Symbolic Computation and Theorem Proving
in Program Analysis

Laura Kovacs

Chalmers

Outline

Part 1: Weakest Precondition for Program Analysis and
Verification

Part 2: Polynomial Invariant Generation (TACAS'08, LPAR'10)
Part 3: Quantified Invariant Generation (FASE'09, MICAI'11)

Part 4: Invariants, Interpolants and Symbol Elimination
(CADE’09, POPL12, APLAS'12)

Part 4: Invariants, Interpolants and Symbol Eliminatio
Symbol Elimination by First-Order Theorem Proving

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions

Outline

Invariants, Interpolants and Symbol Elimination

Invariants, Symbol Elimination, and Interpolation

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)
while (¢ < N) do

Cle] := D[d];

c+1;
d—+1

Q Q O
o

endd

{(vk)(0 < k < N — C[k] =0)} postcondition B(c, d)

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in ONE iteration: A(c,d) A T(c,d,c’,d") — B(c’,d")

{c=d=0AN>0 A (Vk) (0< k<N — D[k] =0)}

precondition A(c, d)
while (c < N) do
Clc] := D[d]; c<NAC[cl=DldIAc =c+1nd =d+1Ac >N
T(c,d,c’,d”)
c :=c+1;
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in ONE iteration: A(c,d) A T(c,d,c’,d") — B(c’,d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)

while (c < N) do

Clc] := D[d]; c<NAC[cl=DldIAc =c+1nd =d+1Ac >N
T(c,d,c’,d”)
c :=c+1;
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

Refutation: A(c,d) A T(c,d,c’,d’) A=B(c’,d")
e The formula is of 2 states (c, d, ¢/, d’).

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in ONE iteration: A(c,d) A T(c,d,c’,d") — B(c’,d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)

while (c < N) do

Clc] := D[d]; c<NAC[cl=DldIAc =c+1nd =d+1Ac >N
T(c,d,c’,d”)
c :=c+1;
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

Refutation: A(c,d) A T(c,d,c’,d’) A=B(c’,d")

e The formula is of 2 states (c, d, ¢/, d’).

e Need a state formula /(c¢’, d’) such that: (Jhala and McMillan)
A(c,d) A T(c,d,c’,d")— I(c’,d’") and I(c’,d")An—=B(c,d")— L

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in ONE iteration: A(c,d) A T(c,d,c’,d") — B(c’,d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)

while (c < N) do

Clc] := D[d]; c<NAC[cl=DldIAc =c+1nd =d+1Ac >N
T(c,d,c’,d”)
c :=c+1;
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

Refutation: A(c,d) A T(c,d,c’,d’) A=B(c’,d")
e The formula is of 2 states (c, d, ¢/, d’).

e Need a state formula /(c¢’, d’) such that: (Jhala and McMillan)
A(c,d) A T(c,d,c’,d")— I(c’,d’") and I(c’,d")An—=B(c,d")— L

Taks: Compute interpolant /(¢’, d’) by eliminating symbols c, d.

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in ONE iteration: A(c,d) A T(c,d,c’,d") — B(c’,d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)

while (c < N) do

Clc] := D[d]; c<NAC[cl=DldIAc =c+1nd =d+1Ac >N
T(c,d,c’,d”)
c :=c+1;
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

I(c.d') = 0<c =1AC[0]=D[0]

Taks: Compute interpolant /(¢’, d’) by eliminating symbols c, d.

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in TWO iterations: A(c,d)AT(c,d,c’,d")AT(c',d',c",d")—=B(c",d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)
while (¢ < N) do

Cle] := Dld;
= Cc+1;

c
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

I(c’,d) = 0<c =1AC[0]=D|0]
I(¢”,d") = 0<c”"=2AC[0]=D[0] A C[1] = D[1]

Taks: Compute interpolant /(¢”, d”) by eliminating symbols ¢, d, ¢, d'.

