Decidability and Symbolic Verification

Kim G. Larsen Aalborg University, DENMARK

Decidability

Reachability?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [3]

The Region Abstraction

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [4]

Time Abstracted Bisimulation

This is a relation between • and • such that:

... and vice-versa (swap • and •).

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [5]

Regions – From Infinite to Finite

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [6]

Region Graph

It "mimicks" the behaviours of the clocks.

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [7]

Region Automaton = Finite Bisimulation Quotiont

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [8]

An Example

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [9]

Region Automaton

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [10]

Fundamental Results

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [11]

Symbolic Verification

The UPPAAL Verification Engine

Regions – From Infinite to Finite

The number of regions is $n! \cdot 2^n \cdot \prod_{x \in C} (2c_x + 2)$.

Region construction: [AD94] In practice: Zones

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [13]

Zones – From Finite to Efficiency

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [14]

Zones – Operations

Symbolic Transitions

Verification Theory, Systems and Applications Summer School. September 2013. Kim Larsen [16]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [17]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [18]

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

UNTIL Waiting = \emptyset return false

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [19]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013. Kim Larsen [20]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013. Kim Larsen [21]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [22]

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [23]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [24]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [25]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [26]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [27]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [28]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [29]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [30]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [31]

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [32]

Datastructures for Zones

- Difference Bounded Matrices (DBMs)
- Minimal Constraint Form [RTSS97]

 Clock Difference Diagrams [CAV99]

School. September 2013.

Inclusion Checking (DBMs)

Bellman 1958, Dill 1989

Inclusion

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [34]

Future (DBMs)

Kim Larsen [35]

Reset (DBMs)

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [36]

Difference Bounded Matrices

Kim Larsen [37]

Minimal Constraint Form

Earlier Termination

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [39]

Earlier Termination

Init -> Final ?

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [40]

Clock Difference Diagrams

- Nodes labeled with differences
- Maximal sharing of substructures (also across different CDDs)
- Maximal intervals
- Linear-time algorithms for set-theoretic operations.
- NDD's Maler et. al
- DDD's Møller, Lichtenberg

Kim Larsen [41]

CAV99

Verification Theory, Systems and Applications Summer School. September 2013.

Verification Options

Verification Options

Search Order **Depth First Breadth First State Space Reduction** None Conservative Aggressive **State Space Representation** DBM **Compact Form Under Approximation Over Approximation Diagnostic Trace** Some Shortest Fastest

Extrapolation Hash Table size Reuse

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [43]

State Space Reduction

Cycles:

Only symbolic states involving loop-entry points need to be saved on Passed list

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [44]

To Store or Not To Store

School. September 2013.

Over/Under Approximation

Declared State Space

 $\begin{array}{l} G {\in U} \ \Rightarrow G {\in R} \\ \neg (G {\in O}) \Rightarrow \neg (G {\in R}) \end{array}$

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [46]

Over-approximation Convex Hull

TACAS04: An EXACT method performing as well as Convex Hull has been developed based on abstractions taking max constants into account distinguishing between clocks, locations and $\leq \& \geq$

Under-approximation Bitstate Hashing

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [48]

Under-approximation Bitstate Hashing

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [49]

Extrapolation

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [50]

Forward Symbolic Exploration

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [51]

Abstractions

$$a: \mathcal{P}(R^X_{\geq 0}) \hookrightarrow \mathcal{P}(R^X_{\geq 0})$$
 such that $W \subseteq a(W)$

$$\frac{(\ell, W) \Rightarrow (\ell', W')}{(\ell, W) \Rightarrow_{a} (\ell', a(W'))} \quad \text{if } W = a(W)$$

We want \Rightarrow_a to be:

- sound & complete wrt reachability
- finite
- easy to compute
- as coarse as possible

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [52]

Abstraction by Extrapolation

[Daws, Tripakis 98]

Let *k* be the largest constant appearing in the TA

Location Dependency

[Behrmann, Bouyer, Fleury, Larsen 03]

$$k_x = 5 k_y = 10^6$$

Will generate all symbolic states of the form

 $(I_2, x \in [0, 14], y \in [5, 14n], y - x \in [5, 14n - 14])$

for $n \le 10^{6}/14 !!$

But $y \ge 10^6$ is not RELEVANT in I_2

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [54]

Location Dependent Constants

$$k_x = 5 \ k_y = 10^6$$

$$\begin{array}{rl} k_x^{\ i} &= 14 & \text{for } i \in \{1,2,3,4\} \\ k_y^{\ i} &= 5 & \text{for } i \in \{1,2,3\} \\ k_y^{\ 4} &= 10^6 \end{array}$$

 k_j^i may be found as solution to simple linear constraints!

Active Clock Reduction: $k_j^i = -\infty$

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [55]

Experiments

Active by default

	Constant	Global	Active-clock	Local
	BIG	Method	Reduction	Constants
	10^{3}	0.05s/1MB	0.05s/1MB	0.00s/1MB
Naive Example	10^{4}	4.78s/3MB	4.83s/3MB	0.00s/1MB
	10^{5}	484s/13MB	480s/13MB	0.00s/1MB
	10^{6}	stopped	stopped	0.00s/1MB
	10^{3}	3.24s/3MB	3.26s/3MB	0.01s/1MB
Two Processes	10^{4}	5981s/9MB	5978s/9MB	0.37s/2MB
	10^{5}	stopped	stopped	72s/5MB
	10^{3}	0.01s/1MB	0.01s/1MB	0.01s/1MB
Asymmetric	10^{4}	2.20s/3MB	2.20s/3MB	0.85s/2MB
Fischer	10^{5}	333s/19MB	333s/19MB	160s/13MB
	10^{6}	33307s/122MB	33238s/122MB	16330s/65MB
Bang & Olufsen	25000	stopped	159s/243MB	123s/204MB

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [56]

Lower and Upper Bounds Behrmann, Bouyer, Larsen, Pelanek 04]

Given that $x \le 10^6$ is an *upper* bound implies that

 (I,v_x,v_y) simulates (I,v_x',v_y)

whenever $v'_x \ge v_x \ge 10$.

