
Symbolic Computation and Theorem Proving
in Program Analysis

Laura Kovács

Chalmers



Outline

Part 1: Weakest Precondition for Program Analysis and
Verification

Part 2: Polynomial Invariant Generation (TACAS’08, LPAR’10)

Part 3: Quantified Invariant Generation (FASE’09, MICAI’11)

Part 4: Invariants, Interpolants and Symbol Elimination
(CADE’09, POPL’12, APLAS’12)



Part 4: Invariants, Interpolants and Symbol Eliminatio
Symbol Elimination by First-Order Theorem Proving

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Outline

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c,d)



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: A(c, d) ∧ T (c, d , c′, d ′) ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)

A(c, d) ∧ T (c, d , c′, d ′)→ I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: A(c, d) ∧ T (c, d , c′, d ′) ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)

A(c, d) ∧ T (c, d , c′, d ′)→ I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

Refutation: A(c, d) ∧ T (c, d , c′, d ′) ∧ ¬B(c′, d ′)

• The formula is of 2 states (c, d , c′, d ′).
• Need a state formula I(c′, d ′) such that: (Jhala and McMillan)

A(c, d) ∧ T (c, d , c′, d ′)→ I(c′, d ′) and I(c′, d ′) ∧ ¬B(c′, d ′)→ ⊥

Taks: Compute interpolant I(c′, d ′) by eliminating symbols c, d .



Invariants, Symbol Elimination, and Interpolation
Reachability of B in ONE iteration: A(c, d) ∧ T (c, d , c′, d ′)→ B(c′, d ′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ 0 < c′ = 1 ∧ C[0] = D[0]

I(c′′,d ′′) ≡ 0 < c′′ = 2 ∧ C[0] = D[0] ∧ C[1] = D[1]

Taks: Compute interpolant I(c′, d ′) by eliminating symbols c, d .



Invariants, Symbol Elimination, and Interpolation
Reachability of B in TWO iterations: A(c, d)∧T (c, d , c′, d ′)∧T (c′, d ′, c′′, d ′′)→B(c′′, d ′′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ 0 < c′ = 1 ∧ C[0] = D[0]

I(c′′,d ′′) ≡ 0 < c′′ = 2 ∧ C[0] = D[0] ∧ C[1] = D[1]

Taks: Compute interpolant I(c′′, d ′′) by eliminating symbols c, d , c′, d ′.



Invariants, Symbol Elimination, and Interpolation
Reachability of B in TWO iterations: A(c, d)∧T (c, d , c′, d ′)∧T (c′, d ′, c′′, d ′′)→B(c′′, d ′′)

{c = d = 0 ∧ N > 0 ∧ (∀k) (0 ≤ k < N → D[k ] = 0)} precondition A(c,d)

while (c < N) do

C[c] := D[d ]; c < N ∧ C[c] = D[d ] ∧ c′ = c + 1 ∧ d ′ = d + 1 ∧ c′ ≥ N︸ ︷︷ ︸
T (c,d,c′,d′)

c := c + 1;
d := d + 1

end do

{(∀k)(0 ≤ k < N → C[k ] = 0)} postcondition B(c′,d ′)

I(c′,d ′) ≡ (∀k)0 ≤ k < c′ → C[k ] = D[k ]

I(c′′,d ′′) ≡ (∀k)0 ≤ k < c′′ → C[k ] = D[k ]

Taks: Compute interpolant I(c′′, d ′′) implying invariant in any state.



Outline

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Symbol Elimination and Interpolation

What is an Interpolant?

Computing Interpolants
I Local Derivations
I Symbol Eliminations
I Building Interpolants from Proof

Summary: Invariants, Symbol Elimination, Interpolants



Notation

I First-order predicate logic with equality.

I >: always true,
⊥: always false.

I ∀A: universal closure of A.

I Symbols:
I predicate symbols;
I function symbols;
I constants.

Equality is part of the language→ equality is not a symbol.

I LA: the language of A: the set of all formulas built from the
symbols occurring in A.



What is an Interpolant?

Let A,B be closed formulas such that A→ B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula I ∈ LA ∩ LB such that

A→ I and I → B.

I is an interpolant of A and B.

