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Property Synthesis
(You Will Never Code Again)
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3 Construct Correct Systems

Requirements

Specification Implementation

Verification

Synthesis

Don’t do the same thing twice!
Use synthesis!

Automatically
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4 Motivation

 Coding is hard, want higher level of abstraction:

 Bugs are:

 very expensive, especially in security critical 

applications and hardware

 hard to kill: finding and fixing bugs takes 50%-80% 

of design time

Machine code ⇒ Assembly ⇒ C ⇒ Java ⇒ Ruby? ⇒ …

Silicon ⇒ Gates ⇒ RTL ⇒ Transactions? ⇒ …
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5 Our Focus

 Reactive systems

 Continuous interaction with environment

 Correctness statements are temporal 
(temporal logic, automata)

 Ex: Operating systems, web browsers, circuits, 
protocols

 Finite State

 Prototypical finite state reactive system: circuit

 Not our focus: functions

 One input, one output, non-termination is a bug

 Correctness is input/output relation (Hoare logic)
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6 Other Application Areas

 Program repair 

 Program sketching

 Synthesis of synchronization skeletons

 …
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 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches
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Synthesis as a Game
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9 Synthesis as a Game

Given
 Input and output signals

 Specification of the behavior 

Determine
 Realizability: Is there a finite state system 

that realizes the specification? 

 Synthesis: If system exists, construct it

Two player game
 Environment: determines inputs (not controllable)

 System: determines outputs (controllable)

 Game: finite state graph, infinite plays

 Winning condition for player System: formula φ

?
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10 Games

Two player graph-based, turn-based games with infinitary winning conditions

 Antagonist controls 𝐼
 Protagonist controls 𝑂

 graph based:
 Set of states 𝑄
 Initial state 𝑞0
 Transition function 𝛿: 𝑄 × 𝐼 × 𝑂 → 𝑄

 turn based:
 Start from 𝑞0
 Antagonist selects 𝑖𝑘, protagonist selects 𝑜𝑘, proceed to 𝑞𝑘+1 = 𝛿(𝑖𝑘 , 𝑜𝑘)
 Ensuing play: 𝑞0 𝑖0 𝑜0 𝑞1 𝑖1 𝑜1 𝑞2…

 Winning condition: objective over F ⊆ 𝑄
 Strategy: 𝑄 × 𝐼∗ → 𝑂
 For every input sequence, strategy fixes a play

 Winning strategy: strategy such that all resulting plays fulfill 

graph-based, turn-based with infinitary winning conditionsTwo player
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 Reachability: want to reach a state in F ⊆ 𝑄

 Safety: want to stay in F ⊆ 𝑄

 Büchi: want to visit F ⊆ 𝑄 infinitely often

 Co-Büchi: want to visit F ⊆ 𝑄 only finitely often

 others exist… (later)
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12 Example

𝒊𝒏𝒑𝒖𝒕 𝒃𝒖𝒕𝒕𝒐𝒏
𝒐𝒖𝒕𝒑𝒖𝒕 𝒄𝒐𝒇𝒇𝒆𝒆
𝐆(𝒃𝒖𝒕𝒕𝒐𝒏 𝐅 𝒄𝒐𝒇𝒇𝒆𝒆)

¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐

1𝑞0 𝑞1

𝑐

Possible strategy: 

serve coffee iff automaton is in state 𝑞1
In this case, LTL game reduces to Büchi game

LTL game

Büchi game

red moves first

green moves second

green’s objective: visit 𝑞0 infinitely often
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¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐

¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐

1𝑞0 𝑞1

𝑐

• compact

• looks like automaton

• order of moves (input, output) 

only implicit

• explicit order of moves

• need more states
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14 Symbolic Computation: Fixpoints

A B C D
0/-,1/0

0/1,1/0

1/10/0,1/1

Find all states from 

which system can 

force visit to goal state 

(= winning region / 

attractor) 

+ a strategy

Label on edges:

• Environment input

• System output

dash (–) means don‘t 

care

0/-

1/-

A

0/0,1/1

0/-
1/-

Winning region

B
0/-,1/0

0/1,1/0

1/1

CA

0/0,1/1

0/-
1/- D

DC
0/-,1/0

0/1,1/0

1/1

B
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15 Computing Büchi Games

𝑭𝒐𝒓𝒄𝒆𝟏(𝑭) = set of states from which system can force visit 

to 𝑆 in one step

𝑭𝒐𝒓𝒄𝒆𝟏 𝑭 = 𝒒 ∈ 𝑸 ∀𝑖 ∈ 𝐼 ∃𝑜 ∈ 𝑂: 𝛿 𝑞, 𝑖, 𝑜 ∈ 𝐹 }

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐
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16 Computing Büchi Games