Invariants, Symbol Elimination, and Interpolation
‘ Reachability of B in TWO iterations: A(c,d)AT(c,d,c’,d")AT(c',d',c",d")—=B(c",d")

{c=d=0AN>0 A (Vk) (0< k< N— D[k]=0)} precondition A(c, d)
while (¢ < N) do

Cle] := Dld;
= Cc+1;

c
d := d+1
end do

{(vk)(0 < k < N — C[k] =0)} postcondition B(c’,d")

I(c'.d') = (¥k)0<k<c — Clk]= D]
I(c",d") = (¥k)0<k < c”— Clk] = DIK]

Taks: Compute interpolant /(¢”, d”) implying invariant in any state.

Outline

Interpolants from Proofs

Symbol Elimination and Interpolation

What is an Interpolant?

Computing Interpolants

» Local Derivations
» Symbol Eliminations
» Building Interpolants from Proof

Summary: Invariants, Symbol Elimination, Interpolants

Notation

v

First-order predicate logic with equality.

v

T: always true,
| : always false.

VA: universal closure of A.

v

v

Symbols:

» predicate symbols;
» function symbols;
» constants.

Equality is part of the language — equality is not a symbol.

v

L a: the language of A: the set of all formulas built from the
symbols occurring in A.

What is an Interpolant?

Let A, B be closed formulas such that A — B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula | € L, N Lg such that

A— 1 and |— B.

l'is an interpolant of A and B.

Note: if A and B are ground, they also have a ground interpolant.

What is an Interpolant?

Let A, B be closed formulas such that A — B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula | ¢ L, N Lg such that

A— 1 and |— B.

l'is an interpolant of A and B.

Reverse interpolant of A and B:|any formula / such that

A—1 and [,-B— L.

Interpolation with Theories

v

Theory T: any set of closed formulas.

» Ci,...,Ch —71 C means that the formula C; A ... A Ci — C holds in all
models of T.

v

Interpreted symbols: symbols occurring in T.

v

Uninterpreted symbols: all other symbols.

Interpolation with Theories

» Theory T: any set of closed formulas.

» Ci,...,C, —71 C means that the formula C; A ... A C; — C holds in all
models of T.

» Interpreted symbols: symbols occurring in T.
» Uninterpreted symbols: all other symbols.

Theorem
Let A, B be formulas and let A — 1 B.

Then there exists a formula | such that
1. A—»rland | — B;
2. every uninterpreted symbol of | occurs both in A and B;
3. every interpreted symbol of | occurs in B.

Computing Interpolants using Inference Systems

Inference Rule:

v

A ... A

v

Inference system: a set of inference rules.
Axiom: an inference rule with 0 premises.
Derivation of A: tree with the root A built from inferences.

v

v

Interpolants and Local AB-Derivations

AB-derivation
Let L =LaNLg.

A derivation I1 is an AB-derivation if

(AB1) For every leaf C of I1 one of following conditions holds:

1. A—-rvVCand Ce Lyor
2. B—rvVCandC < Lg.

(AB2) For every inference

Ci ... Cy
C

of [T we have VCy., .. ., vC, —71 VC.

We will refer to property (AB2) as soundness.

Interpolants and Local AB-Derivations

Ci ... Cp
C

This inference is local if the following two conditions hold:
(L1) Either {Cy,...,C,, C} C Laor{Cy,...,Cy, C} C Lp.

(L2) If all of the formulas Cy, ..., C, are colorless, then C is
colorless, too.

A derivation is called local if so is every inference of this derivation.

Shape of local derivations for A — B

Local Derivations: Example A — B

[demo]
» A:=Vx(x=cC)
» B=a=>

Local Derivations: Example A — B

[demo]
» A=Vx(x =c)
» B:=a=>

» Universal interpolant /: VxVy(x = y)

A local refutation of in the superposition calculus:

X=c y=c
X=y a#b
y#b
1

Interpolants and Symbol Eliminating Inference

» At least one of the premises colored.
» The conclusion is not colored.

<
o

Interpolants and Symbol Eliminating Inference

» At least one of the premises colored.
» The conclusion is not colored.

<
o

Interpolant VxVy(x = y): conclusion of a symbol-eliminating inference.

Extracting Interpolants from Local Proofs

Theorem (CADE09)
Let I be a closed local AB-refutation.

