
Model Checking of Fault-Tolerant Distributed Algorithms

Part IV: Parameterized Model Checking of Fault-tolerant Distributed
Algorithms by Abstraction

Annu Gmeiner Igor Konnov Ulrich Schmid

Helmut Veith Josef Widder

VTSA 2014, Luxembourg

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 1 / 38

Fault-tolerant DAs: Model Checking Challenges

unbounded data types

counting how many messages have been received

parameterization in multiple parameters

among n processes f ≤ t are faulty with n > 3t

contrast to concurrent programs

fault tolerance against adverse environments

degrees of concurrency

many degrees of partial synchrony

continuous time

fault-tolerant clock synchronization

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 2 / 38

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:

given a distributed algorithm and spec. ϕ

show for all n, t, and f satisfying n > 3t ∧ t ≥ f ≥ 0
M(n, t, f) |= ϕ

every M(n, t, f) is a system of n − f correct processes

n

?
?

?
t

n

?
?

?
t f

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3 / 38

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:

given a distributed algorithm and spec. ϕ

show for all n, t, and f satisfying resilience condition
M(n, t, f) |= ϕ

every M(n, t, f) is a system of N(n, f) correct processes

n

?
?

?
t

n

?
?

?
t f

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3 / 38

Properties in Linear Temporal Logic

Unforgeability (U). If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
((n−f∧

i=1

vi = 0
)
→ G

(n−f∧
j=1

acceptj = 0
))

Safety

Completeness (C). If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
((n−f∧

i=1

vi = 1
)
→ F

(n−f∨
j=1

acceptj = 1
))

Liveness

Relay (R). If a correct process i sets accepti to 1, then eventually all correct
processes j set acceptj to 1.

G
((n−f∨

i=1

accepti = 1
)
→ F

(n−f∧
j=1

acceptj = 1
))

Liveness

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 38

Properties in Linear Temporal Logic

Unforgeability (U). If vi = 0 for all correct processes i , then for all correct
processes j , acceptj remains 0 forever.

G
((n−f∧

i=1

vi = 0
)
→ G

(n−f∧
j=1

acceptj = 0
))

Safety

Completeness (C). If vi = 1 for all correct processes i , then there is a correct
process j that eventually sets acceptj to 1.

G
((n−f∧

i=1

vi = 1
)
→ F

(n−f∨
j=1

acceptj = 1
))

Liveness

Relay (R). If a correct process i sets accepti to 1, then eventually all correct
processes j set acceptj to 1.

G
((n−f∨

i=1

accepti = 1
)
→ F

(n−f∧
j=1

acceptj = 1
))

Liveness

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 38

Threshold-guarded
fault-tolerant

distributed algorithms

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 5 / 38

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 / 38

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 / 38

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

Existential Guard
if received m from some process then ...

Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur?

Fault-Tolerant Algorithms: n processes, at most t are Byzantine

Threshold Guard
if received m from n − t processes then ...

(the processes cannot refer to f!)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 / 38

Control Flow Automata
Variables of process i
vi : {0 , 1} in i t with 0 or 1
accepti : {0 , 1} in i t with 0

An indivisible step:
i f vi = 1
then send (echo) to all ;

i f r e c e i v ed (echo) from at l e a s t
t + 1 distinct p r o c e s s e s
and not sent (echo) be f o r e

then send (echo) to all ;

i f received (echo) from at l e a s t
n - t distinct p r o c e s s e s

then accepti := 1 ;

n − f copies of the process

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 7 / 38

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 / 38

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 / 38

Counting argument in threshold-guarded algorithms

n

t f

if received m from t + 1 processes then ...

t + 1

at least one non-faulty sent the message

Correct processes count distinct incoming messages

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 / 38

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

concrete values are not important

thresholds are essential:
0, 1, t + 1, n − t

intervals with symbolic boundaries:

I0 = [0, 1)
I1 = [1, t + 1)
It+1 = [t + 1, n − t)
In−t = [n − t,∞)

Parameteric Interval Abstraction (PIA)

Similar to interval abstraction:
[t + 1, n − t) rather than [4, 10).

