UNIVERSITY OF TWENTE.
Formal Methods & Tools. __.:;6’?0;

Scalable Multi-core Model Checking:
% Technology & Applications of Brute Force
S Day I: Reachability

‘“‘ Jaco van de Pol
53 30, 31 October 2014

aand

»
wine

VTSA 2014, Luxembourg "+

Introduction
[YeleYolo)

Table of Contents

Introduction
m The case for high-performance model checking

Multi-core Reachability

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 2 / 27

The Reachability Problem

Reachability Problem — Instances:

» Find in multi-core software
» Find in Railway Interlockings

» Find solutions to games/puzzles, e.g. Sokoban

The Reachability Problem in general graphs

» Given a graph (nodes, edges)
> | C V and FCV
» Check: is there a path in G from [to F? i.e. is F

> Typically, the graph is given ,
as the state space of a program or a specification.

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014

3/ 27

Introduction

Concurrency: growth
» System of n components, each can be in m states
» The total state space may consist of m" states.

» Example: Railway safety systems (signals, points, tracks)

Data variables: growth
» Given n different variables, each may take m values
» Potential number of different state vectors: m”

» Example: model checking software, rather than models

How to handle > 1010 states??
> Avoid certain states systematically

> Treat sets of states simultaneously
» Focus of my lectures:

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 4 / 27

Introduction

Motlvatlon for High-Performance Model Checklng

Solution to State Space Explosion?
» Model checking suffers from the state space explosion,
Therefore it is very and intensive

> Reaching the memory bound is an immediate
But also put a bound on appllcablllty

Will this help in practice? Is this scientifically interesting?

> Is the problem ?

» No: Graph algorithms are not easy to parallelize efficiently,
so clever is necessary.

> only linear improvement for an exponential problem...

» Yes, orthogonal to clever reduction techniques:

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 5 / 27

Introduction M

are

Distributed computing:
» network of workstations, clusters, Grid - cheap
» this allows accumulation of available memory

> limited , high

Parallel computing (shared memory):
» Multi-core, supercomputers - expensive, but price dropping
» 64-bit machines, > 120GB RAM, 8-64 cores: quite popular

> Scalability is imperfect, heterogeneous (so distributed?)

Several alternatives are under investigation:
» Use hard disk as substitute for RAM

» CUDA (), processors, , cloud, map/reduce

In all cases:
UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 6 / 27

Introduction
®0000

Table of Contents

Introduction

m LTSmin tool architecture and PINS interface

Multi-core Reachability

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 7 / 27

Introduction
D0000®000000 fe

Model Checking made Practical and Widespreéd?

Main obstacles Algorithmic solutions

» Scalability (combinatorics: locality)

» parallel components

» data, buffers, ... g model checking

» Modeling effort > model checking
» many languages » bounded model checking
> avoid modeling? > adue e

» Complex tools

» algorithms, heuristics
> low-level details

» symmetry reduction

> model checking

algorithms are often tied to specification languages

» No particular technique suits all applications / models

» A user needs to rewrite his model into different languages

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 8 / 27

Introduction
00800

Solution Direction

Where to draw the line?

» Separate languages and algorithms via a clean (API)
» API should be . allow many different languages
» API should be expose locality structure to algorithms
Input mCRL2 Promela DVE
Language Process algebra SPIN / NIPS—vm (BEEM)
N ~ < - T N -
’ ~ Sl [PEAN e \
PINS = = = fm = = oS Tmas = D ol o o o -
/ -7 i~ ;T s \
B ¥ A~ 4-" "a v T~ " |
?gf‘ﬁs}‘abﬂ“y Distributed Multi—core Symbolic
Generation Reachability Reachability
interface of toolset:

» Frontends provide on-the-fly access to a state space
» Backend algorithms determine the verification strategy

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 9 / 27

Introduction
00080

High-performance Model Checking for the Masses

Specification .
Languages mC}(LZ ‘ ’ Pror;neld ’ D\jE ‘ ’ UPP.:%AL ‘ H X ‘ y ‘ P ‘
I I | I
PINS = = ¥ o e e o ¥ oo 2 oo t1 r(wj| —
l l l bl =] r|w
ope A4 Y Y t p—
Reachability ’ Distributed ’ Multi—core ’ Symbolic 3 w rw
Tools
Advantages of tool and interface (LTSmin / PINS)

» General and flexible: support for

» Also: LLVM, parity games, Markov Automata, C-code, B||CSP
» Indirectly: GSPN, xUML, Signalling Networks in Biology

» On-the-fly API: function to pull the implicit graph

» Efficiency: models expose in a dependency matrix

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 10 / 27

Introduction
0000@

LTSmin architecture and PINS interface

BLoM, VAN DE PoL, WEBER [CAV’10], LAARMAN, VAN DE PoL, WEBER [NFM’11]
http://fmt.cs.utwente.nl/tools/ltsmin/

Specification | gy o Promela DVE (UPPAAL
Languages
1 1 |
PINS = = Yo = = = = - L R A A
I I I
v v v
Pins2pins Transition Variable reordering Partial-order
Wrappers caching Transition grouping reduction
| | |
| | |
PINS === oo S A

