UNIVERSITY OF

OXFORD

Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

VTSA’10 Summer School, Luxembourg, September 2010

Course overview

2 sessions (Tue/Wed am): 4 x 1.5 hour lectures

— Introduction

— 1 - Discrete time Markov chains (DTMCs)
— 2 - Markov decision processes (MDPs)

— 3 - LTL model checking for DTMCs/MDPs
— 4 - Probabilistic timed automata (PTAS)

For extended versions of this material
— and an accompanying list of references
— see: http://www.prismmodelchecker.org/lectures/

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditsifrzgte Markov chains processes (MDPs)

(DTMCs) (probabilistic automata)

Probabilistic timed

Conti Continuous-time automata (PTAS)
ontimléous Markov chains

(CTMCs)

CTMDPs/IMCs

Part 2

Markov decision processes

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

Nondeterminism

- Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

- Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms — multiple probabilistic
processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,;, and d, .,

Unknown environments
— e.g. probabilistic security protocols - unknown adversary

Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

Markov decision processes

Formally, an MDP M is a tuple (S,s;,;,Steps,L) where:
— Sis a finite set of states (“state space”)
— Siie € Sis the initial state
— Steps : S — 2AxDist) js the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

— L:S — 2APis a labelling with atomic propositions

Notes:
— Steps(s) is always non-empty,
i.e. no deadlocks

— the use of actions to label
distributions is optional

Simple MDP example

Modification of the simple DTMC communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart

Example - Parallel composition

1
Asynchronous parallel 0.5
composition of two @]
3-state DTMCs

Action labels
omitted here

10

Paths and probabilities

. A (finite or infinite) path through an MDP
— is a sequence of states and action/distribution pairs
— e.g. Sp(@g,Mp)S (@, My)s5. ..
— such that (a;,u;) € Steps(s)) and u(s;.;) > 0 for all i=0

— represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

— note that a path resolves both types of choices:
nondeterministic and probabilistic

- To consider the probability of some behaviour of the MDP

— first need to resolve the nondeterministic choices
— ...which results in a DTMC
— ...for which we can define a probability measure over paths

11

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

12

Adversaries

- An adversary resolves nondeterministic choice in an MDP

— also known as “schedulers”, “strategies” or “policies”

Formally:
— an adversary A of an MDP M is a function mapping every finite
path w= sy(a;,4;)s;...s, to an element of Steps(s,)

For each A can define a probability measure PrA, over paths
— constructed through an infinite state DTMC (Path”;,(s),s,PA,)
— states of the DTMC are the finite paths of A starting in state s
— initial state is s (the path starting in s of length 0)
— PA(w,w’)=u(s) if w'= w(a, u)s and A(w)=(a,u)
— PA,(w,w’)=0 otherwise

13

Adversaries — Examples

- Consider the simple MDP below
— note that s, is the only state for which [Steps(s)| > 1
— i.e. s, is the only state for which an adversary makes a choice

— let y, and u. denote the probability distributions associated
with actions b and c in state s,

- Adversary A,
— picks action c the first time

— A(sgS1)=(C,H,)

- Adversary A,
— picks action b the first time, then c
— Ay(sps1)=(b,Hp), Ax(s¢S151)=(C,Hc), Ax(S¢S15051)=(C,H,)

14

Adversaries — Examples

- Fragment of DTMC for adversary A,
— A, picks action c the first time

15

Adversaries — Examples

- Fragment of DTMC for adversary A, theads}

— A, picks action b, then ¢ {init} 5 1 0.5 QB
(sof_J s e
0.3 -

Memoryless adversaries

Memoryless adversaries always pick same choice in a state
— also known as: positional, Markov, simple
— formally, for adversary A:
— A(sy(@;,My)s;-..S,) depends only on s,
— resulting DTMC can be mapped to a |S|-state DTMC

From previous example:
— adversary A, (picks c in s;) is memoryless, A, is not

17

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

18

PCTL for MDPs

- The temporal logic PCTL can also describe MDP properties

- Identical syntax to the DTMC case: s true with

A/%""E'robab”ity -

—¢ =truelaldAd|-d|P (W] (state formulas)
- =Xod | dUkd | dUP (path formulas)
T Ao T
snans ;‘.......;;....: E “bou nded;;.....:...’.,....
next” i - ntil
............................ until