Total order: 0 < 1 < t + 1 < n − t for
all parameters satisfying RC:
n > 3t, t ≥ f ≥ 0.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 / 38

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

concrete values are not important

thresholds are essential:
0, 1, t + 1, n − t
intervals with symbolic boundaries:

I0 = [0, 1)
I1 = [1, t + 1)
It+1 = [t + 1, n − t)
In−t = [n − t,∞)

Parameteric Interval Abstraction (PIA)

Similar to interval abstraction:
[t + 1, n − t) rather than [4, 10).

Total order: 0 < 1 < t + 1 < n − t for
all parameters satisfying RC:
n > 3t, t ≥ f ≥ 0.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 / 38

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

concrete values are not important

thresholds are essential:
0, 1, t + 1, n − t
intervals with symbolic boundaries:

I0 = [0, 1)
I1 = [1, t + 1)
It+1 = [t + 1, n − t)
In−t = [n − t,∞)

Parameteric Interval Abstraction (PIA)

Similar to interval abstraction:
[t + 1, n − t) rather than [4, 10).

Total order: 0 < 1 < t + 1 < n − t for
all parameters satisfying RC:
n > 3t, t ≥ f ≥ 0.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 / 38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

1 the process code is parameterized

2 the number of processes is parameterized

to one finite state model checking instance

We do that by:

1 PIA data abstraction

2 PIA counter abstraction

abstraction is an over approximation ⇒ possible abstract behavior that
does not correspond to a concrete behavior.

3 Refining spurious counter-examples

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

1 the process code is parameterized

2 the number of processes is parameterized

to one finite state model checking instance

We do that by:

1 PIA data abstraction

2 PIA counter abstraction

abstraction is an over approximation ⇒ possible abstract behavior that
does not correspond to a concrete behavior.

3 Refining spurious counter-examples

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

1 the process code is parameterized

2 the number of processes is parameterized

to one finite state model checking instance

We do that by:

1 PIA data abstraction

2 PIA counter abstraction

abstraction is an over approximation ⇒ possible abstract behavior that
does not correspond to a concrete behavior.

3 Refining spurious counter-examples

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Abstraction overview

Parameterized family{
M(n, t, f) = P(n, t, f) ‖ · · · ‖ P(n, t, f)︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0} extract

Parametric Interval Domain D̂
parametric interval
data abstraction

Uniform parameterized family{
M̂(n, t, f) = P̂ ‖ · · · ‖ P̂︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0}
P̂ does not depend on n, t, f

P̂ simulates P(n, t, f)
change representation

Counter representation

parametric interval
counter abstraction

one abstract system A that
simulates for every n, t, f
the behavior of M(n, t, f)

finite-state model checking

replay the counter-example

refine the system

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 11 / 38

Abstraction overview

Parameterized family{
M(n, t, f) = P(n, t, f) ‖ · · · ‖ P(n, t, f)︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0} extract

Parametric Interval Domain D̂
parametric interval
data abstraction

Uniform parameterized family{
M̂(n, t, f) = P̂ ‖ · · · ‖ P̂︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0}
P̂ does not depend on n, t, f

P̂ simulates P(n, t, f)
change representation

Counter representation

parametric interval
counter abstraction

one abstract system A that
simulates for every n, t, f
the behavior of M(n, t, f)

finite-state model checking

replay the counter-example

refine the system

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 11 / 38

Data abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 12 / 38

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

concrete values are not important

thresholds are essential:
0, 1, t + 1, n − t
intervals with symbolic boundaries:

I0 = [0, 1)
I1 = [1, t + 1)
It+1 = [t + 1, n − t)
In−t = [n − t,∞)

Parameteric Interval Abstraction (PIA)

Similar to interval abstraction:
[t + 1, n − t) rather than [4, 10).

Total order: 0 < 1 < t + 1 < n − t for
all parameters satisfying RC:
n > 3t, t ≥ f ≥ 0.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 13 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x

is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−t

It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .

Concrete x ′ = x + 1, is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1 It+1 In−t

It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1,

is abstracted as:
x = I0 ∧ x ′ = I1 . . .
∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1 . . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .
∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1) . . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .
∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t) . . .

∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

I0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t)

. . .

∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

Concrete:

Abstract:

0 1 t + 1 n − t above

· · ·

I0 I1

It+1 In−tIt+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−tI0 I1 It+1 In−t

Concrete t + 1 ≤ x is abstracted as x = It+1 ∨ x = In−t .
Concrete x ′ = x + 1, is abstracted as:

x = I0 ∧ x ′ = I1

. . .

