
Lecture Notes

Logical Frameworks

The Art of Representation

VSTA 2012

Saarbrücken

Carsten Schürmann

September 3, 2012

Introduction

During these lectures I will introduce you to the world of logical frameworks
through logic. When I gave these lectures ten years ago, the state of the art
was much di↵erent than today. Intuitionistic logic formed the foundation of the
logical framework LF [?], that was used for example in the Twelf theorem prover.
LF was not designed to reason about programming languages and logics per se,
instead it was intended to serve as a meta-language for representing complex
data. LF is dependently typed, which means that we can define type families
that are indexed by other objects in the type theory, for example, judgments
that express that a list has n elements, or a derivability judgment for first-order
classical logic.

LF surpasses the simply typed �-calculus in expressiveness. This means
that its type structure is so rich that even for complex operational semantics
and logics, it is possible to show that they are adequate, which means that there
exists a bijection between canonical forms (i.e. �-reduced, ⌘-expanded) of the
type theory, and derivations in the object system. What made LF really popular
was its ability to capture substitutions and provided substitution principles and
theorems for free. This ability is commonly referred to as higher-order abstract

syntax. In a nut-shell, the Twelf was the first theorem prover that supported
reasoning about encodings in LF. Its reasoning engine implements the induction
principle derived from the inductive definition of canonical forms of LF, and it
circumvented the need for proving substitution lemmas explicitly.

When Frank Pfenning and I built Twelf in 1998, it became quickly evident
clear that it would excel on certain kind of theories, namely those that could be
nicely represented in LF. There were many examples of such, for example, An-
drew Appel’s research on foundational proof carrying code, Appel and Felten’s

1



work on proof carrying authentication, Crary’s work on formalizing a proof for
typed assembly language, and the complete formalization of the type preser-
vation theorem for SML. As the result of a humble self evaluation, I would
say that Twelf pushed the bar of what was possible. It allowed users to go
deep and spared them from boring boiler plate work regarding the properties of
substitutions.

There are many mathematical problems, however, that do not fit so well into
the philosophy of the Twelf proof assistant. For some object systems Twelf is
not expressive enough. For example it is not easily possible in Twelf to reason
about languages that are defined with non-standard notion of substitutions, for
example those one obtains when reasoning in linear or a�ne type theories. If
the user is interested in studying substitutions in their own right, Twelf may
not be the right tool either, just because the built-in free notion of substitution
is defined by LF, and variables cannot be compared for equality.

In the concurrent age, where laptop processors consist of multiple cores, we
need to be concerned with more expressive logical frameworks, that should be
used for representation and provide a foundation for reasoning.

This is why for this summer school, we do not concentrate on LF but focus
on linear logic as the foundation for a logical framework that can be used to
represent concurrent traces, graphs, protocols, etc. These notes are organized
in four lectures. The first lecture is on the judgmental reconstruction of linear
logic. We begin from first principles, define two judgments: A is an ephemeral
statement that must be used exactly once, and A is a persistant resources that
may be used as often as necessary. In the second lecture, we complete the
discussion linear logic and prove expansion of initiality (that corresponds to
⌘-expansion), and cut-elimination (that corresponds to �-reduction). We will
not discuss all connectives, but leave further investigations to the interested
reader. Linear logic, will not only be a system in which represent derivations
but computations as well. In logic, computation correspond to proof search,
and in order to keep proof search tractable, we discuss inversion and chaining in
the third lecture. In the fourth and final lecture, we show on particular way our
formulation of linear logic can be turned into a type theory. The type theory
is the concurrent logical framework CLF, its implementation is called the Celf
system.

Lecture 1: Judgmental Reconstruction

The running example through this course is that of voting protocols. We will
show that the logical framework that we develop here is an ideal candidate to
model a domain specific programming language to express an election. Let’s
look at a very di�cult example first, the voting protocol that is called sin-
gle transferable vote (STV). The protocol is used in real elections, for example,
small elections, such as trustee election of the CADE conference or other profes-
sional organizations, but also in real big elections, such as parliament elections
in Ireland, and Australia.

