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Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)
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Refutation: A(c, d) ∧ T (c, d , c′, d ′) ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)

A(c, d) ∧ T (c, d , c′, d ′)→ I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥
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Symbol Elimination and Interpolation

What is an Interpolant?

Computing Interpolants
I Local Derivations
I Symbol Eliminations
I Building Interpolants from Proof

Summary: Invariants, Symbol Elimination, Interpolants



Notation

I First-order predicate logic with equality.

I >: always true,
⊥: always false.

I ∀A: universal closure of A.

I Symbols:
I predicate symbols;
I function symbols;
I constants.

Equality is part of the language→ equality is not a symbol.

I LA: the language of A: the set of all formulas built from the
symbols occurring in A.



What is an Interpolant?

Let A,B be closed formulas such that A→ B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula I ∈ LA ∩ LB such that

A→ I and I → B.

I is an interpolant of A and B.

Note: if A and B are ground, they also have a ground interpolant.



What is an Interpolant?

Let A,B be closed formulas such that A→ B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula I ∈ LA ∩ LB such that

A→ I and I → B.

I is an interpolant of A and B.

Reverse interpolant of A and B: any formula I such that

A→ I and I,¬B → ⊥.



Interpolation with Theories

I Theory T : any set of closed formulas.
I C1, . . . ,Cn →T C means that the formula C1 ∧ . . . ∧ C1 → C holds in all

models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let A,B be formulas and let A→T B.

Then there exists a formula I such that
1. A→T I and I → B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A → I and I →T B;

2. every uninterpreted symbol of I occurs both in A and B;

3. every interpreted symbol of I occurs in A.
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Computing Interpolants using Inference Systems

I Inference Rule:
A1 . . . An

A

I Inference system: a set of inference rules.
I Axiom: an inference rule with 0 premises.
I Derivation of A: tree with the root A built from inferences.



Interpolants and Local AB-Derivations

AB-derivation
Let L = LA ∩ LB.

A derivation Π is an AB-derivation if

(AB1) For every leaf C of Π one of following conditions holds:
1. A→T ∀C and C ∈ LA or
2. B →T ∀C and C ∈ LB.

(AB2) For every inference

C1 . . . Cn

C

of Π we have ∀C1, . . . ,∀Cn →T ∀C.

We will refer to property (AB2) as soundness.



Interpolants and Local AB-Derivations

C1 . . . Cn

C

This inference is local if the following two conditions hold:

(L1) Either {C1, . . . ,Cn,C} ⊆ LA or {C1, . . . ,Cn,C} ⊆ LB.
(L2) If all of the formulas C1, . . . ,Cn are colorless, then C is

colorless, too.

A derivation is called local if so is every inference of this derivation.



Shape of local derivations for A→ B



Local Derivations: Example A→ B

[demo]

I A := ∀x(x = c)

I B := a = b
I Universal interpolant I: ∀x∀y(x = y)

A local refutation of in the superposition calculus:

x = c y = c
x = y a 6= b

y 6= b
⊥
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Interpolants and Symbol Eliminating Inference

I At least one of the premises colored.
I The conclusion is not colored.

x = c y = c
x = y a 6= b

y 6= b
⊥

Interpolant ∀x∀y(x = y): conclusion of a symbol-eliminating inference.
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Extracting Interpolants from Local Proofs

Theorem (CADE’09)
Let Π be a closed local AB-refutation.

Then:
I A reverse interpolant I of A and B can be extracted from Π in linear time.
I I is ground if all formulas in Π are ground.
I I is a boolean combination of conclusions of symbol-eliminating

inferences of Π.

NOTE:
I No restriction on the calculus (only soundness required)

– can be used with theories.
I Can generate interpolants in theories where no good interpolation

algorithms exist.
I Shift of interest: what matters are symbol-eliminating inferences.
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Building Interpolants from Proofs

I Problem: generation of proofs giving interpolants.
I Idea 1: look for local refutations only;
I Idea 2: find calculi that guarantee that local proofs exist.

I LASCA: Superposition + Linear Arithmetic;
I Separating orderings (colored symbols are the greatest).

