
Scalable Multi-core Model Checking:
Technology & Applications of Brute Force

Day I: Reachability

 UNIVERSITY OF TWENTE.
Formal Methods & Tools.

Jaco van de Pol
30, 31 October 2014

VTSA 2014, Luxembourg

... Introduction Multi-core Reachability ...

Table of Contents

1 Introduction
The case for high-performance model checking
LTSmin tool architecture and PINS interface
Course Overview

2 Multi-core Reachability
Shared hash table
Parallel state compression

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 2 / 27

... Introduction Multi-core Reachability ...

The Reachability Problem

Reachability Problem – Instances:

I Find assertion violations in multi-core software

I Find safety risks in Railway Interlockings

I Find solutions to games/puzzles, e.g. Sokoban

The Reachability Problem in general graphs

I Given a graph G = (V ,R) (nodes, edges)

I Initial states I ⊆ V and goal/error states F ⊆ V

I Check: is there a path in G from I to F? i.e. is F reachable?

I Typically, the graph is given implicitly,
as the state space of a program or a specification.

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 3 / 27

... Introduction Multi-core Reachability ...

Reasons for State Space Explosion

Concurrency: exponential growth

I System of n components, each can be in m states

I The total state space may consist of mn states.

I Example: Railway safety systems (signals, points, tracks)

Data variables: exponential growth

I Given n different variables, each may take m values

I Potential number of different state vectors: mn

I Example: model checking software, rather than models

How to handle > 10100 states??
I Partial Order Reduction: Avoid certain states systematically

I Symbolic model checking: Treat sets of states simultaneously

I Focus of my lectures: Brute force parallel computation

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 4 / 27

... Introduction Multi-core Reachability ...

Motivation for High-Performance Model Checking

Solution to State Space Explosion?

I Model checking suffers from the state space explosion,
Therefore it is very time and memory intensive

I Reaching the memory bound is an immediate show stopper,
But also excessive waiting times put a bound on applicability

I Why not simply throw more computer power at the problem?

Will this help in practice? Is this scientifically interesting?

I Is the problem embarrassingly parallel?

I No: Graph algorithms are not easy to parallelize efficiently,
so clever algorithm engineering is necessary.

I But: only linear improvement for an exponential problem...

I Yes, orthogonal to clever reduction techniques: start simple

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 5 / 27

... Introduction Multi-core Reachability ...

Various possibilities regarding underlying hardware

Distributed computing:

I network of workstations, clusters, Grid - cheap

I this allows accumulation of available memory

I But: limited bandwidth, high latency

Parallel computing (shared memory):

I Multi-core, supercomputers - expensive, but price dropping

I 64-bit machines, > 120GB RAM, 8-64 cores: quite popular

I But: Scalability is imperfect, heterogeneous (so distributed?)

Several alternatives are under investigation:

I Use hard disk as substitute for RAM

I CUDA (GPU), Cell processors, FPGA, cloud, map/reduce

In all cases: algorithms must be fundamentally revised!

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 6 / 27

... Introduction Multi-core Reachability ...

Table of Contents

1 Introduction
The case for high-performance model checking
LTSmin tool architecture and PINS interface
Course Overview

2 Multi-core Reachability
Shared hash table
Parallel state compression

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 7 / 27

... Introduction Multi-core Reachability ...

Model Checking made Practical and Widespread?

Main obstacles

I Scalability
I parallel components
I data, buffers, . . .

I Modeling effort
I many languages
I avoid modeling?

I Complex tools
I algorithms, heuristics
I low-level details

Algorithmic solutions
(combinatorics: locality)

I on-the-fly model checking

I symbolic model checking

I bounded model checking

I partial-order reduction

I symmetry reduction

I parallel model checking

Problem: algorithms are often tied to specification languages

I No particular technique suits all applications / models

I A user needs to rewrite his model into different languages

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 8 / 27

... Introduction Multi-core Reachability ...

Solution Direction

Where to draw the line?

I Separate languages and algorithms via a clean interface (API)
I API should be simple: allow many different languages
I API should be rich: expose locality structure to algorithms

PINS

mCRL2
Process algebra SPIN / NIPS−vm (BEEM)

Input Promela DVE
Language

Distributed Symbolic
Reachability

Multi−core
ReachabilityGeneration

Reachability
Tools

PINS interface of LTSmin toolset:

I Frontends provide on-the-fly access to a state space
I Backend algorithms determine the verification strategy

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 9 / 27

... Introduction Multi-core Reachability ...

High-performance Model Checking for the Masses

Languages

SymbolicDistributed Multi−core
Tools
Reachability

mCRL2 Promela DVE UPPAAL
Specification

PINS

x y z

t1 r w –
t2 – r w
t3 w – rw

Advantages of tool and interface (LTSmin / PINS)

I General and flexible: support for arbitrary state/edge labels
I Also: LLVM, parity games, Markov Automata, C-code, B||CSP
I Indirectly: GSPN, xUML, Signalling Networks in Biology

I On-the-fly API: next-state function to pull the implicit graph

I Efficiency: models expose locality in a dependency matrix

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 10 / 27

... Introduction Multi-core Reachability ...