Note: if A and B are ground, they also have a ground interpolant.



What is an Interpolant?

Let A,B be closed formulas such that A→ B.

Theorem (Craig’s Interpolation Theorem)
There exists a closed formula I ∈ LA ∩ LB such that

A→ I and I → B.

I is an interpolant of A and B.

Reverse interpolant of A and B: any formula I such that

A→ I and I,¬B → ⊥.



Interpolation with Theories

I Theory T : any set of closed formulas.
I C1, . . . ,Cn →T C means that the formula C1 ∧ . . . ∧ C1 → C holds in all

models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let A,B be formulas and let A→T B.

Then there exists a formula I such that
1. A→T I and I → B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A → I and I →T B;

2. every uninterpreted symbol of I occurs both in A and B;

3. every interpreted symbol of I occurs in A.



Interpolation with Theories

I Theory T : any set of closed formulas.
I C1, . . . ,Cn →T C means that the formula C1 ∧ . . . ∧ C1 → C holds in all

models of T .
I Interpreted symbols: symbols occurring in T .
I Uninterpreted symbols: all other symbols.

Theorem
Let A,B be formulas and let A→T B.

Then there exists a formula I such that
1. A→T I and I → B;
2. every uninterpreted symbol of I occurs both in A and B;
3. every interpreted symbol of I occurs in B.

Likewise, there exists a formula I such that

1. A → I and I →T B;

2. every uninterpreted symbol of I occurs both in A and B;

3. every interpreted symbol of I occurs in A.



Computing Interpolants using Inference Systems

I Inference Rule:
A1 . . . An

A

I Inference system: a set of inference rules.
I Axiom: an inference rule with 0 premises.
I Derivation of A: tree with the root A built from inferences.



Interpolants and Local AB-Derivations

AB-derivation
Let L = LA ∩ LB.

A derivation Π is an AB-derivation if

(AB1) For every leaf C of Π one of following conditions holds:
1. A→T ∀C and C ∈ LA or
2. B →T ∀C and C ∈ LB.

(AB2) For every inference

C1 . . . Cn

C

of Π we have ∀C1, . . . ,∀Cn →T ∀C.

We will refer to property (AB2) as soundness.



Interpolants and Local AB-Derivations

C1 . . . Cn

C

This inference is local if the following two conditions hold:

(L1) Either {C1, . . . ,Cn,C} ⊆ LA or {C1, . . . ,Cn,C} ⊆ LB.
(L2) If all of the formulas C1, . . . ,Cn are colorless, then C is

colorless, too.

A derivation is called local if so is every inference of this derivation.



Shape of local derivations for A→ B



Local Derivations: Example A→ B

[demo]

I A := ∀x(x = c)

I B := a = b
I Universal interpolant I: ∀x∀y(x = y)

A local refutation of in the superposition calculus:

x = c y = c
x = y a 6= b

y 6= b
⊥



Local Derivations: Example A→ B

[demo]

I A := ∀x(x = c)

I B := a = b
I Universal interpolant I: ∀x∀y(x = y)

A local refutation of in the superposition calculus:

x = c y = c
x = y a 6= b

y 6= b
⊥



Interpolants and Symbol Eliminating Inference

I At least one of the premises colored.
I The conclusion is not colored.

x = c y = c
x = y a 6= b

y 6= b
⊥

Interpolant ∀x∀y(x = y): conclusion of a symbol-eliminating inference.



Interpolants and Symbol Eliminating Inference

I At least one of the premises colored.
I The conclusion is not colored.

x = c y = c
x = y a 6= b

y 6= b
⊥

Interpolant ∀x∀y(x = y): conclusion of a symbol-eliminating inference.



Extracting Interpolants from Local Proofs

Theorem (CADE’09)
Let Π be a closed local AB-refutation.

Then:
I A reverse interpolant I of A and B can be extracted from Π in linear time.
I I is ground if all formulas in Π are ground.
I I is a boolean combination of conclusions of symbol-eliminating

inferences of Π.

NOTE:
I No restriction on the calculus (only soundness required)

– can be used with theories.
I Can generate interpolants in theories where no good interpolation

algorithms exist.
I Shift of interest: what matters are symbol-eliminating inferences.



