

Probabilistic Model Checking

Marta Kwiatkowska

Oxford University Computing Laboratory

VTSA'10 Summer School, Luxembourg, September 2010

Course overview

- + 2 sessions (Tue/Wed am): 4 \times 1.5 hour lectures
 - Introduction
 - 1 Discrete time Markov chains (DTMCs)
 - 2 Markov decision processes (MDPs)
 - 3 LTL model checking for DTMCs/MDPs
 - 4 Probabilistic timed automata (PTAs)
- For extended versions of this material
 - and an accompanying list of references
 - see: <u>http://www.prismmodelchecker.org/lectures/</u>

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs

Part 2

Markov decision processes

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}

Unknown environments

- e.g. probabilistic security protocols - unknown adversary

Markov decision processes

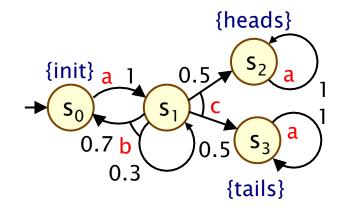
- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

- discrete set of states representing possible configurations of the system being modelled
- transitions between states occur in discrete time-steps

Probabilities and nondeterminism

 in each state, a nondeterministic choice between several discrete probability distributions over successor states

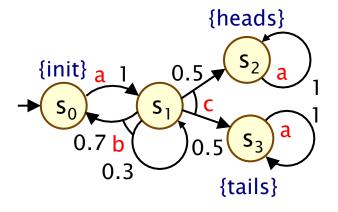


Markov decision processes

- Formally, an MDP M is a tuple (S,s_{init},Steps,L) where:
 - S is a finite set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - Steps : S \rightarrow 2^{Act×Dist(S)} is the transition probability function
 - where Act is a set of actions and Dist(S) is the set of discrete probability distributions over the set S
 - L : S \rightarrow 2^{AP} is a labelling with atomic propositions

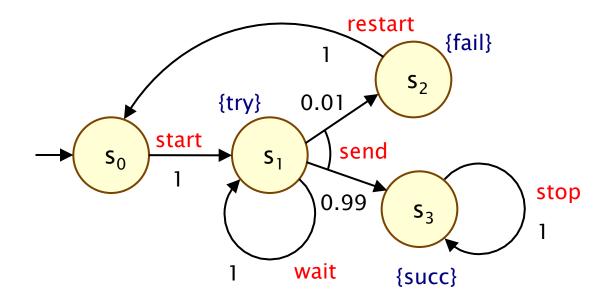
Notes:

- Steps(s) is always non-empty,
 i.e. no deadlocks
- the use of actions to label distributions is optional



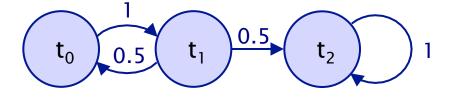
Simple MDP example

- Modification of the simple DTMC communication protocol
 - after one step, process starts trying to send a message
 - then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
 - if the latter, with probability 0.99 send successfully and stop
 - and with probability 0.01, message sending fails, restart

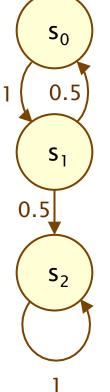


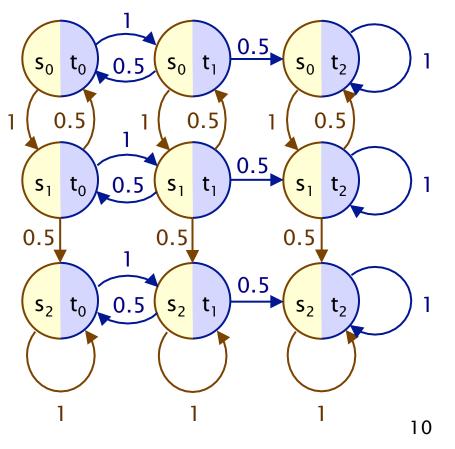
Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs



Action labels omitted here





Paths and probabilities

• A (finite or infinite) path through an MDP

- is a sequence of states and action/distribution pairs
- e.g. $s_0(a_0,\mu_0)s_1(a_1,\mu_1)s_2...$
- such that $(a_i,\mu_i)\in \textbf{Steps}(s_i)$ and $\mu_i(s_{i+1})>0$ for all $i{\geq}0$
- represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
- note that a path resolves both types of choices: nondeterministic and probabilistic
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ... for which we can define a probability measure over paths

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "strategies" or "policies"
- Formally:
 - an adversary A of an MDP M is a function mapping every finite path $\omega = s_0(a_1,\mu_1)s_1...s_n$ to an element of Steps(s_n)
- For each A can define a probability measure Pr^A_s over paths
 - constructed through an infinite state DTMC (Path^A_{fin}(s), s, P^{A}_{s})
 - states of the DTMC are the finite paths of A starting in state s
 - initial state is s (the path starting in s of length 0)
 - $P^{A}_{s}(\omega,\omega')=\mu(s)$ if $\omega'=\omega(a, \mu)s$ and $A(\omega)=(a,\mu)$
 - $\mathbf{P}^{A}_{s}(\omega,\omega')=0$ otherwise