𝑭𝒐𝒓𝒄𝒆𝟏(𝑭) = set of states from which system can force visit 

to 𝐹 in one step

𝑭𝒐𝒓𝒄𝒆∗ 𝑭 = set of states from which system can force visit 

to 𝐹 in any number of steps 

(least fixpoint of applying 𝐹𝑜𝑟𝑐𝑒1 to 𝐹)

𝑹𝒆𝒄𝒖𝒓(𝑭) = set of states from which system can repeatedly 

force visit to 𝐹 in any number of steps 

(nested fixpoint operation)

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐
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17 Computing Büchi Games

Winning region is 𝑭𝒐𝒓𝒄𝒆∗ 𝑭 for reachability game, 

𝑹𝒆𝒄𝒖𝒓 𝑭 for Büchi game.

(Safety defined with dual 𝐹𝑜𝑟𝑐𝑒 operator for environment)

For reachability, safety and Büchi games, memoryless

strategies are sufficient, i.e., strategies 𝑄 × 𝐼 → 𝑂

¬𝑏

𝑐

¬𝑐

𝑏

𝑐

¬𝑐
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18 FourSteps to Synthesis

1. Specify

 LTL, Büchi automata,… 

2. Obtain a game

3. Solve the game

4. Construct circuit
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LTL Synthesis
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20 LTL Synthesis

LTL Synthesis [PnueliRosner89]

1. Specify 
 Formula 𝜑 in LTL

2. Obtain a game
 Convert 𝜑 to nondeterministic 

Büchi automaton 𝐴
(exponential blowup)

 Convert 𝐴 to deterministic
Rabin or Parity automaton 
(=game) 
(exponential blowup)

3. Solve the game
 parity games can be solved 

in polynomial time

4. Construct Circuit
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21 Arbiter: From LTL to Büchi

Input: 𝑟1, 𝑟2 (requests)

Output: 𝑔1, 𝑔2 (grants)

Specification: 

𝐆 𝑟1 → 𝐅 𝑔1
𝐆 𝑟2 → 𝐅 𝑔2
𝐆¬ 𝑔1 ∧ 𝑔2

Arbiter𝑟1, 𝑟2 𝑔1, 𝑔2

1. Specify 

2. Obtain a game

3. Solve the game

4. Construct circuit
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22 Obtaining a game

 From LTL to Büchi automata

 Not in detail in this tutorial – see [VardiWolper86]

 From Büchi automata to games

 Non-determinism is bad

 Advanced acceptance conditions

1. Specify 

2. Obtain a game

3. Solve the game

4. Construct circuit
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23 Arbiter: From LTL to Büchi

Input: 𝑟1, 𝑟2 (requests)

Output: 𝑔1, 𝑔2 (grants)

Specification: 

𝐆 𝑟1 → 𝐅 𝑔1
𝐆 𝑟2 → 𝐅 𝑔2
𝐆¬ 𝑔1 ∧ 𝑔2

Arbiter𝑟1, 𝑟2 𝑔1, 𝑔2

1. Specify 

2. Obtain a game

3. Solve the game

4. Construct circuit
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24 Nondeterminism is bad

input button, water

output coffee

𝐆𝐅 𝒘𝒂𝒕𝒆𝒓  𝐆 𝒃𝒖𝒕𝒕𝒐𝒏 𝐅 𝒄𝒐𝒇𝒇𝒆𝒆 ∧
𝐆(𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒇𝒇𝒆𝒆)

¬𝑤 ∧ ¬𝑐

𝑏 ∧ ¬𝑐

¬𝑏 ∨ 𝑐 ∧ 𝑤

11 0

¬𝑐

𝑐 ∧ 𝑤

11

LTL game

Büchi game

No winning strategy because of nondeterminism,

even though LTL game is won

won?

won?

Note: not complete!
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 Rabin: defined by 𝐸1, 𝐹1 , … , 𝐸𝑛, 𝐹𝑛 , with 𝐸𝑖 , 𝐹𝑖 ⊆
𝑄. System wins if there exists an 𝒊 such that 𝐸𝑖 is

visited finitely often and 𝐹𝑖 is visited infinitely often.

 Streett: like Rabin, but System wins if for all 𝒊, if 𝐹𝑖
is visited infinitely often, then 𝐸𝑖 must be visited 

infinitely often. (negation of Rabin)

 Parity: every state is assigned a priority from ℕ. 