Then:
> A reverse interpolant | of A and B can be extracted from 1 in linear time.
» | is ground if all formulas in I are ground.

Extracting Interpolants from Local Proofs

Theorem (CADE09)
LetT1 be a closed local AB-refutation.
Then:

> A reverse interpolant | of A and B can be extracted from 1 in linear time.
» | is ground if all formulas in I are ground.

» | is a boolean combination of conclusions of symbol-eliminating
inferences of I.

Extracting Interpolants from Local Proofs

Theorem (CADE09)

Let Tl be a closed local AB-refutation.

Then:
> A reverse interpolant | of A and B can be extracted from 1 in linear time.
» | is ground if all formulas in I are ground.

» | is a boolean combination of conclusions of symbol-eliminating
inferences of I.

NOTE:

» No restriction on the calculus (only soundness required)
— can be used with theories.

» Can generate interpolants in theories where no good interpolation
algorithms exist.

» Shift of interest: what matters are symbol-eliminating inferences.

Building Interpolants from Proofs

» Problem: generation of proofs giving interpolants.

> |dea 1: look for local refutations only;
» Idea 2: find calculi that guarantee that local proofs exist.

Building Interpolants from Proofs

» Problem: generation of proofs giving interpolants.

> |dea 1: look for local refutations only;
» Idea 2: find calculi that guarantee that local proofs exist.

» LASCA: Superposition + Linear Arithmetic;
» Separating orderings (colored symbols are the greatest).

Building Interpolants from Proofs

» Problem: generation of proofs giving interpolants.

> |dea 1: look for local refutations only;
» Idea 2: find calculi that guarantee that local proofs exist.

» LASCA: Superposition + Linear Arithmetic;
» Separating orderings (colored symbols are the greatest).

Theorem (CADE'09)
If — is separating, then every AB-derivation in LASCA is local.

Building Interpolants from Proofs

» Problem: generation of proofs giving interpolants.

> |dea 1: look for local refutations only;
» Idea 2: find calculi that guarantee that local proofs exist.

» LASCA: Superposition + Linear Arithmetic;
» Separating orderings (colored symbols are the greatest).

Theorem (CADE'09)
If — is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.

Formulas Coloring Reverse Interpolant
T A
;’: géz)) - Zii A gg:(a)c)ﬁ i\+f(1h(b)) <c+t :'legﬂht i,’z ct+1<flets)
A Ziiﬁ??}?’&%io Ir?;r}x: p P<an(g>pVip) =1
P IR N I fa: 4. M >V ANV =y
’L?: 2 ; gf};(;&; Ac:? = cdr(cq) A —(atom(cy)) :'?gfkht f:ar, cons atom(cy) A o1 — cons(og, o3)
o, G N e
.‘L?: o tC;AA ;fz(c(;;::af(c)) Ir?gﬂhl 5 e =fle)
,L:;: Ir(uﬁ/A:aa[/)Ez]/]:+}/1)/\ X =xny =y+1AZ =x Ine;ht f(, y 1rad W)=y Ax =2

Table : Interpolation with Vampire, within 1 second time limit.

Symbol Elimination and Interpolation

Interpolation in Vampire

Interpolation Through Colors in Vampire

» There are three colors: blue, red and green.

Interpolation Through Colors in Vampire

» There are three colors: blue, red and green.

» Each symbol (function or predicate) is colored in exactly one of
these colors.

Interpolation Through Colors in Vampire

v

There are three colors: blue, red and green.

Each symbol (function or predicate) is colored in exactly one of
these colors.

We have two formulas: A and B.
Each symbol in A is either blue or green.
Each symbol in B is either red or green.

v

v

v

v

Interpolation Through Colors in Vampire

» There are three colors: blue, red and green.
» Each symbol (function or predicate) is colored in exactly one of

vV Yy Vv Vv .Yy

these colors.

We have two formulas: A and B.

Each symbol in A is either blue or green.
Each symbol in B is either red or green.
We know that - A — B.

Our goal is to find a green formula / such that
1. 2 A=
2. - | — B.