2



In STV, each voter casts a ballot that lists candidates in order of the voter’s
preference. To be elected, a candidate must reach a threshold, or quota, of
votes. For the purposes of this paper, the particular choice of quota is arbitrary.
Because it is commonly used in practice, we choose the Droop quota,

quota =
#ballots

#seats + 1
+ 1 ,

however any quota could easily be substituted. Once the quota is computed,
the ballots are counted and the following rules are repeated until all open seats
are filled.

1. If a candidate has enough votes to meet the quota, she is declared elected.
Any surplus votes for this candidate are transferred.

2. If all ballots have been assigned to candidates and no candidate meets
the quota, then the candidate with the fewest votes is eliminated and her
votes are transferred. If several candidates tie for the fewest votes, one is
eliminated at random.

3. When a vote is transferred, it is assigned to the hopeful candidate with
the next highest preference listed on that ballot. That is, candidates that
are already elected or defeated do not receive transferred votes.

4. If, at any point, there are at least as many open seats as hopeful candidates
remaining, then all remaining hopefuls become elected.

We will come back to this little example in the last lecture. For now, just
noticed, that there is an algorithm hidden within this description. Its definition
is not very clear. When we try to express this algorithm in first-order logic, we
immediate are confronted with the problem to formalize verbs like to declare

someone elected, to declare someone defeated, to assign a vote to a candidate,
or to transfer a vote from one candidate to another. How shall we model the
status of a ballot? Could it be a proposition in intuitionistic logic?

We propose to consider a ballot as an ephemeral resource that must be
counted once and exactly once. All we need is to construct a logic that can
handle ephemeral resources and ensures their proper usage pattern.

Ephemeral resources are not specific to voting. They can be observed eev-
erywhere: Messages that are being send over a wire, memory cells that may be
updated, destinations in programming, credentials that users may use exactly
one time to gain access to another resource, tokens in petri nets. If we look
around, we see such ephemeral resources popping up everywhere, warranting
a deeper investigation of a phenomenon that has many applications beyond
voting.

We will begin to build a logic for ephemeral resources, using a technique that
has been dubbed judgmental reconstruction [?, ?]. In Martin-Löf’s paper on the
meaning of logical constants, he characterizes the basics of a logic system into
judgments and evidence. A judgment is a something that can be true, and the

3



evidence provides the argument why it is true. Common examples of judgments
include e ,! v (e evaluates to v), e : ⌧ (expression e has type v), A pers (formula
is derivable in the logic =)), but also A eph meaning that A is an ephemeral
resource that may be used exactly once.

Under evidence we understand finite trees of small justification steps. Each
justification step is an inference rules, with multiples premisses J1 ... Jn and
one conclusion J .

J1 . . . Jn
name

J

Martin-Löf makes a distinction between judgments and hypothetical judg-

ments. A hypothetical judgment is one that may be introduced as a hypothesis
and such. We will in a moment encounter an example of a hypothetical judg-
ment.

The logic that we will reconstruct for the judgment of ephemeral resources
coincides with that of linear logic. It was introduced by Jean-Yves Girard [?].
Ephemeral resources must be consumed (exactly once) in a valid proof.

Ephemeral Judgments In our logic resources may be constructed from other
resources. This is the intention and meaning of an ephemeral judgments. The
ephemeral judgment is also hypothetical: If A eph is constructed using each
ephemeral resource among A1 eph . . . An eph exactly once, we write

A1 eph, . . . , An eph =) A eph

The list of linear resources to the left of the =) symbol enjoys among the three
structural properties only exchange (but neither weakening nor contraction) and
will be abbreviated in the remainder of this dpaper by the aforementioned �.
In the remainder of the paper we refer to Ai eph also as a linear assumption

and to Ai as a resource.
ax

A eph =) A eph

To present the meaning of this judgment via various connectives, we will
now develop a specification of voter check-in at a polling place. Prior to election
day, each voter receives a voting authorization card in the mail. To check in
at her designated polling place on election day, the voter exchanges her voting
authorization card for a blank ballot form. Because each voter receives only one
authorization card, the card thus helps prevent ballot stu�ng.

