data type is defined in E/TERMS/cte_termtypes.h

– Which term representation does E use?
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Shared Terms (E)

01g

X Y Z

f 2

f 2

a

I Idea: Consider terms not as trees, but as DAGs

– Reuse identical parts
– Shared variable banks (trivial)
– Shared term banks maintained bottom-up
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Shared Terms

I Disadvantages:

– More complex
– Overhead for maintaining term bank
– Destructive changes must be avoided

I Direct Benefits:

– Saves between 80% and 99.99% of term nodes
– Consequence: We can afford to store precomputed values
∗ Term weight
∗ Rewrite status (see below)
∗ Groundness flag
∗ . . .

– Term identity: One pointer comparison!
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Literal Datatype

I See E/CLAUSES/ccl_eqn.h

I Equations are basically pairs of terms with some properties

/* Basic data structure for rules, equations, literals. Terms are
always assumed to be shared and need to be manipulated while taking
care about references! */

typedef struct eqncell
{

EqnProperties properties;/* Positive, maximal, equational */
Term_p lterm;
Term_p rterm;
int pos;
TB_p bank; /* Terms are from this bank */
struct eqncell *next; /* For lists of equations */

}EqnCell, *Eqn_p, **EqnRef;
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Clause Datatype

I See E/CLAUSES/ccl_clause.h

I Clauses are containers with Meta-information and literal lists

typedef struct clause_cell
{

long ident; /* Hopefully unique ident for
all clauses created during
proof run */
SysDate date; /* ...at which this clause

became a demodulator */
Eqn_p literals; /* List of literals */
short neg_lit_no; /* Negative literals */
short pos_lit_no; /* Positive literals */
long weight; /* ClauseStandardWeight()

precomputed at some points in
the program */
Eval_p evaluations; /* List of evauations */
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ClauseProperties properties; /* Anything we want to note at
the clause? */
...

struct clausesetcell* set; /* Is the clause in a set? */
struct clause_cell* pred; /* For clause sets = doubly */
struct clause_cell* succ; /* linked lists */

}ClauseCell, *Clause_p;
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Summary Day 1

I First-order logic with equality

I Superposition calculus

– Generating inferences (”Superposition rule”)
– Rewriting
– Subsumption

I Proof procedure

– Basic given-clause algorithm
– DISCOUNT Loop

I Software architecture

– Low-level components
– Logical datetypes
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Literature Online

I My papers are at http://www4.informatik.tu-muenchen.de/~schulz/
bibliography.html

I The Workshop versions of Bernd Löchners LPO/KBO papers [Löc06, L0̈6] are
published in the ”Empricially Successful” series of Workshops. Proceedings are
at http://www.eprover.org/EVENTS/es_series.html

– ”Things to know when implementing LPO”: Proceedings of Empirically
Successful First Order Reasoning (2004)

– ”Things to know when implementing KPO”: Proceedings of Empirically
Successful Classical Automated Reasoning (2005)

I Technical Report version of [BG94]:

– http://domino.mpi-inf.mpg.de/internet/reports.nsf/
c125634c000710d4c12560410043ec01/
c2de67aa270295ddc12560400038fcc3!OpenDocument

– . . . or Google ”Bachmair Ganzinger 91-208”
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”LUSK6” Example
# Problem: In a ring, if x*x*x = x for all x
# in the ring, then
# x*y = y*x for all x,y in the ring.
#
# Functions: f : Multiplikation *
# J : Addition +
# g : Inverses
# e : Neutrales Element
# a,b : Konstanten

j (0,X) = X. # 0 ist a left identity for sum
j (X,0) = X. # 0 ist a right identity for sum
j (g (X),X) = 0. # there exists a left inverse for sum
j (X,g (X)) = 0. # there exists a right inverse for sum
j (j (X,Y),Z) = j (X,j (Y,Z)). # associativity of addition
j (X,Y) = j(Y,X). # commutativity of addition
f (f (X,Y),Z) = f (X,f (Y,Z)). # associativity of multiplication
f (X,j (Y,Z)) = j (f (X,Y),f (X,Z)). # distributivity axioms
f (j (X,Y),Z) = j (f (X,Z),f (Y,Z)). #
f (f(X,X),X) = X. # special hypothese: x*x*x = x

