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Goal find DL& for which reasoning 1s tractable,
1.¢, which have polvnomial-time decision procedures

e Tractable DLs cannot allow for all Boolean operators:
satisfiability in propositional logic i1s already NP-complete

e Conjunction (') is indispensable:

otherwise one cannot require several properties simultaneously

e Negation plus conjunction is propositionally complete:
full negation must be disallowed

e No DL without roles:

either value or existential restrictions should be present

Two minimal DLs satisfying these requirements:
e FLy: conjunction (M) and value restrictions (Vr.C")

e £ L: conjunction (I) and existential restrictions (dr.C'")
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Fﬁ[j conjunction and value restrictions

Satisfiability: is trivial
every J Ly-concept description is satisfiable just interpret all concept names
as the whole domain

Subsumption: is the interesting inference problem for F Lj-concept descriptions

Vr.(Vs.BNVsVr.A)NVr.(ANB) C Vr.(ANVs.(BMNVr.A))

Structural subsumption algorithm:

. Normalize the concept descriptions

Ig 2. Compare the structure of the normalized descriptions
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NUl*lllﬂliZﬂJ[iUﬂ of JF Ly-concept descriptions
proceeds in several steps

Step 1:  push value restrictions over conjunction

\?’T(O | ] D) — Vr.C'NVr.D equivalence preserving

Vr.(Vs.BMVsVr. A)OVr. (AN B) — VrVs.BNVr¥VsVr. ANVr.(ANB)
Ve Vs. BNVr ¥NsVr.AOVYr . ANOVer.B

1

Vr.(ANVs.(BNVr.A) — Vr(AMNVs.BMNVsVr.A)
Vr. ANVYr¥Vs.BNVr.Vs.Vr.A

&

Normal form obtained by apply this rule exhaustively:

e conjunction of concept descriptions of the form Vry. - - - Vr,.A
wheren > Oand A € N¢

e can be computed in polynomial time
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N’Ul*ll‘lﬂliZﬂﬁGﬂ of JF Ly-concept descriptions
proceeds in several steps

Step 2: use words over Ny

\?f?j. a \UJ'T‘”.fl > \Gf?‘] . T”.A

where w = ry...r, 1s viewed as a word over the alphabet Np n=0 w

|
N

Vr¥s. BOVr Vs Nr. ANVr. ANVr.B — Vrs.BMNVrsr. ANVr. ANVr.B

YVr. AOVrVs.BNVYrVsVrA — Vr.AMNVrs.BMNVrsr.A

Step 3: collect words in front of the same name 1in a finite language

Ywi. AM...MNYVw. A » Y{wi,...,wi}.A

Vrs. BOVrsr ANVr.ANYr.B — V{r,rsr}.ANV{r,rs}.B

Vr.ANVrs.BMNVrsr.A — VY{r,rsr}. ANV{rs}.B
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Normal form of F Ly-concept descriptions

h :“".11 ...... F :'1.-” : [ ns g d
NF(C) =VL1. A1 N...NVLy.An where A, are concept names an

Lq,...,L,, are finite languages over Np

Characterization of subsumption:

Let NF(C)=VL. A N...NVL,,.A,,
and NF(D)=VK; A N...NVK,.A,.

) : can be checked in
Then CE D F Ky Iy Bg s L s
polynomial time

NF(C) = V{r,rsr}.ANV{r,rs}.B
U Ul » CCD
NF(D) = Y{r,rsr}.ANV{rs}.B
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Extension to acvclic TBoxes

Subsumption in F Ly w.r.t. acyclic TBoxes
corresponds to the

inclusion problem for acyclic finite automata.

Inclusion problem:

Gi\"ﬂﬂ two HCFC“C ﬁnitﬂ automata A-_ B UUNP‘L‘U”TP;‘IL‘IU
Question does L(.A) C L(B) hold 1.e., non-inclusion 1s NP-complete
Note:

Acyclic automata define finite sets of words, however, they can do this

exponentially more succinct than the enumeration of all elements
a a a a
OO - ==0—=0O
> - - >
b b b b
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From acvclic TBoxes to acyclic automata

A = VvYr.BOVr.C
B = Yl
. = VYal
Complications:
A=Vr¥Vs.BN... introduce auxiliary states
A=Bn... introduce and then eliminate s-transitions

Characterization of subsumption:

AC+ B iff L(B,P)C L(A,P) for all primitive concepts P

\ Wﬂj‘*df; fﬂﬂdlﬂg ﬂﬂ‘ln 1{1 (o 1”

LA Py={rrs,rz} D L{B.P)=1{rs} » ALC B
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From acvclic TBoxes to acyclic automata

A = Vr.BNVr.C

B = Yl
. = VYal
Complications:
A=Vr¥s.BN... introduce auxiliary states
A=Bn... introduce and then eliminate s-transitions

Characterization of subsumption:

AC+ B iff L(B,P)C L(A, P) for all primitive concepts P

The subsumption problem in F L w.r.t. acyclic TBoxes is in coNP.
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From acvclic automata to acyclic TBoxes