Adversaries – Examples

Consider the simple MDP below

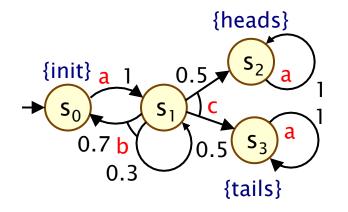
- note that s_1 is the only state for which |Steps(s)| > 1
- i.e. s_1 is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions b and c in state s₁
- Adversary A₁
 - picks action c the first time
 - $A_1(s_0s_1) = (c, \mu_c)$

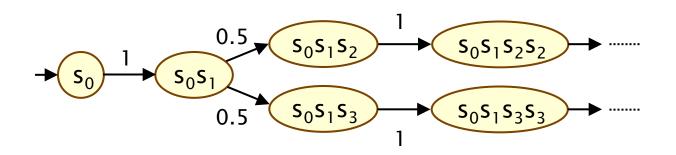
{init} a 1 0.5 s_2 a s_0 s_1 c s_2 a 0.7 b 0.5 s_3 a (tails)

- Adversary A₂
 - picks action b the first time, then c
 - $A_{2}(s_{0}s_{1}) = (b,\mu_{b}), A_{2}(s_{0}s_{1}s_{1}) = (c,\mu_{c}), A_{2}(s_{0}s_{1}s_{0}s_{1}) = (c,\mu_{c})$

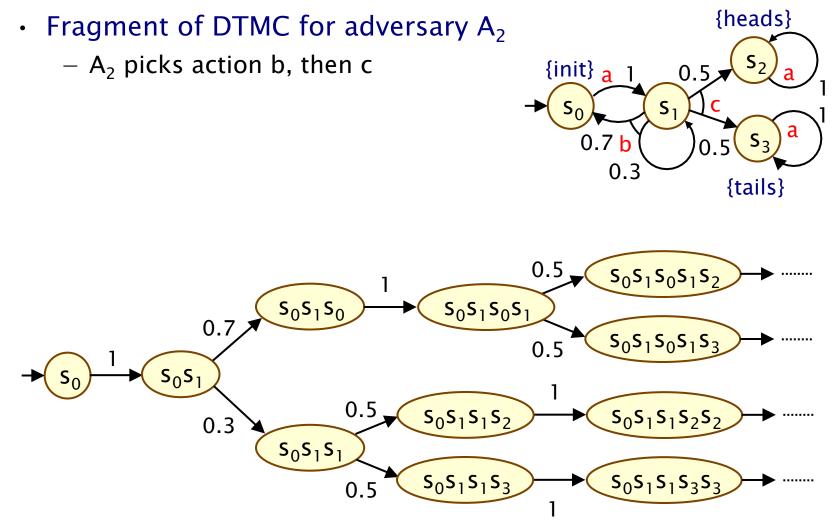
Adversaries – Examples

- Fragment of DTMC for adversary A₁
 - A_1 picks action c the first time





Adversaries – Examples



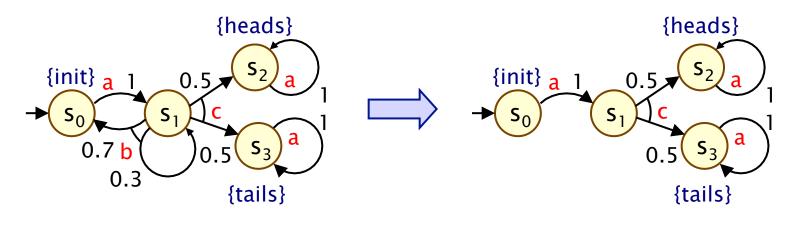
Memoryless adversaries

Memoryless adversaries always pick same choice in a state

- also known as: positional, Markov, simple
- formally, for adversary A:
- $A(s_0(a_1,\mu_1)s_1...s_n)$ depends only on s_n
- resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:

- adversary A_1 (picks c in s_1) is memoryless, A_2 is not



Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

PCTL for MDPs

- The temporal logic PCTL can also describe MDP properties
- Identical syntax to the DTMC case:

ψ is true with probability ~p

 $- \varphi$::= true | a | $\varphi \land \varphi$ | $\neg \varphi$ | $P_{\sim p}$ [ψ]

 $- \psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ "next" "bounded until" "until" (path formulas)

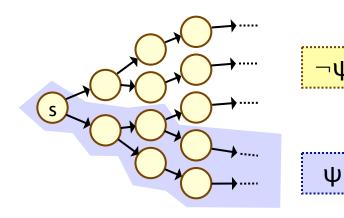
(state formulas)

- Semantics are also the same as DTMCs for:
 - atomic propositions, logical operators, path formulas

PCTL semantics for MDPs

Semantics of the probabilistic operator P

- can only define probabilities for a specific adversary A
- $s \models P_{\sim p} [\psi]$ means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries A"
- formally $s \models P_{p} [\psi] \iff Prob^{A}(s, \psi) \sim p$ for all adversaries A
- where $Prob^{A}(s, \psi) = Pr^{A}_{s} \{ \omega \in Path^{A}(s) \mid \omega \models \psi \}$



 $Prob^A(s, \psi) \sim p$

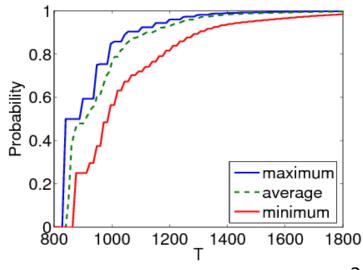
Minimum and maximum probabilities

• Letting:

- $p_{max}(s, \psi) = sup_A Prob^A(s, \psi)$
- $p_{min}(s, \psi) = inf_A Prob^A(s, \psi)$
- We have:
 - $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash \textbf{P}_{\textbf{\sim} p} \textbf{[} \textbf{\psi} \textbf{]} \quad \Leftrightarrow \quad \textbf{p}_{min}(\textbf{s}, \textbf{\psi}) \textbf{\sim} \textbf{p}$
 - $\text{ if } \textbf{\sim} \in \{<,\leq\}\text{, then } \textbf{s} \vDash P_{\sim p} \text{ [} \psi \text{]} \quad \Leftrightarrow \ p_{max}(\textbf{s}, \psi) \thicksim p$
- Model checking $P_{-p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of $\boldsymbol{\psi}$ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries A_{min} and A_{max} for which:
 - $Prob^{Amin}(s, \psi) = p_{min}(s, \psi)$ and $Prob^{Amax}(s, \psi) = p_{max}(s, \psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $Pmin_{=?} [\psi]$ and $Pmax_{=?} [\psi]$
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of p_{min} (s, ψ) or $p_{max}(s, \psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv
- Only change is:
 - $\ s \vDash_{\mathsf{Adv}} P_{\sim p} \left[\psi \right] \ \Leftrightarrow \ \mathsf{Prob}^{\mathsf{A}}(s, \, \psi) \sim p \ \text{for all adversaries } \mathsf{A} \in \mathsf{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often, then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]

Some real PCTL examples

Byzantine agreement protocol

- $Pmin_{=?}$ [F (agreement \land rounds \leq 2)]
- "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - Pmax_{=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $Pmin_{=?}$ [$F^{\leq t}$ stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 2)

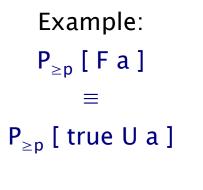
- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

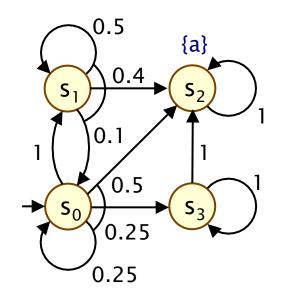
PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init},Steps,L), PCTL formula ϕ
 - output: Sat(φ) = { s \in S | s $\models \varphi$ } = set of states satisfying φ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $p_{min}(s,\,\psi)$ or $p_{max}\left(s,\,\psi\right)$ for all $s\in S$
 - dependent on whether ~ ${\color{black}{\sim}} \in \{{\color{black}{\geq}},{\color{black}{>}}\}$ or ~ ${\color{black}{\leftarrow}} \{{\color{black}{<}},{\color{black}{\leq}}\}$
 - these slides cover the case $p_{min}(s, \varphi_1 \cup \varphi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X φ) and bounded until ($\varphi_1 \ U^{\leq k} \ \varphi_2$) are straightforward extensions of the DTMC case 26

PCTL until for MDPs

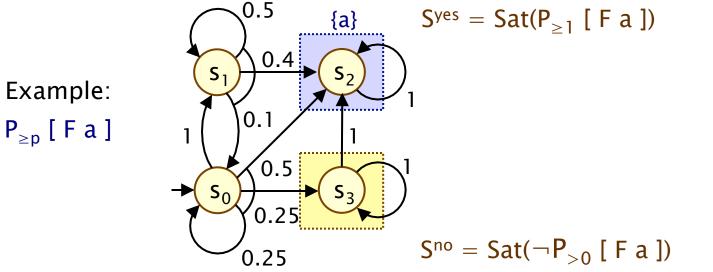
- + Computation of probabilities $p_{min}(s,\,\varphi_1 \; U \; \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration





PCTL until – Precomputation

- Identify all states where $p_{min}(s, \phi_1 \cup \phi_2)$ is 1 or 0
 - $-S^{yes} = Sat(P_{>1} [\varphi_1 \cup \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 \cup \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes S^{yes}
 - for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes S^{no}
 - there exists an adversary for which the probability is 0



28

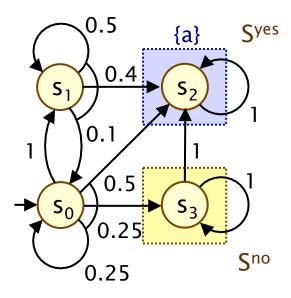
Example:

Method 1 – Linear programming

• Probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

maximize
$$\sum_{s \in S^{?}} x_{s}$$
 subject to the constraints :
 $x_{s} \leq \sum_{s' \in S^{?}} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{y_{es}}} \mu(s')$
for all $s \in S^{?}$ and for all $(a, \mu) \in Steps(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut



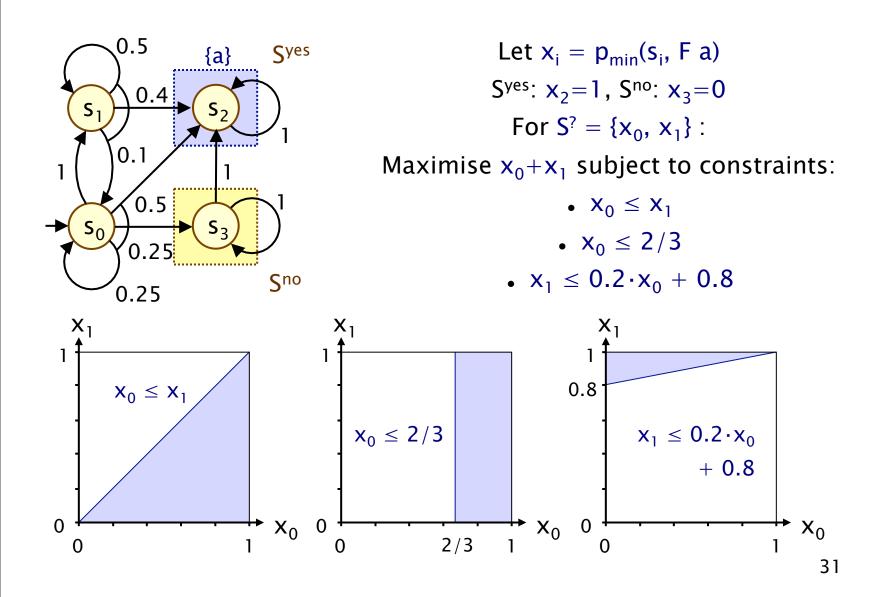
Let $x_i = p_{min}(s_i, F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$:

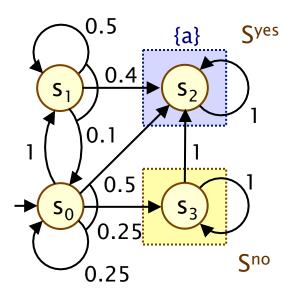
Maximise $x_0 + x_1$ subject to constraints:

• $\mathbf{X}_0 \leq \mathbf{X}_1$

•
$$x_0 \le 0.25 \cdot x_0 + 0.5$$

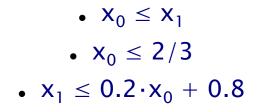
•
$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

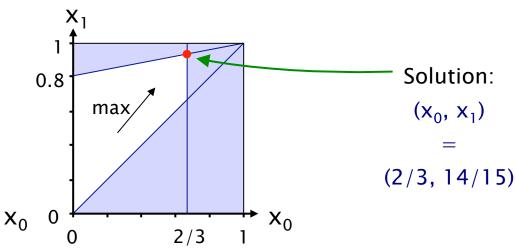


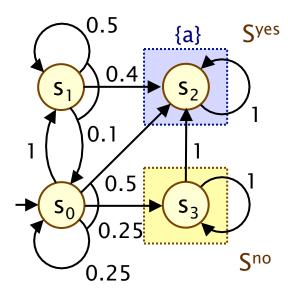


Let $x_i = p_{min}(s_i, F a)$ $S^{yes}: x_2=1, S^{no}: x_3=0$ For $S^? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:

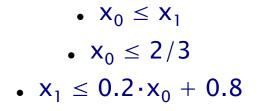


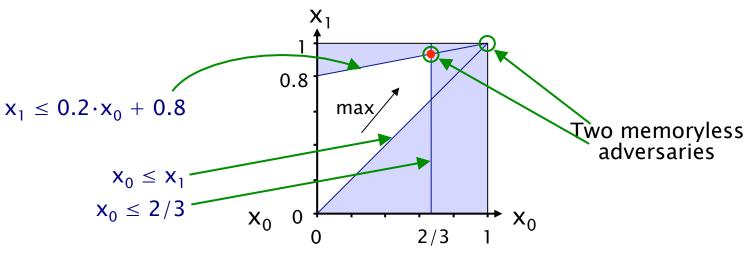




Let $x_i = p_{min}(s_i, F a)$ $S^{yes}: x_2 = 1, S^{no}: x_3 = 0$ For $S^? = \{x_0, x_1\}$:

Maximise $x_0 + x_1$ subject to constraints:





Method 2 - Value iteration

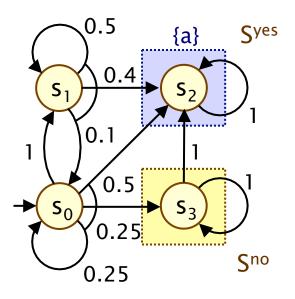
• For probabilities $p_{min}(s, \phi_1 \cup \phi_2)$ it can be shown that:

$$\begin{array}{l} -p_{min}(s,\,\varphi_1\,\,U\,\varphi_2) = \lim_{n\to\infty} x_s^{(n)} \text{ where:} \\ \\ 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \\ \\ 0 & \text{if } s \in S^? \text{ and } n = 0 \\ \\ min_{(a,\mu)\in Steps(s)} \left(\sum_{s'\in S} \mu(s')\cdot\,x_{s'}^{(n-1)}\right) & \text{if } s \in S^? \text{ and } n > 0 \end{array}$$

This forms the basis for an (approximate) iterative solution

- iterations terminated when solution converges sufficiently

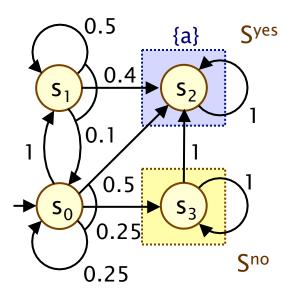
Example - PCTL until (value iteration)