∨x = I1 ∧ (x ′ = I1 ∨ x ′ = It+1)

. . .

∨x = It+1 ∧ (x ′ = It+1 ∨ x ′ = In−t)

. . .

∨x = In−t ∧ x ′ = In−t

abstract increase may keep the same value!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract CFA

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

[
nrcvd = I0 ∧ nsnt = I0 ∧ (nrcvd ′ = I0 ∨ nrcvd ′ = I1)

]
∨ . . .

¬(t + 1 ≤ nrcvd)

nrcvd = It+1 ∨ nrcvd = In−t

sv = V0

¬(sv = V0)

[
nsnt = I1 ∧ (nsnt ′ = I1 ∨ nsnt ′ = It+1)

]
∨ . . .

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 15 / 38

Abstract CFA

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

[
nrcvd = I0 ∧ nsnt = I0 ∧ (nrcvd ′ = I0 ∨ nrcvd ′ = I1)

]
∨ . . .

¬(t + 1 ≤ nrcvd)

nrcvd = It+1 ∨ nrcvd = In−t

sv = V0

¬(sv = V0)

[
nsnt = I1 ∧ (nsnt ′ = I1 ∨ nsnt ′ = It+1)

]
∨ . . .

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 15 / 38

Abstraction overview

Parameterized family{
M(n, t, f) = P(n, t, f) ‖ · · · ‖ P(n, t, f)︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0} extract

Parametric Interval Domain D̂
parametric interval
data abstraction

Uniform parameterized family{
M̂(n, t, f) = P̂ ‖ · · · ‖ P̂︸ ︷︷ ︸

N(n,t,f) processes

: n > 3t, t ≥ f , f ≥ 0}
P̂ does not depend on n, t, f

P̂ simulates P(n, t, f)
change representation

Counter representation

parametric interval
counter abstraction

one abstract system A that
simulates for every n, t, f
the behavior of M(n, t, f)

finite-state model checking

replay the counter-example

refine the system

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 16 / 38

Counter abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 17 / 38

Classic (0, 1,∞)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1,∞)-counter abstraction:

finitely many local states,
e.g., {N,T ,C}.

based on counter representation:
for each local states count how many processes are in it

abstract the number of processes in every state,
e.g., K : C 7→ 0, T 7→ 1, N 7→ “many”.

perfectly reflects mutual exclusion properties
e.g., G (K (C) = 0 ∨ K (C) = 1).

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 18 / 38

Classic (0, 1,∞)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1,∞)-counter abstraction:

finitely many local states,
e.g., {N,T ,C}.

based on counter representation:
for each local states count how many processes are in it

abstract the number of processes in every state,
e.g., K : C 7→ 0, T 7→ 1, N 7→ “many”.

perfectly reflects mutual exclusion properties
e.g., G (K (C) = 0 ∨ K (C) = 1).

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 18 / 38

Limits of (0, 1,∞)-counter abstraction

Our parametric data + counter abstraction:

we require finer counting of processes:

t + 1 processes in a specific state can force global progress,
t processes cannot

mapping t, t + 1, and n − t to “many” is too coarse.

starting point of our approach...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 19 / 38

Limits of (0, 1,∞)-counter abstraction

Our parametric data + counter abstraction:

we require finer counting of processes:

t + 1 processes in a specific state can force global progress,
t processes cannot

mapping t, t + 1, and n − t to “many” is too coarse.

starting point of our approach...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 19 / 38

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

when all correct processes accepted,
all non-zero counters are in this area

Local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and 0 ≤ rcvd ≤ n

A local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and nrcvd ∈ {I0, I1, It+1, In−t}

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

when all correct processes accepted,
all non-zero counters are in this area

Local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and 0 ≤ rcvd ≤ n

A local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and nrcvd ∈ {I0, I1, It+1, In−t}

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)

nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

when all correct processes accepted,
all non-zero counters are in this area

Local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and 0 ≤ rcvd ≤ n

A local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and nrcvd ∈ {I0, I1, It+1, In−t}

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)
nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

when all correct processes accepted,
all non-zero counters are in this area

Local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and 0 ≤ rcvd ≤ n

A local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and nrcvd ∈ {I0, I1, It+1, In−t}