- Semantics are also the same as DTMCs for:
— atomic propositions, logical operators, path formulas

19

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
— can only define probabilities for a specific adversary A

— s = P_, [@] means “the probability, from state s, that is true
for an outgoing path satisfies ~p for all adversaries A”

— formally s=P_[Ww] < ProbA(s,) ~ p for all adversaries A
— where ProbA(s, @) = PrA, { w € PathA(s) | w = W }

..... v ProbA(s,) ~ p

20

Minimum and maximum probabilities

- Letting:

— Pmax(S, W) = sup, ProbA(s,)
— Pmin(S, W) = inf, ProbA(s,)

- We have:

—if~e{z,>hLthens P, [W] < pu(s,) ~p
—if~e{<,slthensEP_[W] < pouls,) ~p
- Model checking P_,[@] reduces to the computation over all
adversaries of either:

— the minimum probability of Y holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL on MDPs

— memoryless adversaries suffice, i.e. there are always
memoryless adversaries A, and A,,., for which:

— ProbAmi”(S, LI)) — pmin(S’ \-I)) and PrObAmaX(S’ LI)) = pmaX(S’ LI))
21

Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): Pmin_, [¢] and Pmax_, [@]

— i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ¢ is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of p,,
(S, W) or Pray(s, W) anyway
— useful to spot patterns/trends

1

0.8
E‘06
Example: CSMA/CD protocol 3™
Q0
— “min/max probability £ 04|
that a message is sent 02| — masimu)
within the deadline” ' ——minimum

800 1000 1200 1400 1600 1800

-
22

Other classes of adversary

- A more general semantics for PCTL over MDPs
— parameterise by a class of adversaries Adv

+ Only change is:
— S Eagy Pop [W] < ProbA(s, Y) ~ p for all adversaries A € Adv

- Original semantics obtained by taking Adv to be the set of
all adversaries for the MDP

- Alternatively, take Adv to be the set of all fair adversaries

— path fairness: if a state is occurs on a path infinitely often,
then each non-deterministic choice occurs infinite often

— see e.g. [BK98]

23

Some real PCTL examples

Byzantine agreement protocol
— Pmin_, [F (agreement A rounds<2)]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Pmax_, [F collisions=k]
— “what is the maximum probability of k collisions?”

- Self-stabilisation protocols

— Pmin_, [F=t stable]

— “what is the minimum probability of reaching a stable state
within k steps?”

24

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

25

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
— inputs: MDP M=(S,s;,,,Steps,L), PCTL formula ¢
— output: Sat(d) ={s €S |s E ¢} =setof states satisfying ¢

.+ Basic algorithm same as PCTL model checking for DTMCs

— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [@] formulas

— reduces to computation of p,.,(s, W) or p,.. (s, W) forall s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case p,,.(s, ¢, U ,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

— next (X ¢) and bounded until (¢, U=k ¢,) are straightforward
extensions of the DTMC case 26

PCTL until for MDPs

- Computation of probabilities p,,,(s, ¢, U $,) forall s € S
First identify all states where the probability is 1 or O

— “precomputation” algorithms, yielding sets Sves, Sno
- Then compute (min) probabilities for remaining states (5
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

0.5

Example:
P.,[Fa]

P.,[trueUa]

0.25 27

PCTL until - Precomputation

Identify all states where p,,.,(s, d; U P,)is 1 or 0
- Syes — Sat(PZ] [CI)] U ¢2]), SI’IO — Sat(_' P>0 [CI)] U d)z])
- Two graph-based precomputation algorithms:

— algorithm ProbTA computes Sves
. for all adversaries the probability of satisfying ¢, U ¢, is 1

— algorithm ProbOE computes S"°
. there exists an adversary for which the probability is O

Sves = Sat(P., [Fa])

Example:
P.,[Fal]