In traditional logic, one might try to specify this check-in process by taking
as an axiom the formula

voting-auth-card ! blank-ballot :

if a voter has a voting authorization card, then she may have a blank bal-
lot form. However, this specification would allow proofs of such nonsense as

4



voting-auth-card ! blank-ballot^voting-auth-card: if a voter has a voting autho-
rization card, she can receive a blank ballot and keep her authorization card. By
iterating this proof, one can show that, under this specification, ballot stu�ng
is possible: voting-auth-card ! blank-ballot^ · · ·^blank-ballot^voting-auth-card.
Therefore, this specification of the check-in procedure is clearly unsound.

Linear Implication, (. The problem is one of expressivity—traditional im-
plication does not express that the check-in process consumes the voter’s au-
thorization card. But, as a logic of resources, linear logic provides just the right
expressive power. It includes the linear implication formula A ( B, which, like
the traditional implication, is a procedure for producing resource B if given A;
unlike the traditional implication, however, this procedure consumes resource A
as part of the production.

Thus, a sound specification of voter check-in is given by taking as an axiom
the linear logical formula

voting-auth-card ( blank-ballot :

the check-in process consumes the voter’s authorization card and gives her a
blank ballot in exchange.

The connective ( is defined by the following rules.

(�, A eph) =) B eph

( R

� =) A ( B eph

�1 =) A eph �2, B eph =) C eph

( L

(�1,�2, A ( B eph) =) C eph

This is the core of a sequent calculus formulation for linear logic. The letter
R and L tell us if it is a right or a left rule, meaning that the principal formula
formed by ( either occurs on the right (as the conclusion) or on the left within
the context of assumptions.

Alternatively, we could have also written the( R as an introduction rule( I

in natural deduction formulation. To emphasize the di↵erence to the sequent
formulation we write ` for the judgment of derivability in natural deduction:

(�, A eph) ` B eph

( I

� ` A ( B eph

The natural deduction formulation of the ( L is the following elimination rule
( E:

�1 ` A ( B eph �2 ` B eph

( E.

(�1,�2) ` B eph

Natural deduction formulations of logics are traditionally easier to understand
and comprehend than their sequent counterparts. Formulating theorems and
proofs, however is much easier in the sequent formulation. Both formulations
are equivalent in the sense of provability.

Whenever, we introduce a new connective, we are interested in two proper-
ties, initiality expansion, and cut-elimination. Initiality expansion corresponds

5



roughly speaking to ⌘-expansion: Assuming that A eph is given, we can take it
apart and reconstruct it. The only rule we may rely on is that the axiom rules
hold for atoms:

pax

P eph =) P eph

Cut-admissibility corresponds to �-reduction: If we have a proof of A eph and
a proof of C eph hypothetical in A eph, then we can cut out the intermediate
A eph and prove C eph directly. Pfenning often refers to those three properties
of harmony: They somehow guarantee that the left and the right rules for a
connectives fit to each other, the left rule does not loose information and non
the right rule does not introduce anything phony.

Theorem 1 (Initiality-expansion) If A eph =) A eph with the connective

specific axiom rules then A eph =) A eph with the ax rule.

Theorem 2 (Cut-admissibility) If �1 =) A eph and (�2, A eph) =) B eph

then (�1,�2) =) B eph.

We will give the proofs of thee important properties in the second lecture.

Simultaneous Conjunction, ⌦, and Its Unit, 1. Now suppose that voters
are also required to present a photo ID during check-in. The specification will
have the same basic structure: ‘a voting authorization card and a photo ID’ (
blank-ballot. But how can we express the ‘a voting authorization card and a
photo ID’ resource as a formula of linear logic?