Theorem (CADE’09)

If � is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.
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Formulas Coloring Reverse Interpolant
L : z < 0 ∧ x ≤ z ∧ y ≤ x
R : y ≤ 0 ∧ x + y ≥ 0

left: z
right: - y ≤ x ∧ x < 0

L : g(a) = c + 5 ∧ f (g(a)) ≥ c + 1
R : h(b) = d + 4 ∧ d = c + 1 ∧ f (h(b)) < c + 1

left: g, a
right: h, b c + 1 ≤ f (c + 5)

L : p ≤ c ∧ c ≤ q ∧ f (c) = 1
R : q ≤ d ∧ d ≤ p ∧ f (d) = 0

left: c
right: d p ≤ q ∧ (q > p ∨ f (p) = 1)

L : f (x1) + x2 = x3 ∧ f (y1) + y2 = y3 ∧ y1 ≤ x1
R : x2 = g(b) ∧ y2 = g(b) ∧ x1 ≤ y1 ∧ x3 < y3

left: f
right: g, b x1 > y1 ∨ x2 6= y2 ∨ x3 = y3

L : c2 = car(c1) ∧ c3 = cdr(c1) ∧ ¬(atom(c1))
R : c1 6= cons(c2, c3)

left: car, cons
right: - ¬atom(c1) ∧ c1 = cons(c2, c3)

L : Q(f (a))∧ 6= Q(f (b))
R : f (V ) = c

left: Q, a, b
right: c ∃x, y : f (x) 6= f (y)

L : a = c ∧ f (c) = a
R : c = b∧ 6= (b = f (c))

left: a
right: b c = f (c)

L : True ∧ a′ [x′ ] = y ∧ x′ = x ∧ y′ = y + 1 ∧ z′ = x′

R : ¬(y′ = a′ [z′ ] + 1)
left: x, y
right: - 1 + a′ [x′ ] = y′ ∧ x′ = z′

Table : Interpolation with Vampire, within 1 second time limit.
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Interpolation Through Colors in Vampire

I There are three colors: blue, red and green.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that→ A→ B.
I Our goal is to find a green formula I such that

1. → A→ I;
2. → I → B.
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Interpolation Example in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
fof(fB,conjecture, ?[V]: V != c).



Interpolation Example in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula L
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
vampire(end_formula).
% formula R
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).



Symbol Elimination and Interpolation

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Given: a problem (an interpolation problem)
Generate: a formula (an interpolant)

which is small

-1 + a + -a = -1 ∧
∀x(¬(x ≤ 5) ∨ -6 + x ≤ -1) ∧
-(-1 + -1 + a) = -1 ∧
∀x((1 ≤ x + --(-1 + a) ∨ ¬(-1 ≤ x))) ∧
(a ≤ 6 ∨ 1 ≤ a + -1) ∧
∀x(¬(-1 ≤ x) ∨ ¬(x ≤ -2)) ∧
∀x(-1 ≤ x + -a ∨ ¬(-1 + a ≤ x)) ∧
∀x(-1 + x = 1 + -2 + x) ∧
-a + -1 + a = -1 ∧
∀x(¬(--(-1 + a) ≤ x) ∨ 1 ≤ x + -1) ∧
∀x((¬(x ≤ 4) ∨ -5 + x ≤ -1)) ∧
∀x(x + -3 ≤ -1 ∨ ¬(x ≤ 2)) ∧
∀x(¬(x ≤ 3) ∨ -4 + x ≤ -1) ∧
∀x(x + -a ≤ -1 ∨ ¬(x ≤ -1 + a)) ∧
∀x(-1 + x = -1 + -1 + a + -(-1 + a) + x) ∧
6 ≤ b

or

¬(a ≤ 6) ∧
-a ≤ -1 ∧
¬(-1 ≤ -a) ∧
a = 3 ∧
1 ≤ -1 + a ∧
¬(2 + a ≤ 6) ∧
¬(-1 + a ≤ 1) ∧
(a 6= 6 ∨ ¬(b ≤ 6))

What is a good interpolant?

I logical strength [Jhala07, D’Silva09, McMillan08];
I small size [Kroening10, Brillout11, Griggio11].
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I These formulas may even have no common atoms or no
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Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations
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G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)
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sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))
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· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·
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I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.
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Experiments with Minimising Interpolants

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I minimal interpolants were generated for 2123 SMT examples.
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Experiments with Minimising Interpolants

I More realistic benchmarks:

I 4048 problems coming from CPAchecker;

I we used Vampire to generate local proofs;
I minimal interpolants were generated for 1903 CPAchecker

examples:
I for 296 examples the size of the interpolant has decreased by a factor

of 5;
I for 6 examples the size of the interpolant has decreased by a factor

of 500.
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Summary: Invariant Generation, Interpolation, Symbol Elimination

Given the proof obligation A→ B:

1. Run a theorem prover and
eliminate extra symbols;

2. Generate a (reverse)
interpolant from a refutation;

3. Interpolant is a boolean
combination of consequences
of symbol-eliminating
inferences.

Given a loop:

1. Express loop properties in a
language containing extra symbols;

2. Every logical consequence of these
properties is a valid loop property, but
not an invariant;

3. Run a theorem prover for eliminating
extra symbols;

4. Every derived formula in the language
of the loop is a loop invariant;

5. Invariants are consequences of
symbol-eliminating inferences.
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