Extracting Interpolants from Local Proofs

Theorem (CADE’09)
Let Π be a closed local AB-refutation.

Then:
I A reverse interpolant I of A and B can be extracted from Π in linear time.
I I is ground if all formulas in Π are ground.
I I is a boolean combination of conclusions of symbol-eliminating

inferences of Π.

NOTE:
I No restriction on the calculus (only soundness required)

– can be used with theories.
I Can generate interpolants in theories where no good interpolation

algorithms exist.
I Shift of interest: what matters are symbol-eliminating inferences.



Extracting Interpolants from Local Proofs

Theorem (CADE’09)
Let Π be a closed local AB-refutation.

Then:
I A reverse interpolant I of A and B can be extracted from Π in linear time.
I I is ground if all formulas in Π are ground.
I I is a boolean combination of conclusions of symbol-eliminating

inferences of Π.

NOTE:
I No restriction on the calculus (only soundness required)

– can be used with theories.
I Can generate interpolants in theories where no good interpolation

algorithms exist.
I Shift of interest: what matters are symbol-eliminating inferences.



Building Interpolants from Proofs

I Problem: generation of proofs giving interpolants.
I Idea 1: look for local refutations only;
I Idea 2: find calculi that guarantee that local proofs exist.

I LASCA: Superposition + Linear Arithmetic;
I Separating orderings (colored symbols are the greatest).

Theorem (CADE’09)

If � is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.



Building Interpolants from Proofs

I Problem: generation of proofs giving interpolants.
I Idea 1: look for local refutations only;
I Idea 2: find calculi that guarantee that local proofs exist.

I LASCA: Superposition + Linear Arithmetic;
I Separating orderings (colored symbols are the greatest).

Theorem (CADE’09)

If � is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.



Building Interpolants from Proofs

I Problem: generation of proofs giving interpolants.
I Idea 1: look for local refutations only;
I Idea 2: find calculi that guarantee that local proofs exist.

I LASCA: Superposition + Linear Arithmetic;
I Separating orderings (colored symbols are the greatest).

Theorem (CADE’09)

If � is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.



Building Interpolants from Proofs

I Problem: generation of proofs giving interpolants.
I Idea 1: look for local refutations only;
I Idea 2: find calculi that guarantee that local proofs exist.

I LASCA: Superposition + Linear Arithmetic;
I Separating orderings (colored symbols are the greatest).

Theorem (CADE’09)

If � is separating, then every AB-derivation in LASCA is local.

First-order interpolation implemented in Vampire.



Formulas Coloring Reverse Interpolant
L : z < 0 ∧ x ≤ z ∧ y ≤ x
R : y ≤ 0 ∧ x + y ≥ 0

left: z
right: - y ≤ x ∧ x < 0

L : g(a) = c + 5 ∧ f (g(a)) ≥ c + 1
R : h(b) = d + 4 ∧ d = c + 1 ∧ f (h(b)) < c + 1

left: g, a
right: h, b c + 1 ≤ f (c + 5)

L : p ≤ c ∧ c ≤ q ∧ f (c) = 1
R : q ≤ d ∧ d ≤ p ∧ f (d) = 0

left: c
right: d p ≤ q ∧ (q > p ∨ f (p) = 1)

L : f (x1) + x2 = x3 ∧ f (y1) + y2 = y3 ∧ y1 ≤ x1
R : x2 = g(b) ∧ y2 = g(b) ∧ x1 ≤ y1 ∧ x3 < y3

left: f
right: g, b x1 > y1 ∨ x2 6= y2 ∨ x3 = y3

L : c2 = car(c1) ∧ c3 = cdr(c1) ∧ ¬(atom(c1))
R : c1 6= cons(c2, c3)

left: car, cons
right: - ¬atom(c1) ∧ c1 = cons(c2, c3)

L : Q(f (a))∧ 6= Q(f (b))
R : f (V ) = c

left: Q, a, b
right: c ∃x, y : f (x) 6= f (y)

L : a = c ∧ f (c) = a
R : c = b∧ 6= (b = f (c))

left: a
right: b c = f (c)

L : True ∧ a′ [x′ ] = y ∧ x′ = x ∧ y′ = y + 1 ∧ z′ = x′

R : ¬(y′ = a′ [z′ ] + 1)
left: x, y
right: - 1 + a′ [x′ ] = y′ ∧ x′ = z′

Table : Interpolation with Vampire, within 1 second time limit.