Fortunately, linear logic provides a simultaneous conjunction, A ⌦ B (read
‘both resources A and B’). Thus, a specification of the revised check-in process
can be given by the formula

voting-auth-card⌦ photo-ID ( blank-ballot :

when a voter gives a voting authorization card and a photo ID, she receives a
blank ballot form in exchange. (Note that ⌦ binds more tightly than (.)

The connective ( is defined by the following rules.

�1 =) A eph �2 =) B eph

⌦R

� =) A⌦B eph

�, A eph, B eph =) C eph

⌦L

(�, A⌦B eph) =) C eph

Linear logic also includes a unit for simultaneous conjunction, 1 (read ‘noth-
ing’), which represents the empty collection of resources. The proposition 1 is
primarily used in the idiom A ( 1, which consumes resource A and produces
nothing in return. 1 is the unit of the tensor, and the rules can be easily derived
from the tensor rules.

6



1R

· =) 1 eph

� =) C eph

1L

(�,1 eph) =) C eph

Unrestricted Modality, !. The prior specification of the check-in process,
voting-auth-card ⌦ photo-ID ( blank-ballot, is not fully satisfactory, however.
Because photo-ID is treated as a resource and linear implication (which con-
sumes the resources it is given) is used, this axiom specifies a check-in process
in which voters must relinquish their photo IDs to vote! This is not the intent;
voters should always retain their photo IDs. And so, at first glance, photo-ID
does not appear to fit into the resource discipline of linear logic.

However, the unrestricted modality, !A, of linear logic provides a way out.
The proposition !A is a version ofA that is not subject to the resource discipline—
an assumption !A can be used an unlimited number of times (including none).
Alternatively, one may think of !A as stating that A is a fact that will remain
true regardless of how the system evolves.

[Using the ! modality, the revised specification can therefore be given by

voting-auth-card⌦ !photo-ID ( blank-ballot :

when a voter gives an authorization card and shows a photo ID, she receives a
blank ballot form. (Note that ! binds more tightly than ⌦ and (.)

Our judgment that we have been so far is not general enough to capture
resources that are persistant as the the ! suggests. We will need to introduce
a new judgment, A pers if A is a persistant hypothesis and extend our logic,
by a context � that stands for the persistant hypotheses x1 : A1 pers, . . . , xn :
An pers. In contrast the ephemeral context �, � enjoys all structural properties,
i.e. weakening, exchange, and contraction. The meaning of persistance is best
summarized by the following rule

�; · =) A eph

pers

� =) A pers

which we don’t really need since we will just use the premiss in any rule that
would mention persistent conclusion otherwise.

�, A pers;�, A eph ` C eph

copy

�, A pers;� ` C eph

This rules does everything we need it to do. It allows us to create arbitrary
many instances from persistant resources. We need to go back and extend all
inference that we have introduced so far with a leading �;. It is easy to see that

Theorem 3 �, A pers; · =) A eph

7



Proof: Immediate by ax followed by copy. 2

Therefore, we don’t need to consider an additional axiom rule and the ini-
tiality expansion theorem from above should not be a↵ected. We restate it, this
time with the context for persistant assumptions added.

Theorem 4 (Initiality-expansion) If �;A eph =) A eph with the connec-

tive specific axiom rules then �;A eph =) A eph with the ax rule.

We will check all of this in detail in Lecture 2. For cut, we are less lucky,
because we will need to consider cutting out a persistant assumption as the
following reformulation of the the cut admissibility theorem shows:

We will consider an extension of the cut theorem above though:

Theorem 5 (Cut-admissibility)

1. If �;�1 =) A eph and �; (�2, A eph) =) B eph then �; (�1,�2) =)
B eph.

2. If �; · =) A eph and (�, A pers);� =) B eph then �;� =) B eph.

Next we turn to the rules defining the modal connective !, which will fall in
place quite naturally.