Interpolation Example in Vampire

fof (fA,axiom, g(f(a)) & “g(f(b
fof (fB, conjecture, ?[V]: V !=

Interpolation Example in Vampire

% request to generate an interpolant
vampire (option, show_interpolant,on).
% symbol coloring
vampire (symbol,predicate,q, 1, left).
vampire (symbol, function, f, 1, left).
vampire (symbol, function,a, 0, left).
vampire (symbol, function,b, 0, left) .
vampire (symbol, function,c, 0, right) .
% formula L
vampire (left_formula) .

fof (fA,axiom, g(f(a)) & “g(f(b))).
vampire (end_formula) .
% formula R
vampire (right_formula) .

fof (fB,conjecture, ?2[V]: V != ¢).
vampire (end_formula) .

Symbol Elimination and Interpolation

Quality of Interpolants

Given: a problem (an interpolation problem)
Generate: a formula (an interpolant)

1+a+-a=-1/A

VX(-(x <5)V-B6+x<-1)A

(-1+-14+a)=-1A

Vx(1 <x+-(-14+a) v-(-1<x)) A

(a<b6vi<a+-1)A

Vx(—(-1 < x) VvV =(x <-2)) A

Vx(-1<x+-av-(-1+a<x))A

VX(-1+Xx=1+-24+x) A

-at+-1+a=-1/

Vx(ﬁ(--(—1 +a)<x)V1i<x+4+-1)A
VX((-(x <4)V-5+x<-1)A

YX(X+-3<-1Va(x<2)A

UYx(-(x <3)V-4+x<-1)A

Vx(x+-a<-1v-a(x<-14+a)A

Vx(-1+x=-1T+-1+a+-(-1+a)+x) A

6<b

Given: a problem (an interpolation problem)
Generate: a formula (an interpolant)

1+a+-a=-1/A
VX(-(x <5)V-B6+x<-1)A
(-1+-14+a)=-1A
Vx(1 <x+--(-1+a) V(-1 <x)))A or
(a<b6vi<a+-1)A
Vx(—(-1 < x) VvV =(x <-2)) A
Vx(-1<x+-av-(-1+a<x))A
VX(-1+Xx=1+-24+x) A
-a+-1+a=-1A
VX(—|(——(—1 +a)<x)V1i<x+4+-1)A

VXx((~(x <4)Vv-5+x<-1))A
YX(X+-3<-1Va(x<2)A
UYx(-(x <3)V-4+x<-1)A
Vx(x+-a<-1v-a(x<-14+a)A
Vx(-1+x=-1T+-1+a+-(-1+a)+x) A
6<b

-(a<6)A
a<-1A

ﬁ(-‘] S-a)/\
a=3A
1<-1+an
ﬁ(2+a§6)/\
“(-1+a<1)A
(a#6V—(b<6))

Given: a problem (an interpolation problem)
Generate: a formula (an interpolant) which is small

1+a+-a=-1/A -(a<6)A
VX(-(x <5)V-B6+x<-1)A a<-1A
(1+-14+a)=-1A (-1 <-a) A
VX(1 < x+-—-(-1+a) V(-1 <x)) A or a=3A
(a<6vi<a+-1)A 1<1+an
Vx(=(-1 < x)V =(x <-2)) A “(2+a<6)A
Vx(-1<x+-av-(-1+a<x))A “(-1+a<1)A
VX(-1+Xx=1+-24+x) A (a#6V-(b<6))

-at+-1+a=-1/

VX(—|(——(—1 +a)<x)Vv1i<x+-1)A
Vx((-(x <4)Vv-5+x<-1)A

YX(X+-3<-1Va(x<2)A

UYx(-(x <3)V-4+x<-1)A

Vx(x+-a<-1v-a(x<-14+a)A

VX(-1+x=-1+-1+a+-(-1+a)+x)A

6<b

Given: a problem (an interpolation problem)
Generate: a formula (an interpolant) which is small

