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Software model-checking

Big research challenge of the 00s: extension of model checking techniques to
‘high-level’ software.

Three main research questions:

• Integration of the tools in the software development process.

• Users trust their hardware but may not trust their software:
“post-mortem” verification, “backstage” verification tools . . .

• Automatic extraction of models from code.

• Algorithms for infinite-state systems.

• Software systems are very often infinite-state.



A “lazy” approach to software verification

Construct a sequence of increasingly faithful models that under- or
overapproximate the code.

Underapproximations: 32-bit integer→ 2-bit integer, 500MB heap→ 10B heap.

Overapproximations using predicate abstraction:

Define a set of predicates over the dataspace.
Example: x < y x = 0

Associate to each predicate a boolean variable.
Example: x < y 7→ a x = 0 7→ b

Overapproximate by a program over these variables.
Example: x := y is overapproximated by

a := false;

if (a and b) then b := false

else b := true or false
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Both under- and overapproximations are boolean programs:

Same control-flow structure as code + possibly nondeterminism.

Only one datatype: booleans.

Conceptually could also take any enumerated type but booleans are the
bridge to SAT and BDD technology.



Rewriting models of boolean programs

Boolean programs are still pretty complicated objects:

• Procedures/methods and recursion.

• Concurrency and communication (threads, cobegin-coend sections).

• Object-orientation.

Must be “compiled” into simpler and formal models.

Use rewriting to model boolean programs. In a nutshell:

• Model program states as terms.

• Model program instructions as term-rewriting rules.

• Model program executions as sequences of rewriting steps.



Rewriting models of boolean programs

Boolean programs are still pretty complicated objects:

• Procedures/methods and recursion.

• Concurrency and communication (threads, cobegin-coend sections).

• Object-orientation.

Must be “compiled” into simpler and formal models.

Use rewriting to model boolean programs. In a nutshell:

• Model program states as terms.

• Model program instructions as term-rewriting rules.

• Model program executions as sequences of rewriting steps.



Fundamental analysis problem: Reachability

But reachability between two states not enough for verification purposes

Safety properties often characterized by an infinite set of dangerous states.

Set of initial states also possibly infinite.

Generalized reachability problem: Given two (possibly infinite) sets I and D of
initial and dangerous states, respectively, decide if some state of D is reachable
from some state of I.



Challenge: Find a finite (“symbolic”) representation of the
(possibly infinite) set of states reachable or backward reachable from a given
(possibly infinite) set of states.

• pre∗(S) denotes the set of predecessors of S.
(states backward reachable from states in S)

• post∗(S) denotes the set of successors of S.
(states forward reachable from states in S)

Strategies: Compute pre∗(D) and check if I ∩ pre∗(D) = ∅, or compute
post∗(I) and check if post∗(I) ∩ D = ∅



Program for the rest of Part I

Rewriting models for:

• Procedural sequential programs.

• Multithreaded while-programs.

• Multithreaded procedural programs.

• Procedural programs with cobegin-coend sections.

For each of those:

• Complexity of the reachability problem.

• Finite representations for symbolic reachability.



A rewriting model of procedural sequential programs

State of a procedural boolean program: ( g, `, n, (`1, n1) . . . (`k , nk) ), where

• g is a valuation of the global variables,

• ` is a valuation of local variables of the currently active procedure,

• n is the current value of the program pointer,

• li is a saved valuation of the local variables of the caller procedures, and

• ni is a return address.

Modelled as a string g 〈`, n〉 〈`1, n1〉 . . . 〈`k , nk〉

Instructions modelled as string-rewriting rules, e.g. t 〈t ,m0〉 → f 〈f t f , p0〉 〈t ,m1〉

Prefix-rewriting policy:
u → w

u v r−−−→w v



An example

bool function foo(`)

f0: if ` then
f1: return false

else
f2: return true

fi

procedure main()

global b
m0: while b do
m1: b := foo(b)

od;
m2: return

b 〈t , f0〉 → b 〈t , f1〉
b 〈f , f0〉 → b 〈f , f2〉
b 〈`, f1〉 → f

b 〈`, f2〉 → t

t m0 → t m1

f m0 → f m2

b m1 → b〈b, f0〉m0

b m2 → ε

(b and ` stand for both t and f )



Prefix string rewriting. From theory . . .

First studied by Büchi in 64 under the name regular canonical systems as a
variant of semi-Thue systems.

Theorem: Given an effectively regular (possibly infinite) set S of strings, the sets
pre∗(S) and post∗(S) are also effectively regular.

Rediscovered by Caucal in 92.

Polynomial algorithms by Bouajjani, E., Maler and Finkel, Willems, Wolper in 97.