Method 1 - Linear programming

- Probabilities p,;.(s, ¢, U d,) for remaining states in the set
S? =S\ (Sves U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ESES? X, subject to the constraints:

X, < Y H(S')- X + 2 M(s')

S'ES? es
for allseS’ and for all (a,n) €Steps(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques

— e.g. Simplex, ellipsoid method, branch-and-cut
29

Example - PCTL until (LP)

Let X, = p,,i,(S;, F Q)
Sves: x,=1, S"o: x3=0
For S’ = {xq, X;}:
Maximise x,+X,; subject to constraints:

e Xo = X
° XO < O.25'XO + 0.5
e X; <0.1-Xy+0.5-x;, +0.4

30

Example - PCTL until (LP)

Let X, = p,,i,(S;, F Q)
Sves: x,=1, S"°: x5=0
For S’ = {xq, X;}:
Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

- Xo < 2/3 | x, < 0.2-x,
' ' + 0.8

23 1 % "o p 0
31

— PCTL until (LP)

Let X, = p,,i,(S;, F Q)
Sves: x,=1, S"o: x3=0
For S’ = {xq, X;}:
Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

Solution:

| . ma% (XO’ x])

(2/3,14/15)

2/3 1 32

PCTL until (LP)

Let X; = p,in(S;, F Q)
Sves: x,=1, S"o: x3=0

For S* = {Xq, X;}:

Maximise x,+X,; subject to constraints:

e Xg = X
« Xg=2/3
e X3 <0.2-x, + 0.8

Xo < X

)

| A TN
wo memoryless
11— adversaries

33

Method 2 - Value iteration

- For probabilities p,;,(s, ¢; U §,) it can be shown that:

— Pmin(S, &1 U d,) = lim, ., x,™ where:

] if s &SY*
0 ifs &S
(n)
X, =1 0 ifseS’andn=0

. 1 (n-1) . ?
MIN,)esteps(s) (E u(s')- X..) ifseS"andn>0

s'ES

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

34

Example — PCTL until (value iteration)

Compute: p,,..(s;, F a)
Sves = {x,}, S"° ={x3}, S* = {Xq, x;}

[Xo(n)’xl(n)’xz(n)’xs(n)]
n=0: [0,0,1,0]
n=1: [min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4,1,0]
=[0,0.4,1,0]
n=2: [min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4,1, 0]
=[0.4,0.6,1,0]
n=3:

35

Example — PCTL until (value iteration)

[XO(”),X1(“),X2(”),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

3 3 3 3 3 3 3 3 35 S
|

[
© X NS U hWNZOQ

[0.666667, 0.933332,1,0]
n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

=
|

N
<

36

Example - Value iteration + LP

[XO(”),X1(“),X2(”),X3(”)]
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

3 3 3 3 3 3 3 3 35 S
|

[
© X NS U hWNZOQ

[0.666667, 0.933332,1,0]
n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]

0 2/3 Xo

=
|

N
<

37

Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
- Policy iteration:
— iterates over adversaries (“policies”)

1. Start with an arbitrary (memoryless) adversary A

- 2. Compute the reachability probabilities ProbA(F a) for A
3. Improve the adversary in each state

- 4. Repeat 2/3 until no change in adversary

- Termination:

— finite number of memoryless adversaries
— improvement in (minimum) probabilities each time

38

Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) adversary A
— pick some Steps(s) for each state s € S
- 2. Compute the reachability probabilities ProbA(F a) for A
— probabilistic reachability on a DTMC
— i.e. solve linear equation system

- 3. Improve the adversary in each state

A'(s) = argmin {2 u(s')-Prob”(s',Fa)| (a,u) ESteps (s)}
S &S

- 4. Repeat 2/3 until no change in adversary

39

Example - Policy iteration

Arbitrary policy A:
Compute: ProbA(F a)
Let x; = ProbA(s;, F a)

X,=1, x3=0 and:

* Xg = X
*X; =0.1-Xy + 0.5-x;, + 0.4
Solution:
ProbA(Fa)=1[1,1,1,0]

Refine A in state s:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

40

Example - Policy iteration

Refined policy A’:

Compute: Prob”'(F a)

Let X, = Prob”'(s,, F a)

X,=1, x3=0 and:

*Xo = 0.25-x, + 0.5

*X; =0.1-x5 + 0.5-x; + 0.4

Solution:
ProbA'(Fa) =[2/3,14/15,1,0]

This is optimal

41

Example - Policy iteration

—
Xo=X ___—|

y 3 ,)
x; = 0.2-X, + 0.8 - vs
X0

0 2/3 1

42

PCTL model checking - Summary

- Computation of set Sat(®) for MDP M and PCTL formula ¢

— recursive descent of parse tree
— combination of graph algorithms, numerical computation

Probabilistic operator P:
— X ® : one matrix-vector multiplication, O(|S|?)
— &, U=k &, : k matrix-vector multiplications, O(k|S|?)

— ¢, U ®, : linear programming problem, polynomial in [S]
(assuming use of linear programming)

- Complexity:

— linear in |®| and polynomial in |S|
— S is states in MDP, assume |Steps(s)| is constant

43

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

44

Costs and rewards for MDPs

Can use costs and rewards in similar fashion to DTMCs:

- Augment MDPs with rewards (or costs)

— (but often assign to states/actions, not states/transitions)

Extend logic PCTL with R operator
— semantics extended in same way as P operator

—e.g.sER_ [F®] o ExpA(s, Xg) ~ r for all adversaries A
— quantitative properties: Rmin_,[...] and Rmax_, [...]

Examples:
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”

— the maximum expected time for the algorithm to terminate
45

Model checking MDP reward formulas

Instantaneous: R_, [I7%]
— similar to the computation of bounded until probabilities
— solution of recursive equations

- Cumulative: R_ [C=k]
— extension of bounded until computation
— solution of recursive equations

Reachability: R_, [F ¢]
— similar to the case for P operator and until
— graph-based precomputation (identify co-reward states)
— then linear programming problem (or value iteration)

46

Overview (Part 2)

- Markov decision processes (MDPs)

- Adversaries & probability spaces

- PCTL for MDPs

- PCTL model checking

- Costs and rewards

- Case study: Firewire root contention

47

Case study: FireWire protocol

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove
devices at any time

— no requirement for a single PC (need acyclic topology)

&

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses electronic coin tossing and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

48

FireWire example

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

Probabilistic model checking
— model constructed and analysed using PRISM m

— timing delays taken from standard
— model includes:

. concurrency: messages between nodes and wires
. underspecification of delays (upper/lower bounds)

— max. model size: 170 million states

uuuuuu

B, Em
snd sck,

Analysis:

— verified that root contention always
resolved with probability 1

— investigated time taken for leader election
— and the effect of using biased coin =3

snddie, |

. based on a conjecture by Stoelinga

53

FireWire: Analysis results

o
(o)}

o
~

minimum probability of electing a leader by T

- shor wire
- |ong wire

4

6
T (10° ns)

8

10

“minimum probability
of electing leader
by time T”

54

o
Co
/

o
(2]
/

o
N
Vi

o

min. probab. electing leader by T
N

FireWire: Analysis results

—
/

Yo
v

10

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

55

FireWire: Analysis results

’2\ x 10

= 10f

5

()

kS

o 8 “« .

= maximum expected
() . »
° time to elect a leader
S 6

£

g 4 .

3 (short wire length)
<

o 2

g Using a biased coin
s 0 1

£ 0.2 0.4 0.6 0.8

probability of choosing fast

56

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
--- 1 is beneficial!

0.45 0.5 0.55 0.6 0.65 0.7
probability of choosing fast

57

Summary

Markov decision processes (MDPs)
— extend DTMCs with nondeterminism
— to model concurrency, underspecification, ...

. Adversaries resolve nondeterminism in an MDP

— induce a probability space over paths

— consider minimum/maximum probabilities over all adversaries
Property specifications

— PCTL: exactly same syntax as for DTMCs

— but quantify over all adversaries
Model checking algorithms

— covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

Next: LTL model checking (for DTMCs and MDPs)
58