f (a,b) != f (b,a). # (Skolemized) theorem
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LUSK6 in TPTP-3 syntax

cnf(j_neutral_left, axiom, j(0,X) = X).
cnf(j_neutral_right, axiom, j(X,0) = X).
cnf(j_inverse_left, axiom, j(g(X),X) = 0).
cnf(j_inverse_right, axiom, j(X,g(X)) = 0).
cnf(j_commutes, axiom, j(X,Y) = j(Y,X)).
cnf(j_associates, axiom, j(j(X,Y),Z) = j(X,j(Y,Z))).
cnf(f_associates, axiom, f(f(X,Y),Z) = f(X,f(Y,Z))).
cnf(f_distributes_left, axiom, f(X,j(Y,Z)) = j(f(X,Y),f(X,Z))).
cnf(f_distributes_right, axiom, f(j(X,Y),Z) = j(f(X,Z),f(Y,Z))).
cnf(x_cubedequals_x, axiom, f(f(X,X),X) = X).

fof(mult_commutes,conjecture,![X,Y]:(f(X,Y) = f(Y,X))).
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Efficient Rewriting

I Problem:

– Given term t, equations E = {l1 ' r1 . . . ln ' rn}
– Find normal form of t w.r.t. E

I Bottlenecks:

– Find applicable equations
– Check ordering constraint (σ(l) > σ(r))

I Solutions in E:

– Cached rewriting (normal form date, pointer)
– Perfect discrimination tree indexing with age/size constraints
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Shared Terms and Cached Rewriting

I Shared terms can be long-term persistent!

I Shared terms can afford to store more information per term node!

I Hence: Store rewrite information

– Pointer to resulting term
– Age of youngest equation with respect to which term is in normal form

I Terms are at most rewritten once!

I Search for matching rewrite rule can exclude old equations!
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Indexing

I Quickly find inference partners in large search states

– Replace linear search with index access
– Especially valuable for simplifying inferences

I More concretely (or more abstractly?):

– Given a set of terms or clauses S
– and a query term or query clause
– and a retrieval relation R
– Build a data structure to efficiently find (all) terms or clauses t from S such

that R(t, S) (the retrieval relation holds)
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Introductory Example: Text Indexing

I Problem: Given a set D of text documents, find all documents that contain a
certain word w

I Obviously correct implementation:

result = {}
for doc in D

for word in doc
if w == word

result = result ∪{ doc }
break;

return result

I Now think of Google. . .

– Obvious approach (linear scan through documents ) breaks down for large D
– Instead: Precompiled Index I : words→ documents
– Requirement: I efficiently computable for large number of words!
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The Trie Data Structure

I Definition: Let Σ be a finite alphabet and Σ∗ the set of all words over Σ

– We write |w| for the length of w
– If u, v ∈ Σ∗, w = uv is the word with prefix u

I A trie is a finite tree whose edges are labelled with letters from Σ

– A node represents a set of words with a common prefix (defined by the labels
on the path from the root to the node)

– A leaf represents a single word
– The whole trie represents the set of words at its leaves
– Dually, for each set of words S (such that no word is the prefix of another),

there is a unique trie T

I Fact: Finding the leaf representing w in T (if any) can be done in O(|w|)

– This is independent of the size of S!
– Inserting and deleting of elements is just as fast
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Trie Example

I Consider Σ = {a, b, ..., z} and S = {car, cab, bus, boat}

I The trie for S is:

b

r

ac

b

o

a t

u

s

I Tries can be built incrementally

I We can store extra infomation at nodes/leaves

– E.g. all documents in which boat occurs
– Retrieving this information is fast and simple
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Indexing Techniques for Theorem Provers

I Term Indexing standard technique for high performance theorem provers

– Preprocess term sets into index
– Return terms in a certain relation to a query term
∗ Matches query term (find generalizations)
∗ Matched by query term (find specializations)