Compute: $p_{min}(s_i, F a)$ $S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}$

 $[x_{0}^{(n)},x_{1}^{(n)},x_{2}^{(n)},x_{3}^{(n)}]$ n=0: [0, 0, 1, 0] $n=1: [min(0,0.25 \cdot 0+0.5),$ $0.1 \cdot 0+0.5 \cdot 0+0.4, 1, 0]$ $n=2: [min(0.4,0.25 \cdot 0+0.5),$ $0.1 \cdot 0+0.5 \cdot 0.4+0.4, 1, 0]$ = [0.4, 0.6, 1, 0] $n=3: \dots$

Example – PCTL until (value iteration)

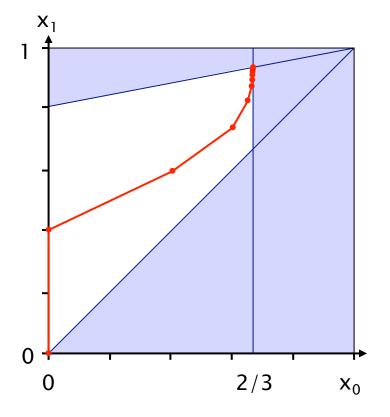


	$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
n=0:	[0.000000, 0.000000, 1, 0]
n=1:	[0.000000, 0.400000, 1, 0]
n=2:	[0.400000, 0.600000, 1, 0]
n=3:	[0.600000, 0.740000, 1, 0]
n=4:	[0.650000, 0.830000, 1, 0]
n=5:	[0.662500, 0.880000, 1, 0]
n=6:	[0.665625, 0.906250, 1, 0]
n=7:	[0.666406, 0.919688, 1, 0]
n=8:	[0.666602, 0.926484, 1, 0]
n=9:	[0.666650, 0.929902, 1, 0]

n=20: [0.6666667, 0.933332, 1, 0] n=21: [0.6666667, 0.933332, 1, 0]

 \approx [2/3, 14/15, 1, 0]

Example – Value iteration + LP



$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]$
[0.000000, 0.000000, 1, 0]
[0.000000, 0.400000, 1, 0]
[0.400000, 0.600000, 1, 0]
[0.600000, 0.740000, 1, 0]
[0.650000, 0.830000, 1, 0]
[0.662500, 0.880000, 1, 0]
[0.665625, 0.906250, 1, 0]
[0.666406, 0.919688, 1, 0]
[0.666602, 0.926484, 1, 0]
[0.666650, 0.929902, 1, 0]

n=20: [0.6666667, 0.933332, 1, 0] n=21: [0.6666667, 0.933332, 1, 0] \approx [2/3, 14/15, 1, 0]

37

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries ("policies")
- 1. Start with an arbitrary (memoryless) adversary A
- 2. Compute the reachability probabilities <u>Prob</u>^A(F a) for A
- 3. Improve the adversary in each state
- 4. Repeat 2/3 until no change in adversary

Termination:

- finite number of memoryless adversaries
- improvement in (minimum) probabilities each time

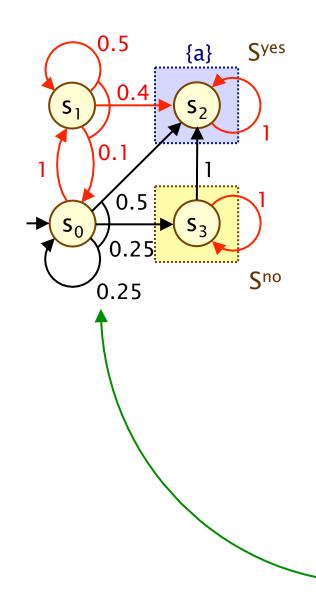
Method 3 – Policy iteration

- 1. Start with an arbitrary (memoryless) adversary A
 - pick some **Steps**(s) for each state $s \in S$
- 2. Compute the reachability probabilities <u>Prob</u>^A(F a) for A
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\mathsf{A'}(\mathsf{s}) = \operatorname{argmin} \left\{ \sum_{\mathsf{s'} \in \mathsf{S}} \mu(\mathsf{s'}) \cdot \operatorname{Prob}^{\mathsf{A}}(\mathsf{s'}, \mathsf{Fa}) \mid (\mathsf{a}, \mu) \in \operatorname{Steps}(\mathsf{s}) \right\}$$

4. Repeat 2/3 until no change in adversary

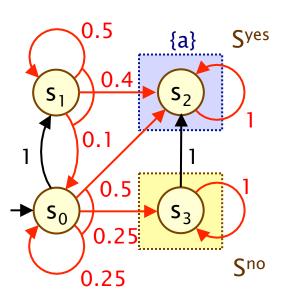
Example – Policy iteration



Arbitrary policy A: Compute: <u>Prob</u>^A(F a) Let $x_i = Prob^A(s_i, F a)$ $x_2 = 1$, $x_3 = 0$ and: • $x_0 = x_1$ $\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$ Solution: <u>Prob^A(F a) = [1, 1, 1, 0]</u> Refine A in state s_0 : $\min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$ $= \min\{1, 0.75\} = 0.75$

40

Example – Policy iteration



Refined policy A':

Compute: Prob^{A'}(F a)