1+a+-a=-1A -(a<6)A
VX(-(x <5)V-B6+x<-1)A a<-1A
(1+-14+a=-1A (-1 <-a)A
VX(1 < x+-—-(-1+a) V(-1 <x)) A or a=3A
(a<b6vi<a+-1)A 1<-1+4+an
Vx(=(-1 < x)V =(x <-2)) A -~(24+a<6)A
Vx(-1<x+-av-(-1+a<x))A “(-1+a<1)A
VX(-1+Xx=1+-24+x) A (a#6V-(b<6))

-at+-1+a=-1/
Vx(-(1+a)<x)vi<x+-1)A
VX((-(x <4)V-5+x<-1)A
YX(X+-3<-1Va(x<2)A
Vx(x<3)V-AaA4+x<-1)A
Vx(x +-a<-1va(x<-1+a)A
VX(-1+x=-1+-14+a+-(-1+a)+x) A
6<b

What is a good interpolant?

» logical strength [Jhala07, D’Silva09, McMillan08];
» small size [Kroening10, Brillout11, Griggio11].

How to Make Interpolants Smaller/Nicer?

in size;
in weight;
in the number of quantifiers;

vV v v v

How to Make Interpolants Smaller/Nicer?

in size;
in weight;
in the number of quantifiers;

vV v v v

Revised Interpolation Problem:

Given — R — B, find a green formula /:

. > R—=
. = 1= B;
. lis small.

Extracting Interpolants from Local Proofs

Extracting Interpolants from Local Proofs

Interpolant: boolean combination of {Gy, ..., Ga}
[McMillan05, KV09]

Extracting Interpolants from Local Proofs

Digest

Interpolant: boolean combination of {Gy, ..., Ga}

Extracting Interpolants from Local Proofs

G is in the digest:
- comes from a red block

- followed by a blue or green block

Digest

Interpolant: boolean combination of {Gy, ..., Ga}

Extracting Interpolants from Local Proofs

G is in the digest:
- comes from a red block

- followed by a blue or green block
or

- comes from a blue block

- followed by a red

Digest

Interpolant: boolean combination of {Gy, ..., Ga}

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest
Idea: Change the green areas of the local proof

Slicing off formulas

A o A A A - Ap Anpd

AO slicing off A AO

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest
Idea: Change the green areas of the local proof

Slicing off formulas

A o A A A - Ap Anpd

AO slicing off A AO

If Ais green: Green slicing

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest
Idea: Change the green areas of the local proof

Slicing off formulas

Ry
By G By Ro
Go slicing off Gy GO

How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest
Idea: Change the green areas of the local proof, but preserve locality!

Slicing off formulas

Ry
By G By Ro
Go slicing off Gy GO

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs Gs
Gs
A3 Ge

A
Gr
1

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs Gy
Gs
A3 Ge

Digest: {G., G7}

Reverse interpolant: G, — G

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs

Gs
R Go

A
Gr
1

How to Make Interpolants Smaller/Nicer?

Ry G B G
Gs
Gs
A3 Ge

Digest: {Gs, G7}

Reverse interpolant: Gs — Gy

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs

A3 Gs

Ra
Gr
1

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs

A3 Gs

Digest: {Gs, G7}

Reverse interpolant: Gs — G

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs

How to Make Interpolants Smaller/Nicer?

R Gi B G
Gs

Digest: {Gs}

Reverse interpolant: —Gg

How to Make Interpolants Smaller/Nicer?

R Gi B G

Gs Gy
Gs
A3 Ge
Ry
Gy
1

Note that the interpolant has changed from G, — G; to —Gg.

How to Make Interpolants Smaller/Nicer?

R Gi B G

Gs Gy
Gs
A3 Ge
Ry
Gy
1

Note that the interpolant has changed from G, — G; to —Gg.

» There is no obvious logical relation between G, — G; and —Gg,
for example none of these formulas implies the other one;

» These formulas may even have no common atoms or no
common symbols.

How to Make Interpolants Smaller/Nicer?

If green slicing gives us very different interpolants, we can use it for
finding small interpolants.

How to Make Interpolants Smaller/Nicer?

If green slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n green formulas, the number of
possible different slicing off transformations is 2".

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs, and at most one of G, G> can be sliced off.