Symbol Elimination and Interpolation

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Interpolation Through Colors in Vampire

I There are three colors: blue, red and green.

I Each symbol (function or predicate) is colored in exactly one of
these colors.

I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that→ A→ B.
I Our goal is to find a green formula I such that

1. → A→ I;
2. → I → B.



Interpolation Through Colors in Vampire

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.

I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that→ A→ B.
I Our goal is to find a green formula I such that

1. → A→ I;
2. → I → B.



Interpolation Through Colors in Vampire

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.

I We know that→ A→ B.
I Our goal is to find a green formula I such that

1. → A→ I;
2. → I → B.



Interpolation Through Colors in Vampire

I There are three colors: blue, red and green.
I Each symbol (function or predicate) is colored in exactly one of

these colors.
I We have two formulas: A and B.
I Each symbol in A is either blue or green.
I Each symbol in B is either red or green.
I We know that→ A→ B.
I Our goal is to find a green formula I such that

1. → A→ I;
2. → I → B.



Interpolation Example in Vampire

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
fof(fB,conjecture, ?[V]: V != c).



Interpolation Example in Vampire

% request to generate an interpolant
vampire(option,show_interpolant,on).
% symbol coloring
vampire(symbol,predicate,q,1,left).
vampire(symbol,function,f,1,left).
vampire(symbol,function,a,0,left).
vampire(symbol,function,b,0,left).
vampire(symbol,function,c,0,right).
% formula L
vampire(left_formula).

fof(fA,axiom, q(f(a)) & ˜q(f(b)) ).
vampire(end_formula).
% formula R
vampire(right_formula).

fof(fB,conjecture, ?[V]: V != c).
vampire(end_formula).



Symbol Elimination and Interpolation

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Given: a problem (an interpolation problem)
Generate: a formula (an interpolant)

which is small

-1 + a + -a = -1 ∧
∀x(¬(x ≤ 5) ∨ -6 + x ≤ -1) ∧
-(-1 + -1 + a) = -1 ∧
∀x((1 ≤ x + --(-1 + a) ∨ ¬(-1 ≤ x))) ∧
(a ≤ 6 ∨ 1 ≤ a + -1) ∧
∀x(¬(-1 ≤ x) ∨ ¬(x ≤ -2)) ∧
∀x(-1 ≤ x + -a ∨ ¬(-1 + a ≤ x)) ∧
∀x(-1 + x = 1 + -2 + x) ∧
-a + -1 + a = -1 ∧
∀x(¬(--(-1 + a) ≤ x) ∨ 1 ≤ x + -1) ∧
∀x((¬(x ≤ 4) ∨ -5 + x ≤ -1)) ∧
∀x(x + -3 ≤ -1 ∨ ¬(x ≤ 2)) ∧
∀x(¬(x ≤ 3) ∨ -4 + x ≤ -1) ∧
∀x(x + -a ≤ -1 ∨ ¬(x ≤ -1 + a)) ∧
∀x(-1 + x = -1 + -1 + a + -(-1 + a) + x) ∧
6 ≤ b

or

¬(a ≤ 6) ∧
-a ≤ -1 ∧
¬(-1 ≤ -a) ∧
a = 3 ∧
1 ≤ -1 + a ∧
¬(2 + a ≤ 6) ∧
¬(-1 + a ≤ 1) ∧
(a 6= 6 ∨ ¬(b ≤ 6))

What is a good interpolant?

I logical strength [Jhala07, D’Silva09, McMillan08];
I small size [Kroening10, Brillout11, Griggio11].



