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clock y

region K defined by:

[ 0<x<1
0<y <1
Yy <X

» clock x

@ ‘compatibility” between regions and constraints
@ ‘compatibility” between regions and time elapsing

~ an equivalence of finite index
a time-abstract bisimulation




This is a relation between e and e such that:
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Reset

region

THM [AD90]

Reachability is decidable
(and PSPACE-complete) for
timed automata

THM [CY90]

Time-optimal reachability is decidable
(and PSPACE-complete) for
timed automata

clock y

Successor
regions




It “mimicks” the behaviours of the clocks.
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timed automaton region graph

L(reg. aut.) = UNTIME(L(timed aut.)) l
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timed automaton

finite bisimulation
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large (but finite) automatc

(region automaton)

in the number of clocks and in the
constants (if encoded in binary ). The number of region
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The number of regions is n! - 2% - [[,-o(2c; + 2).

Region construction: [AD94]
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Init -> Final ?
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Maiting
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Final

INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT

UNTIL Waiting = @
return false




Init -> Final ?

-

Maiting

~

)

Final

INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting

UNTIL Waiting = @
return false




Init -> Final ?

-

Maiting
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INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true

UNTIL Waiting = @
return false
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Final

INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
forall (n,Z)- (n,0Z 0 )
if for some (n,6Z @16 J &dntinue

UNTIL Waiting = @
return false
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INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
forall (n,Z)- (n,0Z 0 )
if for some (n,6Z @16 J &dntinue
elseadd (nW®ath®) t o

UNTIL Waiting = @
return false
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INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
forall (n,Z)- (n,0Z 0 )
if for some (n,6Z @16 J &dntinue
elseadd (nW®ath®) t o
move (n,Z) to Passed

UNTIL Waiting = @
return false
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Final

INITIAL Passed:= @;
Waiting := {(n 4.Zy)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
forall (n,Z)- (n,0Z 0 )
if for some (n,6Z @16 J &dntinue
elseadd (nW®ath®) t o
move (n,Z) to Passed

UNTIL Waiting = @
return false
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A Difference Bounded
Matrices (DBMSs)

A Minimal Constraint
Form
[RTSS97]

A Clock Difference
Diagrams
[CAV99]




Inclusion
x<=1
D1 |¥YX<=2
Z-y<=2
z<=9

Graph

Graph

Shortest
Path
Closure

Shortest
Path
Closure

Bellman 1958, Dill 1989
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X1-x2<=4 @Q@ Shortest
x2-x1<=10 Path
X3-x1<=2 Closure
X2-X3<=2 3 ’ O(n"3)
X0-x1<=3

X3-x0<=5 @ @




x1-x2<=4
x2-x1<=10
X3-x1<=2
X2-X3<=2
X0-x1<=3
x3-x0<=5

Shortest
Path
Reduction

O(n"3)

)

Shortest
Path
Closure

O(n"3)

RTSS 1997

Spaceworst O(n"2)
practice O(n)




Init -> Final ?
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Maiting \ Final

,Z) In Waiting

) = Final return true
(n,2)- (n,6&=
some (n,0




Init -> Final ?
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Maiting \ Final

,Z) In Waiting
= Final return true
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some (n,0
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Nodes labeled with
differences

Maximal sharing of
substructures (also across
different CDDs)

Maximal intervals

Linear - time algorithms for
set- theoretic operations.

N D D Gvsler et. al
D D D @vsller, Lichtenberg
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Search Order

Depth First
Breadth First
i [:/Documents and Settings, kgl /Desktop,/KIM/UPPAAL /UPPA State Space Reduction
File Edit Wew Tools | Options Help None
Search Order 3 - Conservative
J @ ﬁ I]l—:rl State Space Reduction ] e Aggressive
E-:Iitn:url Sirulabor  Werifien  State Space Representation » .
| iaanosti Trace . State Space Representation
Cvervisw E:xtrapolation ] DBM
A[] (Robotd.a < Hash table size 3 CompaCt FOI’m
E[] {{ bodend =: v Reuse odent = Under Approximation
E<> [ (bodend > 5) || (bodenB > &) || (bodenC » E

Over Approximation
Diagnostic Trace

Some

Shortest

Fastest

E<> not deadlock

Extrapolation
Hash Table size
Reuse




Cycles
Only symbolic states
involving loop-entry points
need to be saved on Passedlist







Question:
G2R?

How to use:
G207
G2U?

G2U ) G2R
. (G20)) :(G2R)

Declared State Space
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TACASO04: An EXACT method performing
as well as Convex Hull has been
developed based on abstractions

takln max constants into account
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Bitarray

UPPAAL
4 - 512 Mbits




&) C:/Documents and Settings/kgl/Desktop/DESKTOP FEB 2007/UPPAALJuppaal-4.0.8/demoftrain-gate.xml - UPPAAL [ |[B][X]
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Forward Symbolic Exploration

y =0, TERMINATION
€Xr = U not
x> 1Ay = garanteed
y =
(y <1)
y A
2N P S S S S

Need for

Finite
Abstractions

0 1 2 3 4
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Verification Theory, Systems and Applications Summer Kim Larsen [ 51] a
School. September 2013.




a: P(R3y) — P(RSg) such that W C a(W)

EW) = CW) ey — o w)

(£, W) =a (U, a(W'))

We want ) _ to be:
- sound & complete wrt reachability
- finite
- easy to compute
- as coarse as possible




Let k be the largest constant appearing in the TA




Buty, 10°is not RELEVANT in I,




T =5 (:.1:514)

ki may be found as solution to
simple linear constraints!

Active Clock Reduction:
kJI — '1




Experiments

Active by default

l

Constant Global Active-clock Local

BIG Method Reduction Constants

10° 0.05s/1IMB 0.05s/IMB | 0.00s/1MB

Naive Examole 107 4.78s/3MB 4.83s/3AMB | 0.00s/1MB
¢ miampre 10° 484s/13MB | 480s/13MB | 0.00s/IMB
10° stopped stopped 0.00s/IMB

10° 3.24s/3MB 3.26s/3MB | 0.01s/1MB

Two Processes 107 5981s/9MB 5978s/9MB | 0.37s/2MB
10° stopped stopped 72s/5MB

10° 0.01s/1IMB 0.01s/IMB | 0.01s/IMB

Asymmetric 10* 2.20s/3MB 2.20s/3AMB | 0.85s/2MB
Fischer 10° 333s/19MB 333s/19MB | 160s/13MB
10°  [[33307s/122MB|33238s/122MB[16330s/65MB

Bang & Olufsen | 25000 stopped 159s/243MB | 123s/204MB

Verification Theory, Systems and Applications Summer

School. September 2013.

Kim Larsen [ 56]




Lower and Upper Bounds sehrmann, eouyer,

Larsen, Pelanek 04]
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Given that x- 10° is an upper bound implies that
(Ivy,vy) simulates ( | ,,v,y O

whenevev, 1.0

For reachability downward
closure wrt simulation

Verification Theory, Systems and Applications Summer Kim
School. September 2013.

suffices!