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals

n = 6, t = 1, f = 1

t + 1 = 2, n − t = 5

���
���XXXXXXn = 6, �����

�XXXXXXt = 1, �����
�XXXXXXf = 1

n > 3 · t ∧ t ≥ f

Parametric intervals:

I0 = [0, 1) I1 = [1, t + 1)

It+1 = [t + 1, n − t)

In−t = [n − t,∞)
nr. processes (counters)

received received

sent accepted

•
0

•
0

•
1

•
1

•
2

•
2

•
3

•
3

•
4

•
4

•
5

•
5

•
6

•
6

• • • •
I0 I1 It+1 In−t

• • • •
I0 I1 It+1 In−t

•0
•1
•2
•3
•4
•5
•6
•

•
•
•

•

I0

I1

It+1

In−t

when all correct processes accepted,
all non-zero counters are in this area

Local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and 0 ≤ rcvd ≤ n

A local state is (sv , nrcvd),
where sv ∈ {sent, accepted} and nrcvd ∈ {I0, I1, It+1, In−t}

3 processes at (sent, received=3)

1 process at (accepted, received=5)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Abstraction refinement

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 21 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

⇒ specs that hold in concrete system may be violated in abstract system

spurious counterexamples

we have to reduce the behaviors of the abstract system
make it more concrete

. . . based on the counterexamples = CEGAR

Three sources of spurious behavior

processes decreasing or increasing

messages sent 6= # processes which have sent a message

unfair loops

. . . and a new abstraction phenomenon

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

⇒ specs that hold in concrete system may be violated in abstract system

spurious counterexamples

we have to reduce the behaviors of the abstract system
make it more concrete

. . . based on the counterexamples = CEGAR

Three sources of spurious behavior

processes decreasing or increasing

messages sent 6= # processes which have sent a message

unfair loops

. . . and a new abstraction phenomenon

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

⇒ specs that hold in concrete system may be violated in abstract system

spurious counterexamples

we have to reduce the behaviors of the abstract system
make it more concrete

. . . based on the counterexamples = CEGAR

Three sources of spurious behavior

processes decreasing or increasing

messages sent 6= # processes which have sent a message

unfair loops

. . . and a new abstraction phenomenon

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

⇒ specs that hold in concrete system may be violated in abstract system

spurious counterexamples

we have to reduce the behaviors of the abstract system
make it more concrete

. . . based on the counterexamples = CEGAR

Three sources of spurious behavior

processes decreasing or increasing

messages sent 6= # processes which have sent a message

unfair loops

. . . and a new abstraction phenomenon

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Parametric abst. refinement — uniformly spurious paths

Classic case:

Concrete

Abstr
act

Our case:

Concrete

n2,
t2,

f2

Concrete

n1,
t1,

f1

Abstr
act

··
·

··
·

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 23 / 38

Parametric abst. refinement — uniformly spurious paths

Classic case:

Concrete

Abstr
act

Our case:

Concrete

n2,
t2,

f2

Concrete

n1,
t1,

f1

Abstr
act

··
·

··
·

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 23 / 38

CEGAR — automated workflow

Model Checking

correct

Abstraction refinement
using SMT

counterexample

CE feasible: bug

CE spurious:
refined abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Model Checking
correct

Abstraction refinement
using SMT

counterexample

CE feasible: bug

CE spurious:
refined abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Model Checking
correct

Abstraction refinement
using SMT

counterexample

CE feasible: bug

CE spurious:
refined abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Model Checking
correct

Abstraction refinement
using SMT

counterexample

CE feasible: bug

CE spurious:
refined abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Model Checking
correct

Abstraction refinement
using SMT

counterexample

CE feasible: bug

CE spurious:
refined abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

What is SMT?

recall SAT:

given a Boolean formula, e.g., (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d ∨ e)

is there an assignment of true and false to variables a, b, c , d , e
such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT) :

here just linear arithmetics

given a formula, e.g.,

x = y ∧ y = z ∧ u 6= x ∧ (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3

is there an assignment of values to u, x , y , z such that formula
evaluates to true?

practically efficient tools: Yices, Z3

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 25 / 38

What is SMT?

recall SAT:

given a Boolean formula, e.g., (¬a ∨ ¬b ∨ c) ∧ (¬a ∨ b ∨ d ∨ e)

is there an assignment of true and false to variables a, b, c , d , e
such that the formula evaluates to true?