Given: a problem (an interpolation problem)
Generate: a formula (an interpolant)

which is small

-1 + a + -a = -1 ∧
∀x(¬(x ≤ 5) ∨ -6 + x ≤ -1) ∧
-(-1 + -1 + a) = -1 ∧
∀x((1 ≤ x + --(-1 + a) ∨ ¬(-1 ≤ x))) ∧
(a ≤ 6 ∨ 1 ≤ a + -1) ∧
∀x(¬(-1 ≤ x) ∨ ¬(x ≤ -2)) ∧
∀x(-1 ≤ x + -a ∨ ¬(-1 + a ≤ x)) ∧
∀x(-1 + x = 1 + -2 + x) ∧
-a + -1 + a = -1 ∧
∀x(¬(--(-1 + a) ≤ x) ∨ 1 ≤ x + -1) ∧
∀x((¬(x ≤ 4) ∨ -5 + x ≤ -1)) ∧
∀x(x + -3 ≤ -1 ∨ ¬(x ≤ 2)) ∧
∀x(¬(x ≤ 3) ∨ -4 + x ≤ -1) ∧
∀x(x + -a ≤ -1 ∨ ¬(x ≤ -1 + a)) ∧
∀x(-1 + x = -1 + -1 + a + -(-1 + a) + x) ∧
6 ≤ b

or

¬(a ≤ 6) ∧
-a ≤ -1 ∧
¬(-1 ≤ -a) ∧
a = 3 ∧
1 ≤ -1 + a ∧
¬(2 + a ≤ 6) ∧
¬(-1 + a ≤ 1) ∧
(a 6= 6 ∨ ¬(b ≤ 6))

What is a good interpolant?

I logical strength [Jhala07, D’Silva09, McMillan08];
I small size [Kroening10, Brillout11, Griggio11].



Given: a problem (an interpolation problem)
Generate: a formula (an interpolant) which is small

-1 + a + -a = -1 ∧
∀x(¬(x ≤ 5) ∨ -6 + x ≤ -1) ∧
-(-1 + -1 + a) = -1 ∧
∀x((1 ≤ x + --(-1 + a) ∨ ¬(-1 ≤ x))) ∧
(a ≤ 6 ∨ 1 ≤ a + -1) ∧
∀x(¬(-1 ≤ x) ∨ ¬(x ≤ -2)) ∧
∀x(-1 ≤ x + -a ∨ ¬(-1 + a ≤ x)) ∧
∀x(-1 + x = 1 + -2 + x) ∧
-a + -1 + a = -1 ∧
∀x(¬(--(-1 + a) ≤ x) ∨ 1 ≤ x + -1) ∧
∀x((¬(x ≤ 4) ∨ -5 + x ≤ -1)) ∧
∀x(x + -3 ≤ -1 ∨ ¬(x ≤ 2)) ∧
∀x(¬(x ≤ 3) ∨ -4 + x ≤ -1) ∧
∀x(x + -a ≤ -1 ∨ ¬(x ≤ -1 + a)) ∧
∀x(-1 + x = -1 + -1 + a + -(-1 + a) + x) ∧
6 ≤ b

or

¬(a ≤ 6) ∧
-a ≤ -1 ∧
¬(-1 ≤ -a) ∧
a = 3 ∧
1 ≤ -1 + a ∧
¬(2 + a ≤ 6) ∧
¬(-1 + a ≤ 1) ∧
(a 6= 6 ∨ ¬(b ≤ 6))

What is a good interpolant?

I logical strength [Jhala07, D’Silva09, McMillan08];
I small size [Kroening10, Brillout11, Griggio11].



Given: a problem (an interpolation problem)
Generate: a formula (an interpolant) which is small

-1 + a + -a = -1 ∧
∀x(¬(x ≤ 5) ∨ -6 + x ≤ -1) ∧
-(-1 + -1 + a) = -1 ∧
∀x((1 ≤ x + --(-1 + a) ∨ ¬(-1 ≤ x))) ∧
(a ≤ 6 ∨ 1 ≤ a + -1) ∧
∀x(¬(-1 ≤ x) ∨ ¬(x ≤ -2)) ∧
∀x(-1 ≤ x + -a ∨ ¬(-1 + a ≤ x)) ∧
∀x(-1 + x = 1 + -2 + x) ∧
-a + -1 + a = -1 ∧
∀x(¬(--(-1 + a) ≤ x) ∨ 1 ≤ x + -1) ∧
∀x((¬(x ≤ 4) ∨ -5 + x ≤ -1)) ∧
∀x(x + -3 ≤ -1 ∨ ¬(x ≤ 2)) ∧
∀x(¬(x ≤ 3) ∨ -4 + x ≤ -1) ∧
∀x(x + -a ≤ -1 ∨ ¬(x ≤ -1 + a)) ∧
∀x(-1 + x = -1 + -1 + a + -(-1 + a) + x) ∧
6 ≤ b

