Model Checking of Fault-Tolerant Distributed Algorithms

Part IV: Parameterized Model Checking of Fault-tolerant Distributed
Algorithms by Abstraction

Annu Gmeiner Igor Konnov Ulrich Schmid
Helmut Veith Josef Widder

M n for(syte! R'SE
e g Rigorous Systems Engineering

VTSA 2014, Luxembourg

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 1/38

Fault-tolerant DAs: Model Checking Challenges

@ unbounded data types
counting how many messages have been received

@ parameterization in multiple parameters
among n processes f < t are faulty with n > 3t

@ contrast to concurrent programs
fault tolerance against adverse environments

@ degrees of concurrency

many degrees of partial synchrony

@ continuous time
fault-tolerant clock synchronization

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 2 /38

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:
@ given a distributed algorithm and spec. ¢

@ show for all n, t, and f satisfying n >3t At >f >0
M(n,t,f) = ¢
@ every M(n,t,f) is a system of n — f correct processes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3 /38

Model checking problem for fault-tolerant DA algorithms

Parameterized model checking problem:
@ given a distributed algorithm and spec. ¢
@ show for all n, t, and f satisfying resilience condition
M(n,t,f) = ¢
@ every M(n,t,f) is a system of N(n,f) correct processes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3/38

Properties in Linear Temporal Logic

Unforgeability (U). If v; = 0 for all correct processes i, then for all correct
processes j, accept; remains O forever.
n—f

G ((Z\:r Vi = O) — G (j/:\1 accept; = 0))

Completeness (C). If v; =1 for all correct processes i, then there is a correct
process j that eventually sets accept; to 1.

6 (A w=1) > F(

n—f

accept; = 1))
j=1
Relay (R). If a correct process i sets accept; to 1, then eventually all correct
processes j set accept; to 1.

n—f
G ((\/ accepti =1) — F (

i=1

n

—f
accept; = 1))
j=1

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 38

Properties in Linear Temporal Logic

Unforgeability (U). If v; = 0 for all correct processes i, then for all correct
processes j, accept; remains (forever.

n—f n—f
G ((A vi=0)—G (A accept; = 0)) Safety
i=1 =1

J

Completeness (C). If v; =1 for all correct processes i, then there is a correct
process j that eventually sets accept; to 1.

n—f n—f
G ((A vi=1) = F(\/ accept; = 1)) Liveness
i=1

Jj=1

Relay (R). If a correct process i sets accept; to 1, then eventually all correct
processes j set accept; to 1.

G ((

n—f n
\/ accept; =1) = F (
. :

—f
accept; = 1)) Liveness
Jj=1

1

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 /38

Threshold-guarded

fault-tolerant
distributed algorithms

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 5/ 38

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

e Existential Guard
if received m from some process then ...

@ Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 /38

Threshold-guarded FTDAs

Fault-free construct: quantified guards (t=f=0)

e Existential Guard
if received m from some process then ...

@ Universal Guard
if received m from all processes then ...

These guards allow one to treat the processes in a parameterized way

what if faults might occur? @

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 /38
Threshold-guarded FTDAs
Fault-free construct: quantified guards (t=f=0)
e Existential Guard
if received m from some process then ...
@ Universal Guard
if received m from all processes then ...
These guards allow one to treat the processes in a parameterized way
what if faults might occur? @
Fault-Tolerant Algorithms: n processes, at most t are Byzantine
@ Threshold Guard
if received m from n —t processes then ...
@ (the processes cannot refer to f!)
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 /38

Control Flow Automata

Variables of process i
vi: {0, 1} init with 0 or 1
accepti: {0, 1} init with 0

An indivisible step:
if Vi = 1
then send (echo) to all;

if received (echo) from at least
t + 1 distinct processes
and not sent (echo) before
then send (echo) to all;

if received (echo) from at least
n - t distinct processes

nrevd := z where (nrevd < z Az < nsnt + f)

—(t+ 1 < nrevd)

inc nsnt

l Y

t+ 1 < nrevd

inc nsnt l

\$
nrcva

n—t<

r’g
then accept; = 1; =(n—t < nrevd)
. Il / sv:=AC l
n — f copies of the process @¢ e se—()
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 7/ 38
Counting argument in threshold-guarded algorithms
t+1
\1\/\/\\/\/#
if received m from t+ 1 processes then ...
Correct processes count distinct incoming messages
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 /38

Counting argument in threshold-guarded algorithms

t+1

o © T " XoX®,

e (D e

\/\/

@@@

Correct processes count distinct incoming messages

if received m from t+ 1 processes then ...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 /38

Counting argument in threshold-guarded algorithms

t+1

00 S T __JONON

@ (—% @ at least one non-faulty sent the message
\1\/\/\ -

if received m from t+ 1 processes then ...