Let $x_i = Prob^{A'}(s_i, F a)$

$$x_2 = 1$$
, $x_3 = 0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

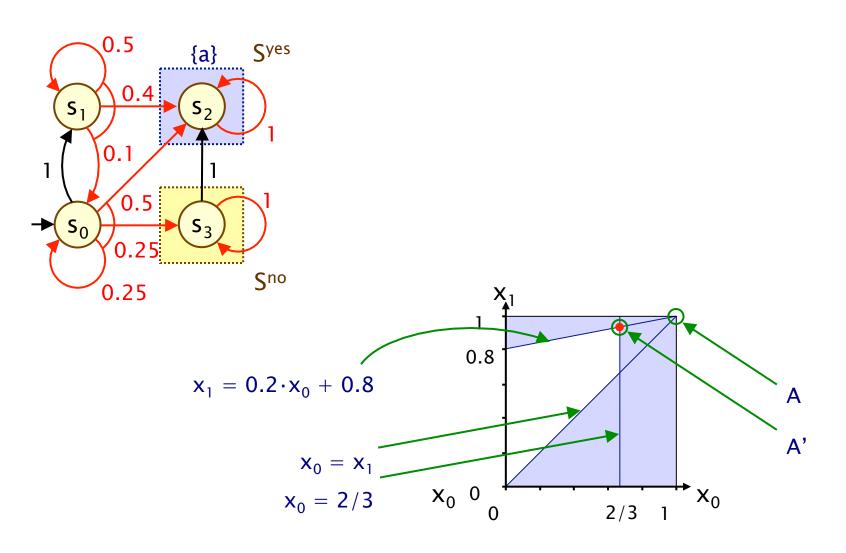
•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

<u>Prob</u>^{A'}(F a) = [2/3, 14/15, 1, 0]

This is optimal

Example – Policy iteration



42

PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation

• Probabilistic operator P:

- X Φ : one matrix-vector multiplication, O(|S|²)
- $\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
- $\Phi_1 \cup \Phi_2$: linear programming problem, polynomial in |S| (assuming use of linear programming)

Complexity:

- linear in $|\Phi|$ and polynomial in |S|
- S is states in MDP, assume |Steps(s)| is constant

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

Costs and rewards for MDPs

- Can use costs and rewards in similar fashion to DTMCs:
- Augment MDPs with rewards (or costs)
 - (but often assign to states/actions, not states/transitions)
- Extend logic PCTL with R operator
 - semantics extended in same way as P operator
 - e.g. $s \models R_{r} [F \Phi] \Leftrightarrow Exp^A(s, X_{F\Phi}) \sim r$ for all adversaries A
 - quantitative properties: Rmin_{=?} [...] and Rmax_{=?} [...]

• Examples:

- "the minimum expected queue size after exactly 90 seconds"
- "the maximum expected power consumption over one hour"
- the maximum expected time for the algorithm to terminate

Model checking MDP reward formulas

- Instantaneous: R_{-r} [I^{=k}]
 - similar to the computation of bounded until probabilities
 - solution of recursive equations
- Cumulative: R_{-r} [$C^{\leq k}$]
 - extension of bounded until computation
 - solution of recursive equations
- Reachability: R_{r} [F ϕ]
 - similar to the case for P operator and until
 - graph-based precomputation (identify ∞ -reward states)
 - then linear programming problem (or value iteration)

Overview (Part 2)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- PCTL for MDPs
- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

Case study: FireWire protocol

- FireWire (IEEE 1394)
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" add/remove devices at any time

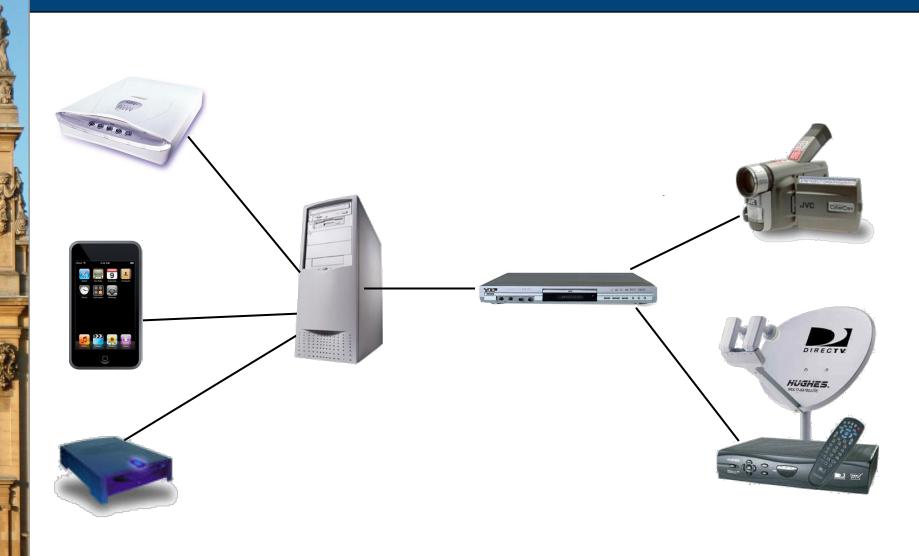
- no requirement for a single PC (need acyclic topology)