or

¬(a ≤ 6) ∧
-a ≤ -1 ∧
¬(-1 ≤ -a) ∧
a = 3 ∧
1 ≤ -1 + a ∧
¬(2 + a ≤ 6) ∧
¬(-1 + a ≤ 1) ∧
(a 6= 6 ∨ ¬(b ≤ 6))

What is a good interpolant?

I logical strength [Jhala07, D’Silva09, McMillan08];
I small size [Kroening10, Brillout11, Griggio11].



How to Make Interpolants Smaller/Nicer?

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Revised Interpolation Problem:

Given→ R → B, find a green formula I:

� → R → I;

� → I → B;

� I is small.



How to Make Interpolants Smaller/Nicer?

I in size;
I in weight;
I in the number of quantifiers;
I . . .

Revised Interpolation Problem:

Given→ R → B, find a green formula I:

� → R → I;

� → I → B;

� I is small.



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or green block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or green block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}
[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or green block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or green block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



Extracting Interpolants from Local Proofs

G is in the digest:

- comes from a red block

- followed by a blue or green block

or

- comes from a blue block

- followed by a red

G1
G2

G3

G4

Digest

Interpolant: boolean combination of {G1, . . . ,G4}

[McMillan05, KV09]



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

, but preserve locality!

Slicing off formulas



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

, but preserve locality!

Slicing off formulas



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

, but preserve locality!

Slicing off formulas

A1 · · · An

An+1 · · · Am

A
A0 −→slicing off A

A1 · · · An An+1 · · · Am

A0

If A is green: Green slicing



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

, but preserve locality!

Slicing off formulas

A1 · · · An

An+1 · · · Am

A
A0 −→slicing off A

A1 · · · An An+1 · · · Am

A0

If A is green: Green slicing



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof

, but preserve locality!

Slicing off formulas

B0

R0

G1

G0 −→slicing off G1

B0 R0

G0

If A is green: Green slicing



How to Make Interpolants Smaller/Nicer?

Task: minimise interpolants = minimise digest

Idea: Change the green areas of the local proof, but preserve locality!

Slicing off formulas

B0

R0

G1

G0 −→slicing off G1

B0 R0

G0

If A is green: Green slicing



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G4,G7}

Reverse interpolant: G4 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G5,G7}

Reverse interpolant: G5 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G6,G7}

Reverse interpolant: G6 → G7

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:
Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest: {G6}

Reverse interpolant: ¬G6

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

R3

R1 G1

G3

B1 G2

G4

G5

G6

R4

G7

⊥

Digest:

Reverse interpolant:

Note that the interpolant has changed from G4 → G7 to ¬G6.

I There is no obvious logical relation between G4 → G7 and ¬G6,
for example none of these formulas implies the other one;

I These formulas may even have no common atoms or no
common symbols.



How to Make Interpolants Smaller/Nicer?

If green slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n green formulas, the number of
possible different slicing off transformations is 2n.



How to Make Interpolants Smaller/Nicer?

If green slicing gives us very different interpolants, we can use it for
finding small interpolants.

Problem: if the proof contains n green formulas, the number of
possible different slicing off transformations is 2n.



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on green for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I green(G): the trace of G
contains only green
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on green for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I green(G): the trace of G
contains only green
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on green for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I green(G): the trace of G
contains only green
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on green for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I green(G): the trace of G
contains only green
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Some predicates on green for-
mulas:

I sliced(G): G was sliced
off;

I red(G): the trace of G
contains a red formula;

I blue(G): the trace of G
contains a blue formula;

I green(G): the trace of G
contains only green
formulas;

I digest(G): G belongs to
the digest.