• Saturation algorithms: the automata for pre∗(S) and post∗(S) are essentially
obtained by adding transitions to the automaton for S.
(Algorithms for similar models by Alur, Etessami, Yannakakis, and Benedikt,
Godefroid, Reps and . . . )



Prefix string rewriting. From theory . . .
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. . . to applications

Efficient algorithms by E., Hansel, Rossmanith and Schwoon in 00.

Theorem (informal): Let Σ,R be the alphabet and set of rules of a 2-normalized
prefix-rewriting system system and let A be a “small” NFA over Σ.
An NFA for post∗(L(A)) can be constructed in O(|Σ||R|2) time and space.
An NFA for pre∗(L(A)) can be constructed in O(|Σ|2|R|) time and O(|Σ||R|)
space.

BDD-based algorithms by E. and Schwoon in 01.

MOPED model checker by Schwoon in 02.

MOPS checker by Chen and Wagner in 02.

“Model Checking an Entire Linux Distribution for Security Violations”
by Schwarz et al. at ACSAC 05.

jMOPED by Suwimonteerabuth and Schwoon in 2005
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Büchi did it twice

Moshe Vardi:

Büchi automata, introduced by Büchi in the early 60s to solve

problems in second-order number theory, have been

translated, unlikely as it may seem, into effective algorithms

for model checking tools.

Here:

Regular canonical systems, introduced by Büchi in the early 60s because

he liked them, have been translated, unlikely as it may seem, into effective

algorithms for software model checking tools.
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A rewriting model of multithreaded while-programs

Communication through global variables.

State determined by: { g, (`0, n0), (`1, n1) . . . (`k , nk) } where

• g is a valuation of the global variables,

• `i is a valuation of the local variables of the i-th thread, and

• ni is the value of the program pointer of the i-th thread.

Modelled as a multiset

g ‖ 〈`0, n0〉 ‖ 〈`1, n1〉 ‖ . . . ‖ 〈`k , nk〉

Instructions modelled as multiset-rewriting rules, e.g.

t f ‖ m0 → f f ‖ m1 ‖ 〈f , p0〉

Multiset rewriting, or rewriting modulo assoc. and comm. of ‖.



An example

thread p()

p0: if ? then
p1: b := true

else
p2: b := false

fi;
p3: end

thread main()

global b
m0: while b do
m1: fork p()

od;
m2: end

b ‖ p0 → b ‖ p1

b ‖ p0 → b ‖ p2

b ‖ p1 → t ‖ p3

b ‖ p2 → f ‖ p3

b ‖ p3 → ε

t ‖ m0 → t ‖ m1

f ‖ m0 → f ‖ m2

b ‖ m1 → b ‖ m0 ‖ p0

b ‖ m2 → ε



Multiset rewriting

Theorem [Mayr, Kosaraju, Lipton, 80s]: The reachability problem for
multiset-rewriting is decidable but EXPSPACE-hard.

• Equivalent to the reachability problem for Petri nets.

• A place for each alphabet letter.

• A Petri net transition for each rewrite rule.

X ‖ Y ‖ Z −→ V ‖ W

X Y Z

V W

Algorithms (not only proofs) quite complicated.

Negative results for pre∗({s}) and post∗({s}).



Symbolic reachability for pre∗ and upward-closed sets

Upward-closed set: if some multiset t belongs to the set, then t ‖ t ′ also belongs
to the set for every t ′.

Finitely representable e.g. by the its of minimal elements.

Upward-closed sets capture properties that can be decided by inspecting a
bounded number of threads (e.g. mutual exclusion).

Theorem [Abdulla et al. 96]: Given a multiset-rewriting system and an
upward-closed set of states S, the set pre∗(S) is upward-closed and effectively
constructible.

• Very simple algorithm: compute pre(S), pre2(S), pre3(S) . . ..

Extensions applied to multithreaded Java [Delzanno, Raskin, Van Begin 04].



Monadic multiset-rewriting

Monadic rules ≡ no global variables ≡ no communication

. . . but what are threads that cannot communicate with each other good for?!!!

They are good for underapproximations [Qadeer and Rehof 05]
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. . .. . .

. . .. . .
Context 1 Context 2 Context 3

. . .



Reachability

Theorem [Huyhn 85, E.95]: The reachability problem for monadic multiset-rewrite
systems is NP-complete.

• Membership in NP not completely trivial.

• Hardness very easy, reduction from SAT:

A thread for each variable xi that (a) nondeterministically chooses li ∈ {xi , x i}
and (b) spawns a clause thread for each clause satisfied by li .

The thread for a clause does nothing and terminates.

Formula satisfiable iff there is state at which one thread per clause is active.



Symbolic reachability for semi-linear sets

Semi-linear sets usually defined as subsets of INn.