Root contention protocol

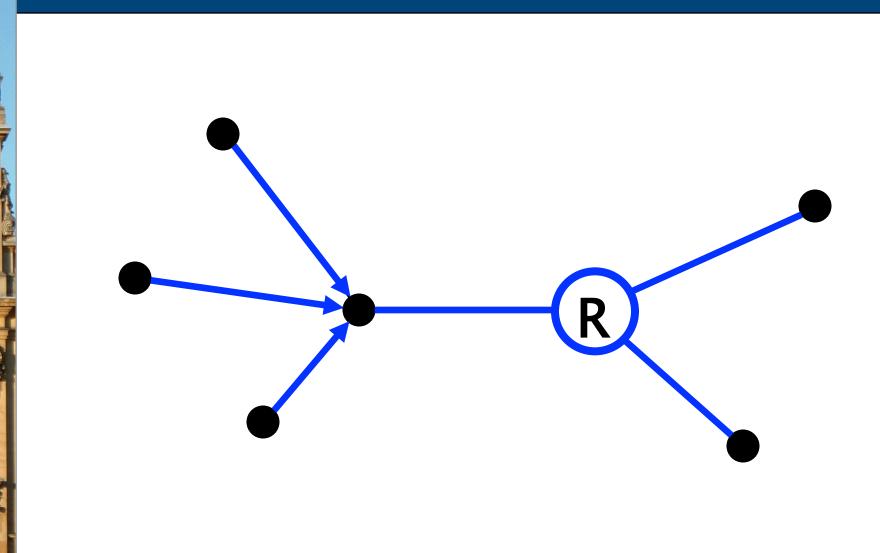
•

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses electronic coin tossing and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