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula

bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula

bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·
digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT
I solutions encode all slicing off transformations

R
G1

B
G2

G3

Express digest(G)

by considering the possibilities:

I G comes from a
red/ blue/green formula

rc(G)/bc(G)

I G is followed by a
red/ blue/green formula
bf(G)/rf(G)

G3, and at most one of G1,G2 can be sliced off.

¬sliced(G1)→ Green(G1)

sliced(G1)→ red(G1)

¬sliced(G3)→ Green(G3)

sliced(G3)→ (Green(G3)↔ Green(G1) ∧Green(G2))

sliced(G3)→ (red(G3)↔ red(G1) ∨ red(G2))

sliced(G3)→ (blue(G3)↔ blue(G1) ∨ blue(G2))

digest(G1)→ ¬sliced(G1)

· · ·

digest(G3)↔ (rc(G3) ∧ rf(G3)) ∨ (bc(G3) ∧ bf(G3))

rc(G3)↔ (¬sliced(G3) ∧ (red(G1) ∨ red(G2))

· · ·



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of green formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of green formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of green formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of green formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



How to Make Interpolants Smaller/Nicer?
Solution:

I encode all sequences of transformations as an instance of SAT;

I solutions encode all slicing off transformations;

I compute small interpolants: smallest digest of green formulas;

min{Gi1 ,...,Gin}

(∑
Gi

digest(Gi )
)

min{Gi1 ,...,Gin}

(∑
Gi

quantifier number(Gi) digest(Gi )
)

I use a pseudo-boolean optimisation tool or an SMT solver to
minimise interpolants;

I minimising interpolants is an NP-complete problem.



Experiments with Minimising Interpolants

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I minimal interpolants were generated for 2123 SMT examples.



Experiments with Minimising Interpolants

I Experimental results:

I 9632 first-order examples from the TPTP library:

for example, for 2000 problems the size of the interpolants became
20-49 times smaller;

I 4347 SMT examples:

I we used Z3 for proving SMT examples;
I Z3 proofs were localised in Vampire;
I minimal interpolants were generated for 2123 SMT examples.



Experiments with Minimising Interpolants

I More realistic benchmarks:

I 4048 problems coming from CPAchecker;

I we used Vampire to generate local proofs;
I minimal interpolants were generated for 1903 CPAchecker

examples:
I for 296 examples the size of the interpolant has decreased by a factor

of 5;
I for 6 examples the size of the interpolant has decreased by a factor

of 500.



Symbol Elimination and Interpolation

Invariants, Interpolants and Symbol Elimination

Interpolants from Proofs

Interpolation in Vampire

Quality of Interpolants

Conclusions



Summary: Invariant Generation, Interpolation, Symbol Elimination

Given the proof obligation A→ B:

1. Run a theorem prover and
eliminate extra symbols;

2. Generate a (reverse)
interpolant from a refutation;

3. Interpolant is a boolean
combination of consequences
of symbol-eliminating
inferences.

Given a loop:

1. Express loop properties in a
language containing extra symbols;

2. Every logical consequence of these
properties is a valid loop property, but
not an invariant;

3. Run a theorem prover for eliminating
extra symbols;

4. Every derived formula in the language
of the loop is a loop invariant;

5. Invariants are consequences of
symbol-eliminating inferences.



Summary: Invariant Generation, Interpolation, Symbol Elimination

Given the proof obligation A→ B:

1. Run a theorem prover and
eliminate extra symbols;

2. Generate a (reverse)
interpolant from a refutation;

3. Interpolant is a boolean
combination of consequences
of symbol-eliminating
inferences.

Given a loop:

1. Express loop properties in a
language containing extra symbols;

2. Every logical consequence of these
properties is a valid loop property, but
not an invariant;

3. Run a theorem prover for eliminating
extra symbols;

4. Every derived formula in the language
of the loop is a loop invariant;

5. Invariants are consequences of
symbol-eliminating inferences.



End of Session 4

Slides for session 4 ended here . . .


	Part 4: Invariants, Interpolants and Symbol Elimination
	Main Part
	Invariants, Interpolants and Symbol Elimination
	Interpolants from Proofs
	Interpolation in Vampire
	Quality of Interpolants
	Conclusions