System wins if minimum priority of all states visited 

infinitely often is even.
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26 LTL Synthesis

1. Specify 

 Formula 𝜑 in LTL, size 𝑛

2. Obtain a game

 Convert 𝜑 to a nondeterministic Büchi Automaton 𝐴, 
size 2𝑛

 Determinize 𝐴 to a deterministic Parity automaton 

(=game), size 22
𝑛

3. Solve the parity game, time 22
𝑛

Will not consider this approach in detail.

It is complex and not very scalable.
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27 LTL Synthesis – Alternative Approaches

Synthesis problem can also be solved by

 decomposing 𝜑, simplifying each part, then composing 

[SohailSomenzi09, MorgensternSchneider10]

(not in this tutorial)

 Limiting size of solution, incrementally increasing bound 

[ScheweFinkbeiner07,FiliotJinRaskin11, Ehlers12] 

(Later!)

 Considering efficiently decidable fragments (Now!)
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GR(1) Synthesis
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29 Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

1. Specify 
 Formula 𝜑 in Linear Temporal 

Logic

2. Obtain a game
 Convert 𝜑 to a 

nondeterministic Büchi
Automaton 𝐴 (exponential 
blowup)

 Determinize 𝐴 to a 
deterministic Rabin or Parity 
automaton (=game) 
(exponential blowup)

3. Solve the game
 equals solving a parity game, 

can be done in polynomial 
time

4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa’ar06]

1. Specify 
 Sets of deterministic Büchi

automata, for environment and 
system

2. Specification = game
 no work

3. Solve the game
 A GR(1) game

4. Construct Circuit
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30 Avoiding Complexity: GR(1) Specs

1. Specification:
 Set of 𝑚 deterministic Büchi automata for assumptions: 𝐴1…𝐴𝑚
 Set of 𝑛 deterministic Büchi automata for guarantees: 𝐺1…𝐺𝑛

Both encoded symbolically

2. Specification = Game

3. Solve the game

4. Determine circuit from winning strategy (…)

Advantages of this setting:

 We do not need one automaton for full spec

 We do not need to determinize

 Symbolic formulation

But: not all LTL properties can be expressed this way(!)
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31 Obtaining a GR(1) Specification 

Symbolic:

Introduce 𝑥 as variable for state space

initial 𝑖𝐴 = ¬𝑥

transition relation 𝑇𝐴 =
¬𝑥 ∧ (¬𝑟 ∨ 𝑔)𝑥’
¬𝑥 ∧ 𝑟 ∧ ¬𝑔 𝑥’

𝑥 ∧ ¬𝑔 𝑥’
𝑥 ∧ 𝑔𝑥’

fairness 𝐹𝐴: 𝐆𝐅 𝑠𝑡𝑎𝑡𝑒’

0 1

𝑟 ∧ ¬𝑔

𝑔

¬𝑟 ∨ 𝑔 ¬𝑔

Example: G(r  F g)
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Gen. Reactivity(1): 

 𝑖 𝐆𝐅 𝐴𝑖 →  𝑗 𝐆𝐅 𝐺𝑗

To solve: compute nested fixpoints of states from which system 
can force visit to 𝐺j if environment satisfies assumptions 𝐴𝑖

Direct symbolic implementation. Complexity: 𝑂 𝑄 2 ⋅ 𝑇 ⋅𝑚 ⋅ 𝑛
[KestenPitermanPnueli05,PitermanPnueliSa’ar06]

Computing a GR1 Game

G0

𝐴𝑚

𝐴1 𝐴2

𝐴1 𝐴2

…

G1

𝐴𝑚

…

𝐺0

𝐺1
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GR(1) A1  …  Am  G1  …  Gn

1-pair Streett 

Solve using Jurdzinki’s algorithm in 𝑂 𝑄 ⋅ 𝑇 time 

[d’AlfaroFaella09]

better because 𝑚, 𝑛 << 𝑄

Alternative: Reduce GR(1) to Streett

reductioncounting construction

blowup: O(m)
counting construction

blowup:O(n)

[PPS06] Streett reduction algorithm

time 𝑂 𝑄 2 ⋅ 𝑇 ⋅𝑚 ⋅𝑛 𝑂 𝑄 ⋅ 𝑇 ⋅ 𝑚 ⋅ 𝑛 2

A G
Note: counting construction on G

introduces memory of size n
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34 Avoiding Complexity: GR(1) Games