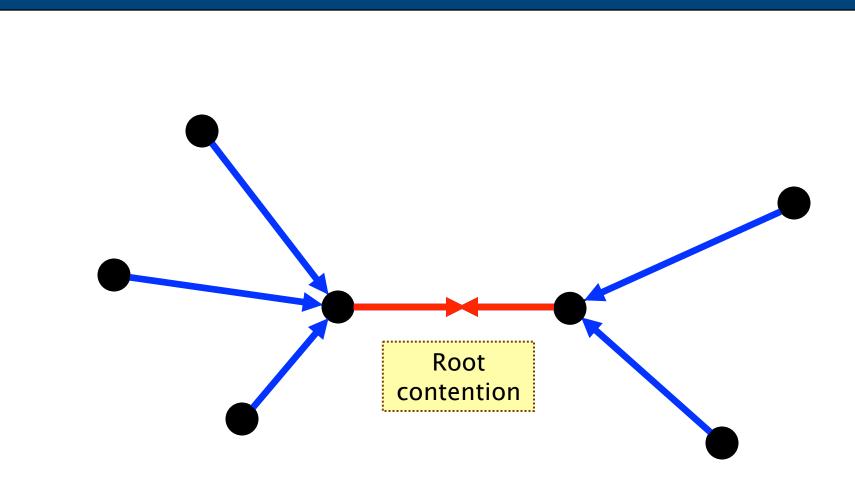
FireWire example



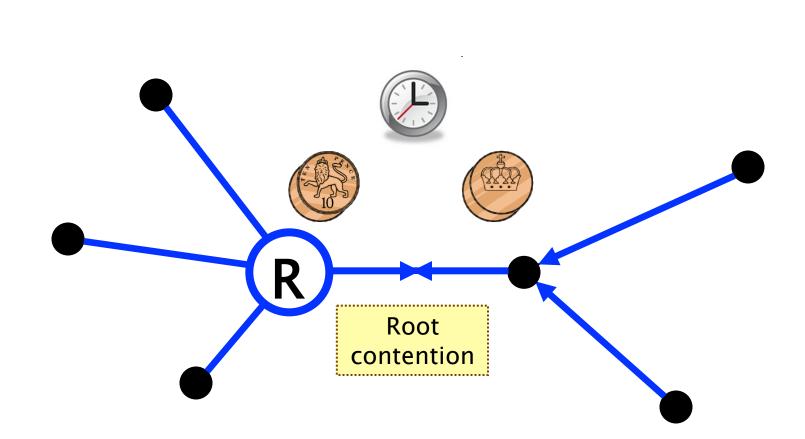
FireWire leader election



FireWire root contention

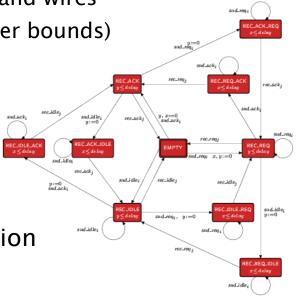


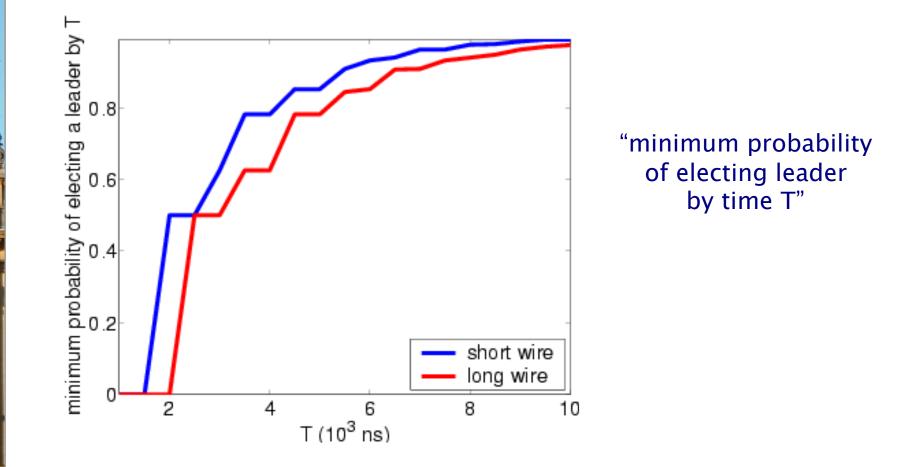
FireWire root contention

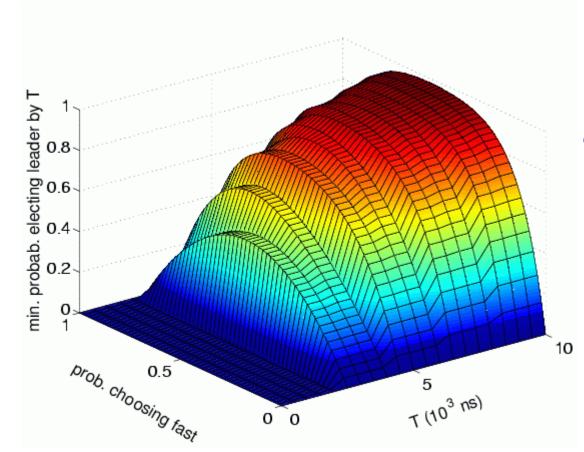


FireWire analysis

- Probabilistic model checking
 - model constructed and analysed using PRISM
 - timing delays taken from standard
 - model includes:
 - concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
 - max. model size: 170 million states
- Analysis:
 - verified that root contention always resolved with probability 1
 - investigated time taken for leader election
 - and the effect of using biased coin
 - $\cdot\,$ based on a conjecture by Stoelinga



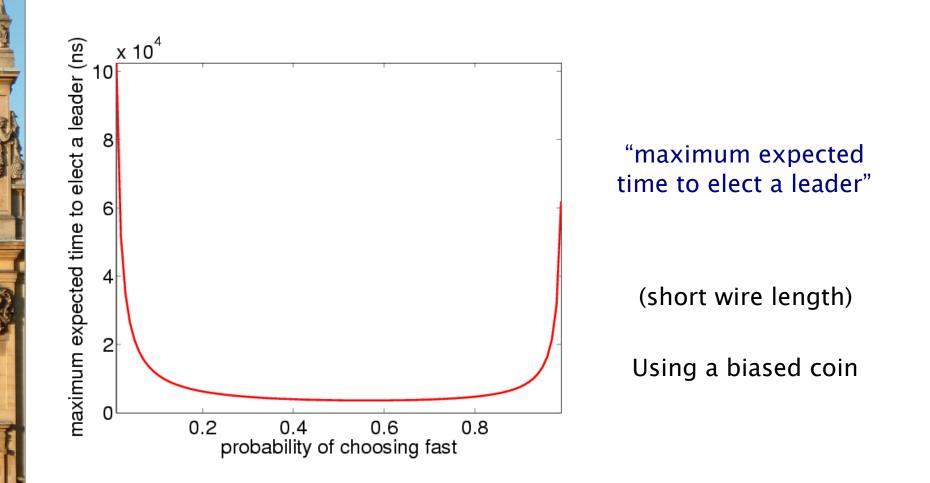


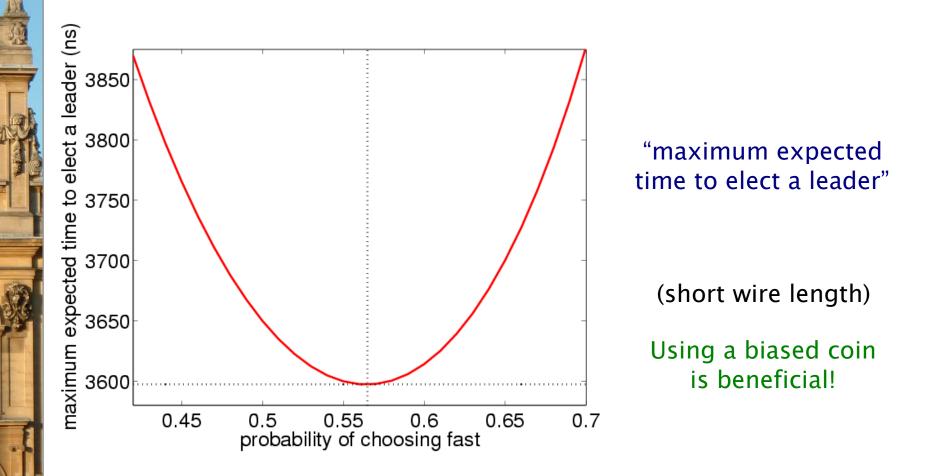


"minimum probability of electing leader by time T"

(short wire length)

Using a biased coin





Summary

Markov decision processes (MDPs)

- extend DTMCs with nondeterminism
- to model concurrency, underspecification, ...
- Adversaries resolve nondeterminism in an MDP
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all adversaries
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Next: LTL model checking (for DTMCs and MDPs)