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs

Some predicates on green for-
mulas:

> sliced(G): G was sliced
off;

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

> green(G): the trace of G
contains only green
formulas;

» digest(G): G belongs to
the digest.

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs —sliced(Gy) — Green(Gy)

Some predicates on green for- sliced(G1) — red(Gr)

mulas:

> sliced(G): G was sliced
off;

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

> green(G): the trace of G
contains only green
formulas;

» digest(G): G belongs to
the digest.

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

R B
G G
Gs
Some predicates on green for- .
mulas: —sliced(Gs) — Green(Gs)
> sliced(G): G was sliced sl?ced(Gg) — (Green(Gs) « Green(Gi) A Green(Gz))
off: sliced(Gs) — (red(Gs) «> red(Gy) V red(Gy))
sliced(Gs) — (blue(Gs) «» blue(Gi) V blue(Gz))

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

> green(G): the trace of G
contains only green
formulas;

» digesi(G): G belongs to
the digest.

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs
Some predicates on green for-
mulas:
» sliced(G): G was sliced
off;

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

digest(Gi) — —sliced(Gy)

> green(G): the trace of G
contains only green
formulas;

» digest(G): G belongs to
the digest.

How to Make Interpolants Smaller/Nicer?

Solution:

» encode all sequences of transformations as an instance of SAT

Gs

Some predicates on green for-
mulas:

> sliced(G): G was sliced
off;

» red(G): the trace of G
contains a red formula;

» blue(G): the trace of G
contains a blue formula;

> green(G): the trace of G
contains only green
formulas;

» digesi(G): G belongs to
the digest.

—sliced(Gy) — Green(Gy)

sliced(Gi) — red(Gy)

—sliced(Gs) — Green(Gs)

sliced(Gs) — (Green(Gs) «» Green(Gi) A Green(Gz))
sliced(Gs) — (red(Gs) «> red(Gy) V red(Gy))
sliced(Gs) — (blue(Gs) «» blue(Gi) V blue(Gz))
digest(Gi) — —sliced(Gy)

—
—

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs
Express digest(G)

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs
Express digest(G)
by considering the possibilities:

» G comes from a
red/ blue/green formula

» Gis followed by a
red/ blue/green formula

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs
Express digest(G)
by considering the possibilities:

» G comes from a
red/ blue/green formula

rc(G)/be(G)
» Gis followed by a

red/ blue/green formula
bf(G)Irf(G)

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT

Gs
Express digest(G)
by considering the possibilities:

» G comes from a
red/ blue/green formula

re(G)lbc(G)
digest(Gs) <> (rc(Gs) Arf(Gs)) V (be(Gs) A bf(Gs))

» Gis followed b
is followed by a rc(Gs) <> (—sliced(Gs) A (red(Gi) V red(Gz))

red/ blue/green formula
bf(G)Irf(G)

How to Make Interpolants Smaller/Nicer?

Solution:

» encode all sequences of transformations as an instance of SAT

Gs
Express digest(G)
by considering the possibilities:

» G comes from a
red/ blue/green formula

rc(G)/be(G)
» Gis followed by a

red/ blue/green formula
bf(G)/ri(G)

—sliced(Gy) — Green(Gy)

sliced(Gi) — red(Gy)

—sliced(Gsz) — Green(Gs)

sliced(Gs) — (Green(Gs) «» Green(Gi) A Green(Gz))
sliced(Gs) — (red(Gs) «> red(Gy) V red(Gy))
sliced(Gs) — (blue(Gs) «» blue(Gi) V blue(Gz))
digest(Gi) — —sliced(Gy)

—
—

digest(Gs) <> (rc(Gs) Arf(Gs)) Vv (be(Gs) A bf(Gs))
rc(Gs) «» (—sliced(Gs) A (red(Gy) V red(Gz))

How to Make Interpolants Smaller/Nicer?
Solution:
» encode all sequences of transformations as an instance of SAT
» solutions encode all slicing off transformations

" B
G G
Gs —sliced(Gy) — Green(Gy)
Express digest(G) sliced(Gi) — red(Gi)