LTL Synthesis [PnueliRosner89]

1. Specify 
 Formula 𝜑 in Linear Temporal 

Logic

2. Obtain a game
 Convert 𝜑 to a 

nondeterministic Büchi
Automaton 𝐴 (exponential 
blowup)

 Determinize 𝐴 to a 
deterministic Rabin or Parity 
automaton (=game) 
(exponential blowup)

3. Solve the game
 equals solving a parity game, 

can be done in polynomial 
time

4. Construct Circuit

GR(1) Synthesis [PitermanPnueliSa’ar06]

1. Specify 
 Sets of deterministic Büchi

automata, for environment and 
system

2. Specification = game
 no work

3. Solve the game
 A GR(1) game

4. Construct Circuit
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35 Selecting One Implementation

Specification = Set of sequential circuits

Strategy = Set of combinational circuits

One combinational circuit

GR(1) Synthesis

(fix memory elements)

Construction of circuit

Less freedom

Fewer circuits

More complexity
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36 Constructing Circuit

|inputs|
FFs

|outputs|
FFs

Comb.

Logic

sequential

inputs

sequential

outputs

|vars|
FFs

combinational inputs I combinational outputs O

• Spec is given in terms of sequential inputs and outputs
• Flipflops keep track of state of specification automata (state space of game)
• Strategy is relation between combinational inputs and combinational outputs: 

R  I X O
• A circuit is a function f: I  O
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37 From BDD to Circuit

Relation Solving

Given: Strategy R: I x O

Find: function f: I  O such that

if f(i) = o then 

(i,o)  R or o. (i,o)  R

Multiple possibilities lead to wildly different sizes in 
circuits

0 1



Strategy Minimization/Determinization
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Challenges:

 Find simple function (small number of gates)

 Strategy relations are huge

 Encoded symbolically (e.g. BDD) 

Symbolic algorithms

 Efficiency

Different approaches based on BDD manipulation

and/or learning. 
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(Synthesizing)

The AMBA Bus Protocol
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40 AMBA Bus

 Industrial standard

 ARM’s AMBA AHB bus
• High performance on-chip bus

• Data, address, and control signals (pipelined)

• Arbiter part of bus (determines control signals)

• Up to 16 masters and 16 clients

AMBA AHB

Master 0 Master 1 Master 15 Client 0 Client 1 Client 15... ...

Arbiter
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41 AMBA Bus

 Master initiates transfer.  Signals:

 HBUSREQi - Master i wants the bus

 HLOCKi - Master i wants an uninterruptible access

 HBURST - This access has length 1/4/incr

 address & data lines

 The arbiter decides access

 HGRANTi - Next transfer for master i

 HMASTER[..] - Currently active master

 HMASTLOCK - Current access is uninterruptible

 The clients synchronize the transfer

 HREADY - Ready for next transfer

 Sequence for master

 Ask; wait for grant; wait for hready; state transfer type & start transfer 
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42 AMBA Arbiter

 Specification

 3 Assumptions, 12 Guarantees.  

 Example:

“When a locked unspecified length burst starts, new access does not start 

until current master (i) releases bus by lowering HBUSREQi.”

i G( HMASTLOCK  HBURST=INCR  HMASTER=i  START →

X(¬START U ¬HBUSREQi) )
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43 Formulation of Spec Matters

Assumption that master must eventually release locked bus

i: G((HMASTLOCK  HBURST=INCR  HMASTER=i)  F HBUSREQ[i])

can also be written as

G((HMASTLOCK  HBURST=INCR)  F HBUSREQ[HMASTER]) 

(We know that bus master does not change)

Now, instead of n automata with n fairness constraints, we have one!
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44 New Spec

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

KS

cofactors

new spec

manual

#masters

Circuit size
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45 AMBA Case Study: Results

 Expressibility of GR(1) is sufficient

 Deciding realizability is fast

 Specification is short and easy to understand

 Synthesis works!
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46 Challenges: Specification

 Informal specs often ambiguous (AMBA spec is)

 you also have this problem when writing Verilog code

 Is specifying really easier than coding?