I Perfect indexing:

– Returns exactly the desired set of terms
– May even return substitution

I Non-perfect indexing:

– Returns candidates (superset of desired terms)
– Separate test if candiate is solution
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Frequent Operations

I Let S be a set of clauses

I Given term t, find an applicable rewrite rule in S

– Forward rewriting
– Reduced to: Given t, find l ' r ∈ S such that lσ = t for some σ
– Find generalizations

I Given l→ r, find all rewritable clauses in S

– Backward rewriting
– Reduced to: Given l, find t such that C|pσ = l
– Find instances

I Given C, find a subsuming clause in S

– Forward subsumption
– Not easily reduced. . .
– Backward subsumption analoguous
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Classification of Indexing Techniques

I Perfect indexing

– The index returns exactly the elements that fullfil the retrieval condition
– Examples:
∗ Perfect discrimination trees
∗ Substitution trees
∗ Context trees

I Non-perfect indexing:

– The index returns a superset of the elements that fullfil the retrieval condition
– Retrieval condition has to be verified
– Examples:
∗ (Non-perfect) discrimination trees
∗ (Non-perfect) Path indexing
∗ Top-symbol hashing
∗ Feature vector-indexing
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The Given Clause Algorithm

U : Unprocessed (passive) clauses (initially Specification)
P : Processed (active) clauses (initially: empty )

while U 6= {}
g = delete best(U)
g = simplify(g,P )
if g == �

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c ∈ P |c redundant or simplifiable w.r.t. g}
P = (P\T ) ∪ {g}
T = T∪generate(g, P )
foreach c ∈ T

c =cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Typically, |U | ∼ |P |2 and |U | ≈
∑
|T |
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The Given Clause Algorithm

U : Unprocessed (passive) clauses (initially Specification)
P : Processed (active) clauses (initially: empty )

while U 6= {}
g = delete best(U)
g = simplify(g,P )
if g == �

SUCCESS, Proof found
if g is not redundant w.r.t. P

T = {c ∈ P |c redundant or simplifiable w.r.t. g}
P = (P\T ) ∪ {g}
T = T∪generate(g, P )
foreach c ∈ T

c =cheap simplify(c, P )
if c is not trivial

U = U ∪ {c}
SUCCESS, original U is satisfiable

Simplification of new clauses is bottleneck
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Sequential Search for Forward Rewriting

I Given t, find l ' r ∈ S such that lσ = t for some σ

I Naive implementation (e.g. DISCOUNT):

function find matching rule(t, S)
for l ' r ∈ S

σ = match(l, t)
if σ and lσ > rσ

return (σ, l ' r)

I Remark: We assume that for unorientable l ' r, both l ' r and r ' l are in S
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Conventional Matching
match(s,t)

return match list([s], [t], {})
match list(ls, lt, σ)

while ls 6= []
s = head(ls)
t = head(lt)
if s == X ∈ V

if X ← t′ ∈ σ
if t 6= t′ return FAIL

else
σ = σ ∪ {X ← t}

else if t == X ∈ V return FAIL
else

let s = f(s1, . . . , sn)
let t = g(t1, . . . , tm)
if f 6= g return FAIL /* Otherwise n = m! */

ls = append(tail(ls), [s1, . . . sn]
lt = append(tail(lt), [t1, . . . tm])

return σ
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The Size of the Problem

I Example LUSK6:

– Run time with E on 1GHz Powerbook: 1.7 seconds
– Final size of P : 265 clauses (processed: 1542)
– Final size of U : 26154 clauses
– Approximately 150,000 successful rewrite steps
– Naive implementation: ≈ 50-150 times more match attempts!
– ≈ 100 machine instructions/match attempt

I Hard examples:

– Several hours on 3+GHz machines
– Billions of rewrite attempts

I Naive implementations don’t cut it!
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Top Symbol Hashing

I Simple, non-perfect indexing method for (forward-) rewriting

I Idea: If t = f(t1, . . . , tn) (n ≥ 0), then any s that matches t has to start with f