—sliced(Gsz) — Green(Gs)

by considering the possibilities: sliced(Gs) — (Green(Gs) «» Green(Gi) A Green(Gz))

sliced(Gs) — (red(Gs) «> red(Gy) V red(Gy))
» G comes from a sliced(Gs) — (blue(Gs) <> blue(Gy) V blue(Gz))
red/ blue/green formula digest(Gi) — —sliced(G)

rc(G)/be(G)
digest(Gs) <> (rc(Gs) A1f(Gs)) V (bc(Gs) A bf(Gs))

> Gis followed b
'S loTowed by a rc(Gs) <> (—sliced(Gs) A (red(Gy) v red(Gs))

red/ blue/green formula
bf(G)/ri(G)

How to Make Interpolants Smaller/Nicer?
Solution:

» encode all sequences of transformations as an instance of SAT;

» solutions encode all slicing off transformations;

How to Make Interpolants Smaller/Nicer?
Solution:

» encode all sequences of transformations as an instance of SAT;
» solutions encode all slicing off transformations;
» compute small interpolants: smallest digest of green formulas;

min{(;,.1 sesGin (Z digeSt(Gi))

i

How to Make Interpolants Smaller/Nicer?
Solution:

» encode all sequences of transformations as an instance of SAT;
» solutions encode all slicing off transformations;
» compute small interpolants: smallest digest of green formulas;

min{(;,.1 .Gy} (Z digeSt(Gi))

i

} (> quantifier_number(G;) digest(G,))
G

G

in

How to Make Interpolants Smaller/Nicer?
Solution:

» encode all sequences of transformations as an instance of SAT;
» solutions encode all slicing off transformations;

» compute small interpolants: smallest digest of green formulas;

min{G,-1 vesGip } (Z dlgest(G,))
Gi

.......

Gi

» use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

How to Make Interpolants Smaller/Nicer?
Solution:

» encode all sequences of transformations as an instance of SAT;
» solutions encode all slicing off transformations;

» compute small interpolants: smallest digest of green formulas;

min{G,-1 vesGip } (Z dlgest(G,))
Gi

.......

Gi

» use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

» minimising interpolants is an NP-complete problem.

Experiments with Minimising Interpolants

» Experimental results:

» 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

Experiments with Minimising Interpolants

» Experimental results:

» 9632 first-order examples from the TPTP library:
for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

» 4347 SMT examples:

> we used Z3 for proving SMT examples;
» Z3 proofs were localised in Vampire;
> minimal interpolants were generated for 2123 SMT examples.

Experiments with Minimising Interpolants

» More realistic benchmarks:

» 4048 problems coming from CPAchecker;

» we used Vampire to generate local proofs;

» minimal interpolants were generated for 1903 CPAchecker
examples:
» for 296 examples the size of the interpolant has decreased by a factor
of 5;
» for 6 examples the size of the interpolant has decreased by a factor
of 500.

Symbol Elimination and Interpolation

Conclusions

Summary: Invariant Generation, Interpolation, Symbol Elimination

Given the proof obligation A — B:

1. Run a theorem prover and
eliminate extra symbols;

2. Generate a (reverse)
interpolant from a refutation;

3. Interpolant is a boolean
combination of consequences
of symbol-eliminating
inferences.

Summary: Invariant Generation, Interpolation, Symbol Elimination

Given the proof obligation A — B:

1. Run a theorem prover and
eliminate extra symbols;

2. Generate a (reverse)
interpolant from a refutation;

3. Interpolant is a boolean
combination of consequences
of symbol-eliminating
inferences.

Given a loop:

1.

Express loop properties in a
language containing extra symbols;

. Every logical consequence of these

properties is a valid loop property, but
not an invariant;

Run a theorem prover for eliminating
extra symbols;

Every derived formula in the language
of the loop is a loop invariant;

Invariants are consequences of
symbol-eliminating inferences.

End of Session 4

Slides for session 4 ended here ...

	Part 4: Invariants, Interpolants and Symbol Elimination
	Main Part
	Invariants, Interpolants and Symbol Elimination
	Interpolants from Proofs
	Interpolation in Vampire
	Quality of Interpolants
	Conclusions