�; · =) A eph

!R
�; · =) !A eph

(�, A pers);� =) C eph

!L
�; (�, !A eph) =) C eph

Universal Quantification, 8x:⌧ . Strictly speaking, the current specification
of voter check-in does not capture the requirement that the name on the autho-
rization card must match the name on the photo ID.

This problem can be resolved using universal quantification. In linear logic,
multi-sorted universal quantification, 8x:⌧. A, behaves just as in traditional
logic. In particular, the members of the domain of quantification are not subject
to a resource discipline. Thus, the specification may be revised to

8v:voter.
�
voting-auth-card(v)⌦ !photo-ID(v) ( blank-ballot

�
:

when a voter v gives her authorization card and shows her photo ID, she receives
a blank ballot form.

The left and right rules defining universal quantification are as follows:

�;� =) A[a/x] eph
8R(

a : ⌧)
�;� =) 8x:⌧.A eph

�; (�, A[t/x] eph) =) C eph

8L,where t has sort ⌧
�; (�, 8x:⌧.A eph) =) C eph

8



pax

�;P eph =) P eph

�; (�, A eph) =) B eph
( R

�;� =) A ( B eph

�;�1 =) A eph �;�2, B eph =) C eph
( L

�; (�1,�2, A ( B eph) =) C eph

�;�1 =) A eph �;�2 =) B eph
⌦R

�;� =) A⌦B eph

�; (�, A eph, B eph) =) C eph
⌦L

�; (�, A⌦B eph) =) C eph

1R
�; · =) 1 eph

�;� =) C eph
1L

�; (�,1 eph) =) C eph

�, A pers;�, A eph ` C eph
copy

�, A pers;� ` C eph

�; · =) A eph
!R

�; · =) !A eph

(�, A pers);� =) C eph
!L

�; (�, !A eph) =) C eph

�;� =) A[a/x] eph
8R(

a : ⌧)

�;� =) 8x:⌧.A eph

�; (�, A[t/x] eph) =) C eph
8L,where t has sort ⌧

�; (�, 8x:⌧.A eph) =) C eph

Figure 1: Sequent Calculus for Intuitionistic Linear Logic

With the appearance of a substitution, we must define an appropriate sub-
stitution lemma:

Lemma 6 (Substitution) If �(a : ⌧);�(a : ⌧) ` C(a : ⌧) eph and t has sort

⌧ , then �(t);�(t) ` C(t) eph.

Figure 1 summarizes all our rules that define the meaning of the connectives
purely in terms of availability.

9



Lecture 2: Initiality and Cut-Admissibility

In this lecture, we will prove Theorems 4 and 5 and Lemma 6. We discuss
several cases to illustrate that the theorems are really true.

Example 7 (First past the post) We give an example of the specification
of the first past the post voting protocol in linear logic. Assuming that there
are n ballots and k candidates, this protocol will determine the winner of the
election. We first give the rules and then explain them, assuming that there are
three three sorts, nat denoting natural numbers and cand denoting candidates.

1. 8N : nat. 8C : cand. 8M : nat.

count(N)⌦ballot(C)⌦hopeful(C,M) ( hopeful(C,M +1)⌦count(N �1)

2. 8C1 : cand. 8M1 : nat. 8C2 : cand. 8M2 : nat.

count(0)⌦ hopeful(C1,M1)⌦ hopeful(C2,M2)⌦!(M1 < M2)

( hopeful(C2,M2)⌦ count(0)⌦ !defeated(C1)

3. 8C : cand. 8M : nat

count(0)⌦ hopeful(C,M) ( !elected(C)

A candidate is elected if and only if the following sequent is provable. Let �
consist of the three rules.

�; · =) ballot(C1)⌦ . . .⌦ ballot(Cn)
⌦ hopeful(C1, 0)⌦ . . .⌦ hopeful(Ck, 0)⌦ count(n)
( !elected(C)

to figure out who is elected, we need to run a theorem prover. And thus we
need to determine a good strategy on how to apply the rules. This is what we
are going to do in the next lecture.

10