– top(t) = f is called the top symbol of t

I Implementation:

– Organize S = ∪Sf with Sf = {l ' r ∈ S|top(l) = f}
– For non-variable query term t, test only rewrite rules from Stop(t)

I Efficiency depends on problem composition

– Few function symbols: Little improvement
– Large signatures: Huge gain
– Typically: Speed-up factor 5-15 for matching
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String Terms and Flat Terms

I Terms are (conceptually) ordered trees

– Recursive data structure
– But: Conventional matching always does left-right traversal
– Many other operations do likewise

I Alternative representation: String terms

– f(X, g(a, b)) already is a string. . .
– If arity of function symbols is fixed, we can drop braces: fXgab
– Left-right iteration is much faster (and simpler) for string terms

I Flat terms: Like string terms, but with term end pointers

bf X g a

– Allows fast jumping over subterms for matching
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Perfect discrimination tree indexing

I Generalization of top symbol hashing

I Idea: Share common prefixes of terms in string representation

– Represent terms as strings
– Store string terms (left hand sides of rules) in trie (perfect discrimination tree)
– Recursively traverse trie to find matching terms for a query:
∗ At each node, follow all compatible vertices in turn
∗ If following a variable branch, add binding for variable
∗ If no valid possibility, backtrack to last open choice point
∗ If leaf is reached, report match

I Currently most frequently used indexing technique

– E (rewriting, unit subsumption)
– Vampire (rewriting, unit- and non-unit subsumption (as code trees))
– Waldmeister (rewriting, unit subsumption, paramodulation)
– Gandalf (rewriting, subsumption)
– . . .
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Example

I Consider S = {(1)f(a,X) ' a, (2)f(b, X) ' X,
(3)g(f(X, X)) ' f(Y, X), (4)g(f(X, Y )) ' g(X)}

– String representation of left hand sides: faX, fbX, gfXX, gfXY

– Corresponding trie:

b

(1)

(2)

X

f X

g

X

(4)

(3)

Y

X

f

a

Find matching rule for g(f(a, g(b)))
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Example Continued

b

(1)

(2)

X

f X

g

X

(4)

(3)

Y

X

f

a

I Start with g(f(a, g(b))), root node, σ = {}

g(f(a, g(b))) Follow g vertex
g(f(a, g(b))) Follow f vertex
g(f(a, g(b))) Follow X vertex, σ = {X ← a}, jump over a
g(f(a, g(b)))

– Follow X vertex - Conflict! X already bound to a
– Follow Y , σ = {X ← a, Y ← g(b)}, jump over g(b) Rule 4 matches
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Subsumption Indexing

I Subsumption: Important simplification technique for first-order reasoning

– Drop less general (redundant) clauses
– Keep more general clause

I Problem: Efficiently detecting subsumed clauses

– Individual clause-clause subsumption is in NP
– Large number of subsumption relations must be tested

I Major Approach: Indexing

– Use precompiled data structures to efficiently select
∗ subsuming clauses (forward subsumption)
∗ subsumes clause (backward subsumption)
from large (and fairly static) clause sets

I Usual: Different and complex indexing approaches for forward- and backward
subsumption
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Subsumption

I Idea: Only keep the most general clauses

– If one clause is subsumed by another, discard it

I Formally: A clause C subsumes C ′ if:

– There exists a substitution σ such that Cσ ⊆ C ′

– Note: In that case C |= C ′

– ⊆ usually is the multi-subset relation

I Examples:

– p(X) subsumes p(a) ∨ q(f(X), a) (σ = {X ← a})
– p(X) ∨ p(Y ) does not multi-set-subsume p(a) ∨ q(f(X), a)
– q(X, Y ) ∨ q(X, a) subsumes q(a, a) ∨ q(a, b)

I Subsumption is hard (NP-complete)

– n! permutations in non-equational clause with n literals
– n!2n permutations in equational clause with n literals
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Forward- and Backward Subsumption

I Assume a set of clauses P and a given clause p

I Forward subsumption: Is there any clause in P that subsumes g?