Reachability Distributed Multi—core Symbolic

Tools
1 \'_/ 1

|
Analysis Bisimulation @ mu—calculus
Algorithms reduction / lumping

30, 31 October 2014 11 /27

UNIVERSITY OF TWENTE. Multi-core Model Checking

http://fmt.cs.utwente.nl/tools/ltsmin/

Introduction
@00

Table of Contents

Introduction

m Course Overview

Multi-core Reachability

g f‘;"
/4
e

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 12 / 27

re on High-performance Model Checking

High-level Goals

» Investigate high-performance model checking algorithms

» Applications to complex man-made and natural systems

Ingredients

v

Basic multi-core datastructures for Reachability

v

Checking liveness properties — LTL, multi-core Nested DFS

v

Symbolic representation: LTL for Timed Automata

v

Symbolic representation: Multi-core Decision Diagrams

v

Application to Biological Signaling Pathways

v

Application to xUML diagrams for Railway Safety

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014

13 / 27

Introduction

(eYe]]

Signaling Pathways with Timed Automata
Stefano Schivo, Langerak, van de Pol etal. [BIBE’12] [GENE’13] [J-BHI’14]

G-Protein Coupled Receptor Signaling to MAPK/ERK

T AN I

G-Coupled I Receplor Gs-Coupled
Receptor > | Receplor
(» e 4
‘ © i

8 G
> @) SSchady Co
“ Ue'8) ¢ A 0 S Gos.
GBS a8 BT acky N GTP.
2 FarresiinGrKz LS < A /wpg . EN
§ Csrc) Pk .- // (ca™] RGS) =
v @) @ v
: \ N @ami 4D [cAMP]
Recepto Sroi O~ L0
r y N
e, &l W O~ 7y
: -
RasGEF, (Ras, (Ras) (Ras n e
i T G Gap G Sp Eeac @D
A\

D ’;: \/é c_o 2 o
Lo famamen @02 Synthesizing a medicine could
RIS (ErkD (cRaf)" i

/= | . be a reachability problem...

@nk3) Cme p 9
= MEK1/2)—~ MKP-3
€-Tak1) KSR’]
G TH (Enarz §ynapsing
—~ >
(Er1/2p90RSK) ®20RSK) cdc25
PEA-15 : -
nuclee® N o Yo e h—
(P90RSK) (Erk1/2) (Foxo3) @sk12) @APKAPKD)
N ¥
Transcription Tumorigenesis Progression
of Cell Cycle
UNIVERSITY OF TWENTE. Multi-core Model Checking 31 October 2014 14 / 27

Multi-core Reachability
©00000

Table of Contents

Introduction

Multi-core Reachability
m Shared hash table

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 15 / 27

Multi-core Reachability
080000

Which architecture suits Multi-core Model Checking?

ueue
Load balancer

Static partitioning Shared hash table
» Distributed memory solution > (Pseudo) DFS & BFS
» Communication: W? queues » Communication: shared hash table
> (Relaxed) BFS only > Load balancing

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 16 / 27

Multi-core Reachability
008000

Algorithm: parallel reachability

Data: V=10, So=1,5=-=5-1=10

for 0 < id < N do in parallel

while LOADBALANCE(S;4) do

while some work to do and no timeout do

1 state < Siq.GET()

count < 0

check invariants on state

for s € NEXTSTATE(state) do
Increment count

2 if not V. (s) then

L S;d.PUT(S)

| if count = 0 then report deadlock

(1) “Open"” set S influences search order (e.g.: BFS, DFS)
(2) Shared-Memory point
» Locking the hashtable is

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 17 / 27

Multi-core Reachability

[e]ele] Jele]

Lockless Hash Table: Design

ALFONS LAARMAN, VAN DE PoL, WEBER [FMCAD10)]

Main bottlenecks for scalable implementation

> State storage: requires concurrent access (lock contention)
> Graph traversal: random memory access (bandwidth)
» Computer architecture: shared L2 caches (false sharing)

Design: keep it simple

|state|

> Open addressing —

2 >
» Hash memoization: read less data S —_—

<
> Separate hash and data S '

o —_>
» On collision: Walking the Line -
> In-situ locking (1 bit per bucket) —

Buck i ire CAS

»> DBucket operations require
» Not strictly wait-free bucket data

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014

18 / 27

Multi-core Reachability
000080

Algorithm: multi-core FINDORPUT

Input
Output: if seen, otherwise
Data: size, Bucket[size], Datalsize]

1 h + Hash(state); index +— h mod size

2 for i in WalkTheLineFrom(index) do

3 if empty = Bucket[i] then

4 if CompareAndSwap(Bucket([i], empty, (h, write)) then
5 Datali] + state

6 Bucket[i] < (h, done)

7 return false

8 | if (h,?) = Bucket]i] then

9 while (?, write) = Bucket][i] do ... wait ...