Qo = Vr.QNvr.Qs

1 = Vr.QoNMVs.F
Ta 2 = Vs.F

Fi = Vr.F; NPy,

F, = Pin

Fy, = Vr.P
: P, = Vr.BNVs.Ey
® | A= VB

by = Py

Characterization of inclusion:

L(B) C L(A) iff QyCrurn —— subsumption coNP-hard
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Complexity of subsumption

Dresden

F Ly EL
no TBox polynomial polynomial .
acyclic TBox coNP-complete polynomial
cyclic TBox PSpace-complete polynomial
general TBox ExpTime-complete polynomial ¢ B
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conjunction, existential restrictions, and top concept |

& L-concept descriptions can be represented as description trees:
e nodes labeled with sets of concept names

e cdges labeled with role names
C=FP N 2PN AQ)MN3s.Q) N (PN 3s.P)

Tp (P}

(P,Q} {Q) {P}
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Sllbﬂlllllptiﬂﬂ corresponds to existence of homomorphism

Let Ty = (Vy, £y, £1) and 15 = ( V5, k9, £5) be description trees.

The mapping h : Vi — V5 is a homomorphism if
e it maps the root of 7] to the root of 15;
o ((v) C {(h(v))forall v € Vi;

o (vy,r,v9) € Eyimplies (h(vy), 7, h(vy)) € Es.
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Sllbﬂlllllptiﬂﬂ corresponds to existence of homomorphism

C' C D iff there is a homomorphism from 1 to 1.

Sr.iF.QN3s.Q)N3r.P P
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Existence of homomorphism

NP-complete

For trees, this can be decided in polynomial time. ;
for graphs

To decide whether there exists a homomorphism 17 — 15,
we compute for every u € V) the set

H(u) := {v € V5 | there is a homomorphism from 77|, to 15|, }

in a bottom-up manner. \ subtree of 7}
with root u

{wg J {P}
L G B O
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Subsumption in the presence of GCIs

We describe an algorithm that classifies a general TBox 7T,

1.e., computes all subsumption relationships between the concept names of 7.

|. Normalize the general TBox.

2. Translate normalized TBox into a graph.

(s

Complete the graph.

4. Read off all subsumption relationships from the

completed graph,
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Goal: obtain an equivalent set where all GCIs are of the form

Ai1MNAC B
AC dr.B where A, A}, Ay, B € NocU{T}

r. AC B

HSe.ATlTFrdeA T AN T wd: He AL B Bhlldrda AT AN 3T

~» ds.A E Bl, Jdr.ds. A E B-_r, Bl [ b)g E ANdr.T

5 ds.A L B, ds. A C B3, 3"!'.5;; B, BT B L AMNdr. T

~ ds. AC B, dssAC B;, dr.BsC By, BiNB,C A, BiNB, C dr. T
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Goal: obtain an equivalent set where all GCIs are of the form

AiMNAC B
AC dr.B where A, A1, Ay, B € Nc U{T}

rAL B

Normal form can be computed
e by applying simple equivalence preserving transformation rules

e in linear time if an appropriate strategy is used
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(ﬁ'ﬂph of a normalized set of GClIs

The classification graph is of the form (V, V' x V., 5, R) where
e |/ is the set of concept names occurring in 7; including T
e S labels nodes with sets of concept names;

e [{ labels edges with sets of role names.

Initahization: Invariant:
o S(A) ={A, T} e B e S(A)implies A C+ B;
e R(A,B):=0. e r € R(A, B) implies A Cy dr.B.
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COﬂlple’[iOﬂ rules extend the labels in the graph

Rl A\NACBeT and A;,A € S(A) ~» add Bto S(A)

R2 AiCar.BeT and A, € S5(A) ~ addrto R(A, B)

B, e S(B -
R3 dr.BiC Ay €7 and ] <l ~ add A; to S(A)
re S(A, B)

BeSA)implies ACr B

r € R(A, B) implies A Ly dr. B

Rule application preserves the invariant;

By CAeT Ir.B; C A;
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COIllplE‘tiOll rules yield a polynomial-time decision procedure

|. Rule application terminates after a polynomial number of steps.

2. If no more rules are applicable, then

ACr B iff Be S(A)

. Termination

e the number of nodes 1s linear and the number of

edges quadratic in the size of T; at most cubic number

+ : e + + of rule applications
e the size of the label sets is linear in the size of T

e applying one rule needs polynomial time.
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COIllplE‘tiOll rules yield a polynomial-time decision procedure

|. Rule application terminates after a polynomial number of steps.

2. If no more rules are applicable, then

ACr B iff Be S(A)

2.ACT B iff Be S(A)
“<=" follows from the fact that the invariants are preserved.

“=" Assume that B € S(A).
The following is a model of 7 that violates the subsumption relationship:
o Al .=V;
e B" :={A"| B € S(A")} for all concept names B’

o 11 :={(A",B)|re R(A",B")} forall role names r.
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(Goal tind DLg for which reasoning 1s tractable,
1.¢, which have polvnomial-time decision procedures

EL is such a DL:

e subsumption in £L is polynomial

even 1n the presence of GCls;
e this even holds for some extensions of £ L:

e &L isusedin several biomedical ontologies (e.g., SNOMED).
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