I Backward subsumption: Find/remove all clauses in P subsumed by g

I Notice that these are clause–clause set operations

I Naive implementation: Sequence of clause-clause operations

– Good implementation can speed up (average case) individual subsumption
– Number of attempts still very high

I Smarter: Avoid many of the subsumption calls up front

– Use indexing techniques to reduce number of candidates
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Feature Vector Indexing

I New clause indexing technique

– Not lifted from term indexing

I Advantages:

– Small index (memory footprint)
– Same index for forward- and backward subsumption
– Very simple
– Efficient in practice
– Variants for different subsumption relations

I Disadvantages:

– Non-perfect
– Requires fixed signature for optimal performance

How does it work?
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Properties of the Subsumption Relation

Definitions:

– Let C and C ′ be clauses
– C+ is the (multi-)set (a clause) of positive literals in C
– C− is the (multi-)set of negative literals in C
– |C|f is the number of occurences of (function or predicate) symbol f in C

Facts: If C subsumes C ′, then

– |C+| ≤ |C ′+|
– |C−| ≤ |C ′−|
– |C+|f ≤ |C ′+|f for all f
– |C−|f ≤ |C ′−|f for all f
– (Similar results exist for term depths)
– The same holds for all linear combination of these features

Remark: Composite critera are often used to detect subsumption failure early

– |C| ≤ |C ′| (C cannot have more literals than C ′)
–

∑
f∈F |C|f ≤

∑
f∈F |C ′| (C cannot have more symbols than C ′)
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Feature Vectors

Definitions:

– A feature function f is a function from the set of clauses to N
– f is subsumption-compatible, if C subsumes C ′ implies f(C) ≤ f(C ′)
– A (subsumption-compatible) feature vector function F is a function from

the set of clauses to Nn such that Πi
n ◦ F (the projection of F to the ith

component) is a subsumption-compatible feature function
– If v1 and v2 are feature vectors, we write v1 ≤s v2, if v1[i] ≤ v2[i] for all i.

Fact:

– Assume F is a (subsumption-compatible) feature vector function
– Assume C subsumes C ′

– By construction, F (C) ≤s F (C ′)

Basic Principle of Feature Vector Indexing:

– For forward-subsumption: candFSF (P, g) = {c ∈ P |F (c) ≤s F (g)}
– For backward-subsumption: candBSF (P, g) = {c ∈ P |F (g) ≤s F (c)}
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Feature Vector Indexing

I Aim: Efficiently compute candFSF (P, g) and candBSF (P, g)

I Solution: Frequency vectors for P are compiled into a trie, clauses are stored in
leaves

– Tree of depth n (number of features in vector)
– Nodes at depth d split according to feature F (C)[d] (one successor per value)
– All vectors with value F (C)[d] = k associated with corresponding subtree
– Construction continues recursively

I Example: Assume F (C) := 〈|C+|a, |C+|f , |C−|b|〉

– Clause set P = {1,2,3,4 } with
1. F (p(a) ∨ p(f(a))) = 〈2, 1, 0〉
2. F (p(a) ∨ ¬p(b)) = 〈1, 0, 1〉
3. F (¬p(a) ∨ p(b)) = 〈0, 0, 0〉
4. F (p(X) ∨ p(f(f(b)))) = 〈0, 2, 0〉

– Query g = p(f(a))
∗ F (g) = 〈1, 1, 0〉

Stephan Schulz 107



Example Index

1. F (p(a) ∨ p(f(a))) = 〈2, 1, 0〉
2. F (p(a) ∨ ¬p(b)) = 〈1, 0, 1〉
3. F (¬p(a) ∨ p(b)) = 〈0, 0, 0〉
4. F (p(X) ∨ p(f(f(b)))) = 〈0, 2, 0〉

0

{3}

{1,2,3,4}

{3,4}

{2}

{1}

{2} {2}

{1} {1}

{4} {4}

0

1

2

0

2

1

0

0

0

1

{3}
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Example: Backward Subsumption