LTSmin architecture and PINS interface
Blom, van de Pol, Weber [CAV’10], Laarman, van de Pol, Weber [NFM’11]
http://fmt.cs.utwente.nl/tools/ltsmin/

reduction / lumping

mCRL2 Promela DVE UPPAAL

Symbolic

Specification

PINS

PINS

Distributed Multi−core

Languages

Tools
Reachability

 reduction
 Partial−order Variable reordering

Transition groupingcaching
Transition

Wrappers

Pins2pins

Analysis

Algorithms
LTLBisimulation mu−calculus

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 11 / 27

http://fmt.cs.utwente.nl/tools/ltsmin/

... Introduction Multi-core Reachability ...

Table of Contents

1 Introduction
The case for high-performance model checking
LTSmin tool architecture and PINS interface
Course Overview

2 Multi-core Reachability
Shared hash table
Parallel state compression

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 12 / 27

... Introduction Multi-core Reachability ...

Lecture on High-performance Model Checking

High-level Goals

I Investigate high-performance model checking algorithms

I Applications to complex man-made and natural systems

Ingredients

I Basic multi-core datastructures for Reachability

I Checking liveness properties – LTL, multi-core Nested DFS

I Symbolic representation: LTL for Timed Automata

I Symbolic representation: Multi-core Decision Diagrams

I Application to Biological Signaling Pathways

I Application to xUML diagrams for Railway Safety

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 13 / 27

... Introduction Multi-core Reachability ...

Signaling Pathways with Timed Automata
Stefano Schivo, Langerak, van de Pol etal. [BIBE’12] [GENE’13] [J-BHI’14]

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 14 / 27

Synthesizing a medicine could
be a reachability problem...

... Introduction Multi-core Reachability ...

Table of Contents

1 Introduction
The case for high-performance model checking
LTSmin tool architecture and PINS interface
Course Overview

2 Multi-core Reachability
Shared hash table
Parallel state compression

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 15 / 27

... Introduction Multi-core Reachability ...

Which architecture suits Multi-core Model Checking?

Worker 1 Worker 2

Worker 3 Worker 4
QueueQueue

QueueQueue

store store

storestore

Static partitioning

I Distributed memory solution

I Communication: W 2 queues

I (Relaxed) BFS only

Load balancer

Store

Worker 1 Worker 2

Worker 4 Worker 3
Queue Queue

QueueQueue

Shared hash table

I (Pseudo) DFS & BFS

I Communication: shared hash table

I Load balancing

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 16 / 27

... Introduction Multi-core Reachability ...

Algorithm: parallel reachability

Data: Global set V = ∅, Local sets S0 = I , S1 = · · · = SN−1 = ∅
for 0 ≤ id < N do in parallel

while LoadBalance(Sid) do
while some work to do and no timeout do

state ← Sid .Get()1

count ← 0
check invariants on state
for s ∈ NextState(state) do

increment count
if not V .FindOrPut(s) then2

Sid .Put(s)

if count = 0 then report deadlock

(1) “Open” set S influences search order (e.g.: BFS, DFS)

(2) Shared-Memory synchronization point

I Locking the hashtable is not an option

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 17 / 27

... Introduction Multi-core Reachability ...

Lockless Hash Table: Design
Alfons Laarman, van de Pol, Weber [fmcad10]

Main bottlenecks for scalable implementation

I State storage: requires concurrent access (lock contention)

I Graph traversal: random memory access (bandwidth)

I Computer architecture: shared L2 caches (false sharing)

Design: keep it simple

I Open addressing

I Hash memoization: read less data

I Separate hash and data

I On collision: Walking the Line

I In-situ locking (1 bit per bucket)

I Bucket operations require CAS

I Not strictly wait-free

|state|

data bucket

|c
ac

he
 li

ne
|

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 18 / 27

... Introduction Multi-core Reachability ...

Algorithm: multi-core FindOrPut

Input : state
Output: true if seen, false otherwise
Data: size, Bucket[size], Data[size]

h← Hash(state); index← h mod size1

for i in WalkTheLineFrom(index) do2

if empty = Bucket[i] then3

if CompareAndSwap(Bucket[i], empty , 〈h,write〉) then4

Data[i]← state5

Bucket[i]← 〈h, done〉6

return false7

if 〈h, ?〉 = Bucket[i] then8

while 〈?,write〉 = Bucket[i] do . . . wait . . .9

if Data[i] = state then return true10

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 19 / 27

... Introduction Multi-core Reachability ...

Scalability Experiments from 2010 (BEEM database)

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 20 / 27

SPIN 5.2.4 (NASA/JPL) DiVinE 2.2 (Brno,CZ)

Barnat (2007)

I “our shared hash tables do not
scale beyond 8 cores”

I “could not investigate lockless
hash table solution”

I “haven’t found the cause of the
scalability issues” LTSmin (U Twente, NL)

... Introduction Multi-core Reachability ...

Table of Contents

1 Introduction
The case for high-performance model checking
LTSmin tool architecture and PINS interface
Course Overview

2 Multi-core Reachability
Shared hash table
Parallel state compression

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 21 / 27

... Introduction Multi-core Reachability ...