For reachability downward closure wrt simulation Kim Larsen [57] suffices!

Verification Theory, Systems and Applications Summer School. September 2013.

Advanced Extrapolation

		Classical			Loc. dep. Max		Loc. dep. LU			Convex Hull			
		-n1		-n2		-n3			-A				
	Model	Time	States	Mem	Time	States	Mem	Time	States	Mem	Time	States	Mem
Fischer	f5	4.02	82,685	5	0.24	16,980	3	0.03	2,870	3	0.03	3,650	3
	f6	597.04	1,489,230	49	6.67	158,220	7	0.11	11,484	3	0.10	14,658	3
	f7				352.67	1,620,542	46	0.47	44,142	3	0.45	56,252	5
	f8							2.11	164,528	6	2.08	208,744	12
	f9							8.76	598,662	19	9.11	754,974	39
	f10							37.26	2,136,980	68	39.13	2,676,150	143
	f11							152.44	7,510,382	268			
AA/CD	c5	0.55	27,174	3	0.14	10,569	3	0.02	2,027	3	0.03	1,651	3
	c6	19.39	287,109	11	3.63	87,977	5	0.10	6,296	3	0.06	4,986	3
	c7				195.35	813,924	29	0.28	18,205	3	0.22	14,101	4
	c8							0.98	50,058	5	0.66	38,060	7
ົ້	с9							2.90	132,623	12	1.89	99,215	17
0	c10							8.42	341,452	29	5.48	251,758	49
	c11							24.13	859,265	76	15.66	625,225	138
	c12							68.20	2,122,286	202	43.10	1,525,536	394
	bus	102.28	6,727,443	303	66.54	4,620,666	254	62.01	4,317,920	246	45.08	3,826,742	324
	philips	0.16	12,823	3	0.09	6,763	3	0.09	6,599	3	0.07	5,992	3
	sched	17.01	929,726	76	15.09	700,917	58	12.85	619,351	52	55.41	3,636,576	427

Verification Theory, Systems and Applications Summer School. September 2013.

Additional "secrets"

- Sharing among symbolic states
 - location vector / discrete values / zones
- Symmetry Reduction
- Sweep Line Method
- Guiding wrt Heuristic Value (CORA)
 - User-supplied / Auto-generated
- "Manual" tricks:
 - active variable reduction
 - Value passing using arrays of channels

Open Problems

- Fully symbolic exploration of TA (both discrete and continuous part) ?
- Canonical form for CDD's ?
- Partial Order Reduction ?
- Compositional Backwards Reachability ?
- Bounded Model Checking for TA ?
- Exploitation of multi-core processors ?

Application: Schedulability Analysis

Task Scheduling

utilization of CPU

P(i), [E(i), L(i)], .. : period or earliest/latest arrival or .. for T_i C(i): execution time for T_i D(i): deadline for T_i

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [62]

Classical Scheduling Theory

Utilisation-Based Analysis

A simple sufficient but not necessary schedulability test exists

$$U \equiv \sum_{i=1}^{N} \frac{C_i}{T_i} \le N(2^{1/N} - 1)$$

$$U \leq 0.69$$
 as $N \rightarrow \infty$

Where C is WCET and T is period

41

Response Time Equation

$$R_{i} = C_{i} + \sum_{j \in hp(i)} \left\lceil \frac{R_{i}}{T_{j}} \right\rceil C_{j}$$

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

$$w_i^{n+1} = C_i + \sum_{j \in hp(i)} \left| \frac{w_i^n}{T_j} \right|$$

The set of values $w_i^0, w_i^1, w_i^2, ..., w_i^n, ...$ is monotonically non decreasing When $w_i^n = w_i^{n+1}$ the solution to the equation has been found, w_i^0 must not be greater that R_i (e.g. 0 or C_i) 42

<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

✓ Simple to perform

- Overly conservative
- Limited settings
- Single-processor \Rightarrow Do it in UPPAAL!

Kim Larsen [63]

Verification Theory, Systems and Applications Summer School. September 2013.

Modeling Task

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [64]

Modeling Scheduler

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [65]

Modeling Queue

In UPPAAL 4.0 User Defined Function

Schedulability = Safety Property

A□ ¬(Task0.Error or Task1.Error or ...)

Verification Theory, Systems and Applications Summer School. September 2013.

Kim Larsen [67]

Preemption – Stopwatches!

School. September 2013.

Stop-Watches

- Make reachability undecidable.
- Over-approximation used in UPPAAL
 - Safe for positive schedulability results!
- What to do if you violate deadlines?
 - Try to validate the trace using other techniques, e.g., polyhedra.
 - Use SMC!

LAB-Exercises (cont)

www.cs.aau.dk/~kgl/Shanghai2013/exercises

Exercise 1 (Brick Sorter) Exercise 2 (Coffee Machine) Excercise 19 (Train Crossing) Exercise 28 (Jobshop Scheduling) Exercise 14 (Gossiping Girls)