I Algorithm: At each node, only follow branches with larger or equal feature values

{2}

{3}

{1,2,3,4}

{3,4}

{2}

{4} {4}

0

1

0

2

0

0

1

2

1 0
{1} {1} {1}

1 1 0Query:

{2}
0

{3}

I Result: Just one subsumption candidate for p(f(a))
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Performance 1

I Tested on 5180 examples from TPTP 2.5.1

– Subsumption-heavy search strategy (contextual literal cutting)
– Max. 75 features, 300MHz SUN Ultra 60, 300s time limit

I Speedup ca. 40%, overhead usually insignificant, 2717 vs. 2671 solutions found
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Performance 2

I Number of subsumption attempts (notice double log scale)

I Average reduction: 1 : 60, max: 1 : 8000(1 :∞)
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Literature on Indexing

I Overview: [Gra95, SRV01]

I Classic paper: [McC92]

I Comparisons (for rewriting): [NHRV01]

I Feature vector indexing: [Sch04a]
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Excercise: Unification

I E’s unification code is SubstComputeMgu() in E/TERMS/cte_match_mgu_1-1.[hc]

– Read and understand the code
– Unification is broken down into subtassk
– Subtasks are stored in a particular order
– Why? Experiment with different orders!
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Layered Architecture

Operating System (Posix)

Language API/Libraries

Generic data types

Logical data types

Clausifier Index-
ing

Heu-
ristics

Control

Infer-
ences
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Don’t-care-Nondeterminism ≡ Chances for Heuristics

I Important choice points for E:

– Simplification ordering
– Clause selection
– Literal selection

I Other choice points:

– Choice of rewrite relation (usually strongest, don’t care which normal form)
– Application of rewrite relation to terms (leftmost-innermost, strongly suggested

by shared terms)
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Simplification Orderings

I Implemented: Knuth-Bendix-Orderings, Lexicographic Path Orderings

I Precedence: Fully user defined or simple algorithms

– Sorted by arity (higher arity → larger)
– Sorted by arity, but unary first
– Sorted by inverse arity
– Sorted by frequency of appearance in axioms
– . . .

I Weights for KBO: Similar simple algorithms (constant weights (optionally weight
0 for maximal symbol), arity, position in precedence . . . )

I No good automatic selection of orderings yet – auto mode switches between two
simple KBO schemes
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Clause selection

I Most important choice point (?)

I Probably also hardest chocice (find best clause among millions)

I Implementation in E: Multiple priority queues sorted by heuristic evaluation and
strategy-defined priority

I Selection in weighted round-robin-scheme (generalizes pick-given ratio)

I Example: 8*Refinedweight(PreferGoals,1,2,2,3,0.8),
8*Refinedweight(PreferNonGoals,2,1,2,3,0.8),
1*Clauseweight(ConstPrio,1,1,0.7),
1*FIFOWeight(ByNegLitDist)

I Big win: Goal directed search

– Symbols in the goal have low (=good) weights
– Other symbols have increasingly large weight based on linking distance
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Literal Selection

I Problem: Which literals should be selected for inferences in a clause?

I Ideas:

– Select hard literals first (if we cannot solve this, the clause is useless)
– Select small literals (fewer possible overlaps)
– Select ground literals (no instantiation, most unit-overlaps eleminated by

rewriting)
– Propagate inference literals to children clauses (inheritance)

I Problem: Should we always select literals if possible?

– Only select if no unique maximal literal exists
– Do not select in conditional rewrite rules

I Surprisingly successful: Additional selection of maximal positive literals

I See E source code for large number of things we have tried. . .
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Literature on other Systems

I Real (saturating) provers: [LH02, RV02, Sch02, Wei01, WSH+07, Sti92, Sti89,
LS01b]

I Significant alternative approaches:

– DCTP [SL01, LS01a, LS02],
– Model elimination: SETHEO [LSBB92, MIL+97], leanCOP [OB03, Ott08]
– Instantiation-Based Reasoning: iProver: [Kor08, Kor09]
– Model Evolution: Darwin [BFT06]
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