State space compression

Where is the bottleneck for parallel reachability?

I In every step: read and write long state vectors

I Memory: puts an upper limit to the state space

I Time: memory bus becomes the bottleneck for speedup

Exploit locality

I Due to locality: subsequent state vectors have a lot of overlap

I The set of state vectors can be greatly compressed

I Requirement: quick check if a state has been visited

I (otherwise the specification is a very good compression)

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 22 / 27

... Introduction Multi-core Reachability ...

Recursive indexing (Tree Compression)
Blom, Lisser, van de Pol, Weber [PDMC’07, JLC’09]

1

8

1

1

1

1

1

6

8

5

6

6

8

5

8

4

3

3

4

3

4

3

3

4

3

5

4

5

5

4

5

4

5

5

4

4 4

4 4

4 4

4

4

4 4

5

5

5

6

6

6

3

3

3

3

3

5 6

0 1

2 3

3 5 5 4 1 3

3 5

6

2

0 0

1

2

0

1

0

2

52

4 1

1 3

0

0

1

1

2

1 2

2

0

1

HK (K − 1)× H2

Analysis

I Locality =⇒ balanced tree (N + 2
√
N + 4 4

√
(N) · · · ≈ N)

Compresses states of length K to almost 2 (!)
I Hard to parallelize:

I Sequential operation on tree of tables
I Many small (variable size) hash tables

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 23 / 27

... Introduction Multi-core Reachability ...

Parallel Tree Compression
Laarman, van de Pol, Weber [spin11], Laarman, van der Vegt [memics’11]

Solution

I Reuse lockless hash table: merge tree of tables into one
I Incremental updates: use the Dependency Matrix

I (K − 1)→ log2(K − 1) lookups

4 1

6 5

1 3

3 5

2 4

〈3, 5, 5, 4, 1, 3〉 〈3, 5, 9, 4, 1, 3〉
2 4

6 5 1 3

3 5 4 1

〈3, 5, 5〉 〈4, 1, 3〉

〈3, 5〉 〈4, 1〉

? 4

6 9

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 24 / 27

... Introduction Multi-core Reachability ...

Exploiting locality once more

Dependency Matrix DM×N predicts changing state parts:
I Incremental tree insertions:

I Traverse only the changing paths in the Tree of Tables

I Incremental hashing, based on Albert L. Zobrist (1969):

g1-f3

Hx Hy (Hx Z ,g,1) Z ,f,3 =

I Even further compression:
I J.G. Cleary (1984): infer part of hash value from its address
I Vegt/Laarman (2012): Parallel Compact Hash Table

I Can now compress 235 = 3.4 · 1010 states into 160GB

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 25 / 27

... Introduction Multi-core Reachability ...

Compression Experiments from 2011 [BEEM database]
Laarman, van de Pol, Weber [spin11]

I Tree compression is a recursive
variant of SPIN’s Collapse (’97)

I Exploit combinatorial structure:
I State vectors are highly similar
I Impressive compression ratios

I Extreme case: firewire tree

Uncompressed: 14 GB
Tree Compression: 96 MB

I Compression comes for free
I Arithmetic intensity increases
I Less memory-bus traffic

!"

#"

$!"

$#"

%!"

%#"

!" #!" $!!" $#!" %!!" %#!" &!!"

!"
#
$%
&'
'(
")

*+,
!-
"%
*./

01
2**

'-,-&*3&)4-5*.67-&2**

'())"*+,-()../+0"
12.3"'245)"
6-7,25"8())"*+,-()../+0"
96::;<=>"+-7,25"
96::;<=>"*+,-()../+0"

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 6 8 10 12 14 16

tim
e

(s
ec

)

#cores

LTSmin-mc Table
LTSmin-mc Tree

DiVinE 2.2
SPIN

SPIN Collapse
optimal (linear speedup)

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 26 / 27

... Introduction Multi-core Reachability ...

Literature on LTSmin (reachability)

LTSmin toolset

I http://fmt.cs.utwente.nl/tools/ltsmin/

I Stefan Blom, Jaco van de Pol, Michael Weber,
LTSmin: Distributed and Symbolic Reachability (CAV 2010)

I Alfons Laarman, Jaco van de Pol, Michael Weber,
Multi-Core LTSmin: Marrying Modularity and Scalability (NFM 2011)

Reachability and State Compression

I Alfons Laarman, Jaco van de Pol and Michael Weber, . . . (FMCAD 2010)
Boosting Multi-Core Reachability Performance with Shared Hash Tables

I Alfons Laarman, Jaco van de Pol, Michael Weber,
Parallel Recursive State Compression for Free (SPIN 2011)

I Steven van der Vegt, Alfons Laarman,
A Parallel Compact Hash Table . (MEMICS 2011)

 UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 27 / 27

http://fmt.cs.utwente.nl/tools/ltsmin/

	Introduction
	The case for high-performance model checking
	LTSmin tool architecture and PINS interface
	Course Overview

	Multi-core Reachability
	Shared hash table
	Parallel state compression