Satisfiability Modulo Theories (SMT) :

here just linear arithmetics

given a formula, e.g.,

x = y ∧ y = z ∧ u 6= x ∧ (x + y ≤ 1 ∧ 2x + y = 1) ∨ 3x + 2y ≥ 3

is there an assignment of values to u, x , y , z such that formula
evaluates to true?

practically efficient tools: Yices, Z3

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 25 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv , ˆnrcvd)
with sv ∈ {v0, v1, sent, accepted} and ˆrcvd ∈ {I0, I1, It+1, In−t}}

An abstract global state is (k̂ , ˆnsnt),
where ˆnsnt ∈ {I0, I1, It+1, In−t} and k̂ : L→ {I0, I1, It+1, In−t}

Consider an abstract trace:

ˆnsnt1 = I0

k̂1(`) =

In−t , if ` = (v1, I0)

I0, otherwise

ˆnsnt2 = I1

k̂2(`) =

In−t , if ` = (v1, I0)

I1, if ` = (sent, I0)

I0, otherwise

ˆnsnt3 = It+1

k̂3(`) =

In−t , if ` = (v1, I0)

It+1, if ` = (sent, I0)

I0, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n > 3t ∧ t ≥ f ∧ f ≥ 0

zero counters (i 6= 4 ∧ i 6= 8)→ 0 ≤ k3[i] < 1

non-zero counters n − t ≤ k3[4] ∧ t + 1 ≤ k3[8] < n − t

system size n − f = k3[0] + k3[1] + · · ·+ k3[15]

UNSAT

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv , ˆnrcvd)
with sv ∈ {v0, v1, sent, accepted} and ˆrcvd ∈ {I0, I1, It+1, In−t}}

An abstract global state is (k̂ , ˆnsnt),
where ˆnsnt ∈ {I0, I1, It+1, In−t} and k̂ : L→ {I0, I1, It+1, In−t}

Consider an abstract trace:

ˆnsnt1 = I0

k̂1(`) =

In−t , if ` = (v1, I0)

I0, otherwise

ˆnsnt2 = I1

k̂2(`) =

In−t , if ` = (v1, I0)

I1, if ` = (sent, I0)

I0, otherwise

ˆnsnt3 = It+1

k̂3(`) =

In−t , if ` = (v1, I0)

It+1, if ` = (sent, I0)

I0, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n > 3t ∧ t ≥ f ∧ f ≥ 0

zero counters (i 6= 4 ∧ i 6= 8)→ 0 ≤ k3[i] < 1

non-zero counters n − t ≤ k3[4] ∧ t + 1 ≤ k3[8] < n − t

system size n − f = k3[0] + k3[1] + · · ·+ k3[15]

UNSAT

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv , ˆnrcvd)
with sv ∈ {v0, v1, sent, accepted} and ˆrcvd ∈ {I0, I1, It+1, In−t}}

An abstract global state is (k̂ , ˆnsnt),
where ˆnsnt ∈ {I0, I1, It+1, In−t} and k̂ : L→ {I0, I1, It+1, In−t}

Consider an abstract trace:

ˆnsnt1 = I0

k̂1(`) =

In−t , if ` = (v1, I0)

I0, otherwise

ˆnsnt2 = I1

k̂2(`) =

In−t , if ` = (v1, I0)

I1, if ` = (sent, I0)

I0, otherwise

ˆnsnt3 = It+1

k̂3(`) =

In−t , if ` = (v1, I0)

It+1, if ` = (sent, I0)

I0, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n > 3t ∧ t ≥ f ∧ f ≥ 0

zero counters (i 6= 4 ∧ i 6= 8)→ 0 ≤ k3[i] < 1

non-zero counters n − t ≤ k3[4] ∧ t + 1 ≤ k3[8] < n − t

system size n − f = k3[0] + k3[1] + · · ·+ k3[15]

UNSAT

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Remove transitions

We ask the SMT solver:

is there a satisfiable assignment for T?