10 | if Data[i] = state then return true

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 19 / 27

Multi-core Reachability
000008

Scalability Experiments from 2010 (BEEM database)

SPIN 5.2.4 (NASA/JPL) DiVinE 2.2'(Brno,CZ)

Barnat (2007)

» ‘“our shared hash tables do not
scale beyond 8 cores”

» ‘“could not investigate lockless
hash table solution”

> “haven’t found the cause of the , N—
scalability issues” LTSmin (U Twente, NL)

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 20 / 27

Multi-core Reachability
#000000

Table of Contents

Introduction

Multi-core Reachability
m Parallel state compression
‘ }
o=

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 21 / 27

Intrc Multi-core Reachability

State space compression

Where is the bottleneck for parallel reachability?

> In every step: read and write long state vectors
» Memory: puts an upper limit to the state space

» Time: memory bus becomes the bottleneck for speedup

Exploit locality

v

Due to locality: subsequent state vectors have a lot of overlap

v

The set of state vectors can be greatly compressed

v

Requirement: quick check if a state has been visited

v

(otherwise the specification is a very good compression)

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 22 / 27

Multi-core Reachability
0080000

Recursive indexing (Tree Compression)
Browm, LISSER, VAN DE PorL, WEBER [PDMC’07, JLC’09]

s Tellb T [o]o]
BER ARE 1o
3|5 50441 [2]0]
4]s]efa]1]3 [o]1]
BARANE 11
GIs[sa]1]3 [[2]1]]
ABRA BAE lo]2]
3[alsfls[6]3 12
SBEI\IRE| [2]2]

—

HK (K—l)XH2

Analysis

> Locality = balanced tree (N +2vV/N +4¢/(N)--- = N)

» Hard to parallelize:

» Sequential operation on tree of tables
» Many small (variable size) hash tables
UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 23 / 27

Multi-core Reachability
0008000

Parallel Tree Compression
LAARMAN, VAN DE PoL, WEBER [SPIN11], LAARMAN, VAN DER VEGT [MEMICS’11]

Solution
> : merge tree of tables into one
> : use the Dependency Matrix

» (K —1) — logy(K — 1) lookups

21 (3,5,5,4,1,3) — (3,5,9,4,1,3)

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 24 / 27

Multi-core Reachability
0000800

Exploiting locality once more

» Incremental tree insertions:
» Traverse only the changing paths in the Tree of Tables

» Incremental hashing, based on Albert L. Zobrist (1969):

a b c de f g h a b cde f gh
sEH b WsHHE s sER bW S s
"AAAA AA17 "AAAA A4 47
6 6 6 6
5 F 3 sﬂ, 5 Fy 5
4 1% 4 4 4
3 3 3 2) 3
2 AN AR 5y 2 2 'y N2
5[] elp2] o KN) puiy 1 : ;1

a b cde f gh ab c d e l g h

Hy (Hx®zé,g,1)®zg,f,3= H,

» Even further compression:

» J.G. Cleary (1984): infer part of hash value from its address
» Vegt/Laarman (2012): Parallel Compact Hash Table

UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014 25 / 27

Multi-core Reachability

[ee]elele] Je}

Compression Experiments from 2011 [BEEM database]

LAARMAN, VAN DE PoL, WEBER [SPIN11]

25
X Tree compression
===-Hash Table
» Tree compression is a recursive % e o omression

= COLLAPSE compression

.
7}

variant of SPIN’s CoLLAPsE ('97)

compression factor (1/%)

i . i 10 *
» Exploit combinatorial structure: U
. . . 5 I
» State vectors are highly similar :
» Impressive compression ratios 0
0 50 100 150 200 250 300
state length (byte)
; . . 6000 T T T T
> Extreme case: firewire tree | Crsmihme Thole '
5000 ~ LTsmg\Tﬁg rzeg : N
Uncompressed: 14 GB il SPIN Collapse 2 |
. ~ \ imal (linear dup) —e—
Tree Compression: 96 MB Bo e speesR |
» Compression comes for free 200 SR
. 1000 o E
» Arithmetic intensity increases e

» Less memory-bus traffic T2 4 6 & 10 12 1

4 6 8 10 12 14 16
#cores

UNIVERSITY OF TWENTE. Multi-core Model Checking

30, 31 October 2014 26 / 27

| Multi-core Reachability

Literature on LTSmin (reachability)

E)gLTSmin toolset
=

» Stefan Blom, Jaco van de Pol, Michael Weber,

/L, (CAV 2010)

#

» Alfons Laarman, Jaco van de Pol, Michael Weber,
....(NFM 2011)

Reachability and State Compression

‘ > Alfons Laarman, Jaco van de Pol and Michael Weber, ... (FMCAD 2010)

- » Alfons Laarman, Jaco van de Pol, Michael Weber,
T Parallel Recursive State Compression for Free (SPIN 2011)
- | > Steven van der Vegt, Alfons Laarman,
A Parallel Compact Hash Table (MEMICS 2011)
X
‘P
UNIVERSITY OF TWENTE. Multi-core Model Checking 30, 31 October 2014

27 / 27

http://fmt.cs.utwente.nl/tools/ltsmin/

	Introduction
	The case for high-performance model checking
	LTSmin tool architecture and PINS interface
	Course Overview

	Multi-core Reachability
	Shared hash table
	Parallel state compression