 GR(1) is a very special case, interesting things may 

not be (easily) expressible 
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47 Challenges: Size

 Circuits are LARGE, size depends on parameter 

(# masters)

 Much bigger increase than necessary 

(see manual implementation)

 Smarter circuit generation needed

 Size depends strongly on formulation of 

specification
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Bounded (Safraless) Approaches



Reactive Systems, More Formally
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3 views on synthesis: 

 synthesize a strategy for a game – depends on 

game graph

 synthesize a circuit – special form, good for bit-level 

symbolic reasoning

 synthesize a labelled transition system – this is 

close to the “automata” point of view



Labelled Transition Systems
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A labelled transition system (LTS) 𝑆 with inputs 𝐼 and 

outputs 𝑂 is a tuple (𝑇, 𝑡0, 𝜏, 𝑜) with

 𝑇 a set of states

 𝑡0 an initial state

 𝜏: 𝑇 × 𝔹𝐼 → 𝑇 a transition function

 𝑜: 𝑇 → 𝔹𝑂 a (state) labelling function



Bounded (Safraless) Approaches
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Avoid determinisation step by alternative approach:

1. reduce synthesis problem to emptiness check of 

universal coBüchi tree automaton



Universal Co-Büchi Tree Automaton (UCT)
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Universal: takes all possible transitions at once, i.e., 

can be in multiple states at the same time

Co-Büchi: no state in 𝐹 may be visited inf. often

Tree Automaton: reads trees instead of words

Space of executions of an LTS is a tree: branches 

labeled with inputs, nodes with outputs.



Bounded (Safraless) Approaches
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Avoid determinisation step by alternative approach:

1. reduce synthesis problem to emptiness check of 

universal coBüchi tree automaton

2. reduce emptiness check to checking acceptance of 

trees/systems of bounded size.

For bounded size, problem can be encoded as

decidable SMT constraints [ScheweFinkbeiner07]

(alternative: [FiliotJinRaskin11])



Bounded Synthesis [ScheweFinkbeiner07]
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1. Translate LTL specification into UCT

2. Generate SMT constraints equivalent to 

realizability of spec (in system of size 𝑘)

3. Solve constraints for increasing 𝑘, 

obtain system (if one exists)



Bounded Synthesis: Construct UCT
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Specification Automaton

∧1≤𝑖≤2 𝐆(𝑟𝑖 → 𝐅𝑔𝑖)
𝐆¬ 𝑔1 ∧ 𝑔2



Bounded Synthesis: Acceptance of UCT
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System Automaton

𝑔1𝑔2

𝑔1𝑔2𝑔1𝑔2

𝑟1 𝑟2
𝑟1𝑟2

 𝑟1𝑟2

𝑟1 𝑟2

𝑟1𝑟2

𝑟1𝑟2 ∨  𝑟1𝑟2

(implicit self-loops in 

remaining cases)



Bounded Synthesis: SMT Constraints
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Idea: Annotate states of system with

 predicates 𝜆𝑞
𝔹: 𝑇 → 𝔹, representing reachable states 

of the automaton, i.e.,

𝜆𝑞
𝔹 𝑡 is true if partial run of system that ends in 𝑡 can 

lead to automaton state that includes 𝑞

 counting functions 𝜆𝑞
#: 𝑇 → ℕ, representing

maximum number of visits to rejecting states in any

partial run of the system that ends in 𝑡
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Annotation Automaton

𝜆1
𝔹 𝑡0
𝜆1
# 𝑡0 = 0

∀𝐼 ∀𝑡: 𝜆1
𝔹 𝑡

→ 𝜆1
𝔹 𝜏 𝑡, 𝐼 ∧ 𝜆1

# 𝜏 𝑡, 𝐼 ≥ 𝜆1
# 𝑡

∀𝐼 ∀𝑡: 𝜆1
𝔹 𝑡 ∧ 𝑟1 ∈ 𝐼

→ 𝜆2
𝔹 𝜏 𝑡, 𝐼 ∧ 𝜆2

# 𝜏 𝑡, 𝐼 > 𝜆1
# 𝑡

… … 

For given system 𝑆 and UCT 𝐴, satisfying annotation 

exists iff 𝐴 accepts 𝑆.
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 For given system, such SMT constraints are

decidable and solved automatically

 If we let transition function and output function of

system be unknown/uninterpreted, we can use

SMT solver for synthesis

 In this case, need to restrict size of system

(s.t. quantifiers can be finitely instantiated)

 Very mature SMT solvers can be used out-of-the-box
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Bounded synthesis

 solves the synthesis problem by smart encoding 

into SMT constraints

 finds the smallest implementation 

(wrt. # states in LTS, or other metrics)

 does not scale very well

(without additional optimizations)
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 Synthesis as a Game

 General: LTL Synthesis

 Time-Efficient: GR(1) Synthesis

 Application: AMBA Bus Protocol

 Space-Efficient: Bounded/Safraless Approaches
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