if yes,

then the state is OK, may be part of a real counterexample

if not, then the state is spurious

remove transitions to that state in the abstract system

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 27 / 38

Liveness

distributed algorithm requires reliable communication

every message sent is eventually received

¬in transit ≡ [∀i . nrcvd i ≥ nsnt]

fairness F G¬in transit necessary to verify liveness,

e.g.,
(

F G¬in transit →
(
G ([∀i . svi = v1]→ F [∀i . svi = accept])

))

counter example (lasso):

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

s1 ¬in transit

s2

sk

s3

· · ·

· · ·

· · ·

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 28 / 38

Liveness

distributed algorithm requires reliable communication

every message sent is eventually received

¬in transit ≡ [∀i . nrcvd i ≥ nsnt]

fairness F G¬in transit necessary to verify liveness,

e.g.,
(

F G¬in transit →
(
G ([∀i . svi = v1]→ F [∀i . svi = accept])

))

counter example (lasso):

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

s1 ¬in transit

s2

sk

s3

· · ·

· · ·

· · ·

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 28 / 38

Liveness — fairness suppression

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

s1 ¬in transit

s2

sk

s3

· · ·

· · ·

· · ·

if there is a spurious sj (all its concretizations violate ¬in transit),

then the loop is spurious.

refine fairness to F G¬in transit ∧ G F

(
∧

1≤j≤k
“out of s ′′j

)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38

Liveness — fairness suppression

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

s1 ¬in transit

s2

sk

s3

· · ·

· · ·

· · ·

if there is a spurious sj (all its concretizations violate ¬in transit),

then the loop is spurious.

refine fairness to F G¬in transit ∧ G F

(
∧

1≤j≤k
“out of s ′′j

)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38

Liveness — fairness suppression

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

¬in transit

s1 ¬in transit

s2

sk

s3

· · ·

· · ·

· · ·

if there is a spurious sj (all its concretizations violate ¬in transit),

then the loop is spurious.

refine fairness to F G¬in transit ∧ G F

(
∧

1≤j≤k
“out of s ′′j

)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38

experimental evaluation

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 30 / 38

Concrete vs. parameterized (Byzantine case)

Time to check relay (sec, logscale) Memory to check relay (MB, logscale)

Parameterized model checking performs well (the red line).

Experiments for fixed parameters quickly degrade
(n = 9 runs out of memory).

We found counter-examples for the cases n = 3t and f > t,
where the resilience condition is violated.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 31 / 38

Experimental results at a glance

Algorithm Fault Resilience Property Valid? #Refinements Time

ST87 Byz n > 3t U 3 0 4 sec.
ST87 Byz n > 3t C 3 10 32 sec.
ST87 Byz n > 3t R 3 10 24 sec.

ST87 Symm n > 2t U 3 0 1 sec.
ST87 Symm n > 2t C 3 2 3 sec.
ST87 Symm n > 2t R 3 12 16 sec.

ST87 Omit n > 2t U 3 0 1 sec.
ST87 Omit n > 2t C 3 5 6 sec.
ST87 Omit n > 2t R 3 5 10 sec.

ST87 Clean n > t U 3 0 2 sec.
ST87 Clean n > t C 3 4 8 sec.
ST87 Clean n > t R 3 13 31 sec.

CT96 Clean n > t U 3 0 1 sec.
CT96 Clean n > t A 3 0 1 sec.
CT96 Clean n > t R 3 0 1 sec.
CT96 Clean n > t C 7 0 1 sec.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 32 / 38

When resilience condition is wrong...

Algorithm Fault Resilience Property Valid? #Refinements Time

ST87 Byz n > 3t ∧ f ≤ t+1 U 7 9 56 sec.
ST87 Byz n > 3t ∧ f ≤ t+1 C 7 11 52 sec.
ST87 Byz n > 3t ∧ f ≤ t+1 R 7 10 17 sec.

ST87 Byz n ≥ 3t ∧ f ≤ t U 3 0 5 sec.
ST87 Byz n ≥ 3t ∧ f ≤ t C 3 9 32 sec.
ST87 Byz n ≥ 3t ∧ f ≤ t R 7 30 78 sec.

ST87 Symm n > 2t ∧ f ≤ t+1 U 7 0 2 sec.
ST87 Symm n > 2t ∧ f ≤ t+1 C 7 2 4 sec.
ST87 Symm n > 2t ∧ f ≤ t+1 R 3 8 12 sec.