• Finite union of linear sets.

• {r + λ1p1 + . . .+ λnpn | λ1, . . . , λn ∈ IN}.

Language interpretation: “commutative closure” of the regular languages.

Similar properties to regular languages: closure under boolean operations,
decidable (but no longer polynomial) membership problem, etc.

Theorem [E.95]: Given a monadic multiset-rewriting system and a semi-linear set
of states S, the sets post∗(S) and pre∗(S) are semi-linear and effectively
constructible.



Multithreaded procedural programs

Two-counter machines can be simulated by a program with two recursive threads
communicating over two global (boolean) variables:

• Tops of the recursion stacks contains two copies of the machine’s control
point.

• Depths the two recursion stacks model the values of the counters.

• Calls and returns model increasing and decrementing the counters.

• One variable to ensure alternation of moves.

• One variable to keep the two copies of the control point “synchronized”.

If communication takes place by rendezvous the two variables are no longer
needed: programs without variables are still Turing powerful.

Communication-free case: [Bouajjani, Müller-Olm and Touili 05]

Communication through nested locks: [Kahlon and Gupta 06, Kahlon 09]
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A rewriting model for the communication-free case

State of a multithreaded procedural program without global variables:
multiset {s1, s2 . . . , sk} of states of procedural programs, where

si = (`i0, ni0) (`i1, ni1) . . . (`im, nim)

Modelled as a string #wk#wk−1# . . .#w1 where

wi = 〈`i0, ni0〉 〈`i1, ni1〉 . . . 〈`im, nim〉

Instructions modelled as string-rewriting rules. A new thread is inserted to the
left of its creator, e.g.

# 〈b,m1〉 −→# p0 # 〈f ,m3〉

Threads “in the middle” of the string should also be able to “move”: back to
ordinary rewriting

u −→ w

v1 u v2
r−−−→ v1 w v2



An example

process p();
p0: if (?) then
p1: call p()

else
p2: skip

fi;
p3: return

process main()

m0: if (?) then
m1: fork p()

else
m2: call main()

fi;
m3: return

# p0 → # p1

# p0 → # p2

# p1 → # p0 p3

# p2 → # p3

# p3 → #

# m0 → # m1

# m0 → # m2

# m1 → # p0# m3

# m2 → # m0 m3

# m3 → #ε

# # → #



Analysis

Theorem [BMOT05]: For every effectively regular set S of states, the set pre∗(S)

is regular and a finite-state automaton recognizing it can be effectively
constructed in polynomial time.

• Similar to pre∗ for monadic string-rewriting [Book and Otto 93].

Theorem [BMOT05]: For every effectively context-free set S of states, the set
post∗(S) is context-free and a pushdown automaton recognizing it can be
effectively constructed in polynomial time.

Counterexample to regularity: P that spawns a copy of Q and calls itself.

The number of threads is equal to the depth of the recursion.

Reachability set: {(#q)n#p(n+1) | n ≥ 0}.



Cobegin-coend sections

Difference with threads: implicit synchronization induced by the coend.

• “Threads have to wait for its siblings to terminate.”

• Corresponds to calling procedures in parallel.

Rewriting model only works well for the communication-free (monadic) case.

States modelled as terms with both ‖ and · as infix operators e.g

(〈t , p1〉 ‖ q2) · 〈t f ,m1〉

Rewriting modulo assoc. of · and assoc. and comm. of ‖.

This model is called monadic process rewrite systems (monadic PRS) [Mayr 00].



Analysis

Symbolic reachability with commutative hedge automata (CHA) [Lugiez 03].

Theorem [Bouajjani and Touili 05]: Given a monadic PRS, for every
CHA-definable set of terms T , the sets post∗(T ) and pre∗(T ) are
CHA-definable and effectively constructible.

Weaker approach: construct not the sets post∗(T ) or pre∗(T ) themselves, but
representatives w.r.t. the equational theory.

Sufficient for control reachability problems.

Theorem [Lugiez and Schnoebelen 98, E. and Podelski 00]:
Let R be a monadic PRS and let A be a bottom-up tree automaton.
One can construct in O(|R| · |A|) time bottom-up tree automata recognizing a set
of representatives of post∗(L(A)) and pre∗(L(A)).



Conclusions

Rewriting concepts can be used to give elegant semantics to programming
languages.

• String/multiset rewriting correspond to sequential/parallel computation.

• Monadic/non-monadic rewriting correspond to absence or presence of
communication.

• Rewriting modulo useful for combining concurrency and procedures.

Symbolic reachability is the key problem to solve.

Comparison with process algebras:

• Process algebras have a notion of hiding or encapsulation.

• Rewriting much closer to automata theory→ algorithms.