ST87 Omit n ≥ 2t ∧ f ≤ t U 3 0 1 sec.
ST87 Omit n ≥ 2t ∧ f ≤ t C 7 0 2 sec.
ST87 Omit n ≥ 2t ∧ f ≤ t R 7 0 2 sec.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 33 / 38

Summary of results

Abstraction tailored for distributed algorithms

threshold-based
fault-tolerant
allows to express different fault assumptions

Verification of threshold-based fault-tolerant algorithms

with threshold guards that are widely used
Byzantine faults (and other)
for all system sizes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 34 / 38

Related work: non-parameterized

Model checking of the small size instances:

clock synchronization [Steiner, Rushby, Sorea, Pfeifer 2004]

consensus [Tsuchiya, Schiper 2011]

asynchronous agreement, folklore broadcast, condition-based
consensus [John, Konnov, Schmid, Veith, Widder 2013]

and more...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 35 / 38

Related work: parameterized case

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

“First-shot” theoretical framework.

No guards like x ≥ t + 1, only x ≥ 1.

No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

Implementation.

Experiments on Chandra-Toueg 1990.

No resilience conditions like n > 3t.

Safety only.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 36 / 38

Related work: parameterized case

Regular model checking of fault-tolerant distributed protocols:

[Fisman, Kupferman, Lustig 2008]

“First-shot” theoretical framework.

No guards like x ≥ t + 1, only x ≥ 1.

No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

Implementation.

Experiments on Chandra-Toueg 1990.

No resilience conditions like n > 3t.

Safety only.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 36 / 38

Our current work

Discrete

synchronous

Discrete
partially

synchronous

Discrete

asynchronous

Continuous

synchronous

Continuous
partially

synchronous

One instance/

finite payload

Many inst./

finite payload

Many inst./
unbounded

payload

Messages with

reals

core of {ST87,

BT87, CT96},

MA06 (common),

MR04 (binary)

one-shot broadcast, c.b.consensus

DHM12

ST87

AK00

CT96

(failure detector)

DLS86, MA06,

L98 (Paxos)

ST87, BT87,

CT96, DAs with

failure-detectors

DLPSW86

DFLPS13

WS07

ST87 (JACM)

FSFK06

WS09

clock sync

broadcast

approx. agreement

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 37 / 38

Future work: threshold guards + orthogonal features

Discrete

synchronous

Discrete
partially

synchronous

Discrete

asynchronous

Continuous

synchronous

Continuous
partially

synchronous

One instance/

finite payload

Many inst./

finite payload

Many inst./
unbounded

payload

Messages with

reals

core of {ST87,

BT87, CT96},

MA06 (common),

MR04 (binary)

one-shot broadcast, c.b.consensus

DHM12

ST87

AK00

CT96

(failure detector)

DLS86, MA06,

L98 (Paxos)

ST87, BT87,

CT96, DAs with

failure-detectors

DLPSW86

DFLPS13

WS07

ST87 (JACM)

FSFK06

WS09

clock sync

broadcast

approx. agreement

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 37 / 38

Thank you!

[
http://forsyte.at/software/bymc

]

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 38 / 38

the implementation

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 39 / 38

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 40 / 38

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 40 / 38

Tool Chain: ByMC

Parametric Promela code static analysis + Yices

Parametric Interval Domain D̂
Parametric data abstraction

with Yices

Parametric Promela code

Parametric counter ab-
straction with Yices

normal
Promela code

Spin

property holds

counterexample

Refine

Concrete counter
representation (VASS)

SMT formula

Yices

counterexample feasible

invariant candidates (by the user)

unsat
sat

Figure: The abstraction scheme

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 40 / 38

Experimental setup

The tool (source code in OCaml),

the code of the distributed algorithms in Parametric Promela,

and a virtual machine with full setup

are available at: http://forsyte.at/software/bymc

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 41 / 38

Running the tool — concrete case

user specifies parameter value

useful to check whether the code behaves as expected

$bymc/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay

model checking problem in directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1”

in concrete.prm

parameters are replaced by numbers
process prototype is replaced with N − F = 3 active processes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 42 / 38

Running the tool — parameterized model checking

PIA data and counter abstraction

finite-state model checking on abstract model

$bymc/verifypa-spin bcast-omit.pml relay

model checking problem in directory
“./x/bcast-byz-relay-yymmdd-HHMM.*”

directory contains

abs-interval.prm: result of the data abstraction;
abs-counter.prm: result of the counter abstraction;
abs-vass.prm: auxiliary abstraction for abstraction refinement;
mc.out: the last output by Spin;
cex.trace: the counterexample (if there is one);
yices.log: communication log with Yices.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 43 / 38

Fairness, Refinement, and Invariants

In the Byzantine case we have in transit : ∀i . (nrcvd i ≥ nsnt) and
G F¬in transit.

In this case communication fairness implies computation fairness.

But in the abstract version nsnt can deviate from the number of
processes who sent the echo message.

In this case the user formulates a simple state invariant candidate,
e.g., nsnt = K ([sv = SE ∨ sv = AC]) (on the level of the original
concrete system).

The tool checks automatically, whether the candidate is actually a
state invariant.

After the abstraction the abstract version of the invariant restricts the
behavior of the abstract transition system.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 44 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness

counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness

counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

Parametric abstraction refinement — justice suppression

justice G F¬in transit necessary to verify liveness
counter example:

in transit

in transit

in transit

in transit

in transit

in transit

in transit

s1 in transit

s2

sk

s3

· · ·

· · ·

· · ·

if ∀j all concretizations of sj violate ¬in transit, then CE is spurious.

refine justice to G F¬in transit ∧ G F

(
∨

1≤j≤k
¬at(sj)

)

. . . we use unsat cores to refine several loops at once
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
it solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} in i t with 0 or 1
accepti : {0 , 1} in i t with 0

An indivisible step:
i f vi = 1
then send (echo) to all ;

i f r e c e i v ed (echo) from at l e a s t
t + 1 distinct p r o c e s s e s
and not sent (echo) be f o r e

then send (echo) to all ;

i f received (echo) from at l e a s t
n - t distinct p r o c e s s e s

then accepti := 1 ;

asynchronous

t byzantine faults

correct if n > 3t
resilience condition rc

parameterized process
skeleton p(n, t)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 47 / 38

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
it solves an agreement problem depending on the inputs vi .

Variables of process i
vi : {0 , 1} in i t with 0 or 1
accepti : {0 , 1} in i t with 0

An indivisible step:
i f vi = 1
then send (echo) to all ;

i f r e c e i v ed (echo) from at l e a s t
t + 1 distinct p r o c e s s e s
and not sent (echo) be f o r e

then send (echo) to all ;

i f received (echo) from at l e a s t
n - t distinct p r o c e s s e s

then accepti := 1 ;

asynchronous

t byzantine faults

correct if n > 3t
resilience condition rc

parameterized process
skeleton p(n, t)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 47 / 38

Abstract CFA

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

[
nrcvd = I0 ∧ nsnt = I0 ∧ (nrcvd ′ = I0 ∨ nrcvd ′ = I1)

]
∨ . . .

¬(t + 1 ≤ nrcvd)

nrcvd = It+1 ∨ nrcvd = In−t

sv = V0

¬(sv = V0)

[
nsnt = I1 ∧ (nsnt ′ = I1 ∨ nsnt ′ = It+1)

]
∨ . . .

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 48 / 38

Abstract CFA

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

nrcvd := z where (nrcvd ≤ z ∧ z ≤ nsnt + f)

¬(t + 1 ≤ nrcvd)

t + 1 ≤ nrcvd

sv = V0

¬(sv = V0)

inc nsnt

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC

qI

q0

q1

q2

q3

sv = V1

¬(sv = V1) inc nsnt

sv := SE

q4

q5

q6

q7

q8
qF

[
nrcvd = I0 ∧ nsnt = I0 ∧ (nrcvd ′ = I0 ∨ nrcvd ′ = I1)

]
∨ . . .

¬(t + 1 ≤ nrcvd)

nrcvd = It+1 ∨ nrcvd = In−t

sv = V0

¬(sv = V0)

[
nsnt = I1 ∧ (nsnt ′ = I1 ∨ nsnt ′ = It+1)

]
∨ . . .

n − t ≤ nrcvd

¬(n − t ≤ nrcvd)

sv := SE

sv := AC
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 48 / 38