Correct processes count distinct incoming messages

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 /38

{nrcvd := z where (nrevd <z Az < nsnt + f)j

¥ @ concrete values are not important

@ @ thresholds are essential:
0,1, t+1 n—t

@

t+ 1< nrevd

n—t < nrcva

=(n—t < nrevd)

a0

sv:=AC

Y
(=)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

9/38

[nrcvd := z where (nrevd <z A z < nsnt + f)}

¥ @ concrete values are not important

e @ thresholds are essential:
0,1 t+1, n—t

@\ () oIy =10,1)

o l; =[Lt+1)
o Iy =[t+1,n—1t)
o I, =[n—t,00)

t+1 < nrevd

n—t < nrcvg

=(n—t < nrevd)

l

Y
O

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

@ intervals with symbolic boundaries:

9/38

{nrcvd := z where (nrevd <z Az < nsnt + f)j

¥ @ concrete values are not important
@ @ thresholds are essential:
0,1, t+1, n—1t
@ intervals with symbolic boundaries:
I, =[0,1)
v:=SE @ ® o ’
@\ o I; =[1,t+1)
t+1 < nrevd o It+1:[t+1,n—t)
(<) In—t = [n — t,OO)

@ Parameteric Interval Abstraction (PIA)

. @ Similar to interval abstraction:
t
—(t+ 1 < nrevd) e Al

[t + 1, n— t) rather than [4,10).
n—t < nrcvg

@ Totalorder: 0 <1< t+1<n—tfor
@ ~(n—t<nreid) all parameters satisfying RC:

| n>3t,t>f2>0.
|
) (%)
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 /38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

© the process code is parameterized

© the number of processes is parameterized

to one finite state model checking instance

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

© the process code is parameterized

© the number of processes is parameterized

to one finite state model checking instance

We do that by:
@ PIA data abstraction
@ PIA counter abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Technical challenges

We have to reduce the verification of an infinite number of instances
where

© the process code is parameterized

© the number of processes is parameterized

to one finite state model checking instance

We do that by:
@ PIA data abstraction
@ PIA counter abstraction

abstraction is an over approximation = possible abstract behavior that
does not correspond to a concrete behavior.

© Refining spurious counter-examples

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 38

Abstraction overview

Parameterized family

{M(n, t,f)=P(n,t,f) | ---| P(n,t, fl: n>3tt>f,f>0} Y
N(n,t,f) processes l
i Parametric Interval Domain D

PARAMETRIC INTERVAL ‘
DATA ABSTRACTION

!
Uniform parameterized family
¥ - PI..- P - > > ~
{M(n, t,f) M n>3tt>ff>0} P does not depend on n, t, f
N(n,t,f) processes
| P simulates P(n,t,f)

CHANGE REPRESENTATION

|

Counter representation

| one abstract system A that
PARAMETRIC INTERVAL :
—— simulates for every n, t, f

COUNTER ABSTRACTION .
the behavior of M(n, t,)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 11 / 38

Abstraction overview

Parameterized family

{/\/l(n, t,f)y=P(n,t,f)||--- | P(n,t,f): n>3t,t >f, f >0} EXTRACT
N(n,t,f) processes i
i Parametric Interval Domain D

PARAMETRIC INTERVAL ‘
DATA ABSTRACTION

!
Uniform parameterized family
Y - PI..- P - > > ~
{M(n, t,f) M n>3tt>ff>0} P does not depend on n, t, f
N(n,t,f) processes
| P simulates P(n,t,f)

CHANGE REPRESENTATION
| replay the counter-example

Counter representation

{refine the system
PARAMETRIC INTERVAL

COUNTER ABSTRACTION

one abstract system A that
— simulates for every n, t, f
the behavior of M(n, t, f)

finite-state model checkir

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 11 / 38

Data abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 12 / 38

[nrcvd := z where (nrevd <z A z < nsnt + f)j

' @ concrete values are not important
@ @ thresholds are essential:

0,1, t+1, n—t
@ intervals with symbolic boundaries:
I =[0,1)
= SE @ ® 1o)

@ ° I]_ — [1, t + 1)
o ;1 =[t+1,n—1t)
o I, =[n—t,00)

t+ 1 < nrevd

n—t < nrcvg

=(n—t < nrevd)

l

Y
@)=

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 13 / 38

Abstract operations

0 1 t+1 n—t above

Concrete: [—):)[)[

Abstract: I I iyt I,_;

Concrete t +1 < x

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

0 1 t+1 n—t above
Concrete: F=JE > I SE
Abstract: Io I; It+1 I,_+

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

0 1 t+1 n—t above

Concrete: [—):)[)[

Abstract: I I iyt I,_;

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x' = x + 1,

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38
Abstract operations
0 1 t+1 n—t above
Abstract: I I Lti1 I,_;
Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x’ = x + 1, is abstracted as:
X:Io /\X’ZIl...
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 14 / 38

Abstract operations

0 1 t+1 n—t above

Abstract: I I L1 I,_;

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x' = x+ 1, is abstracted as:
x=1Ip N X =1
Vx =1 /\(XIZIl VX’:It+1)...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

14 / 38

Abstract operations

0 1 t+1 n—t above

Concrete: E=)E SE Qi

Abstract: Io I | P I,_:

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x’ = x + 1, is abstracted as:
X = Io A\ X/ = Il
VX = Il AN (X/ = 11 V X/ = It+1)
Vx =i A(X =T VX' =1,24) ...

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

14 / 38

Abstract operations

0 1 t+1 n—t above

Concrete: F=E E E Q

Abstract: I I iyt I,_;

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x' = x+ 1, is abstracted as:
x=1Ip N X =1
Vx =11 A (X/ =I; Vvx' = It+1)
Vx =T i A(X =T VX =1,4)
Vx =1, AN X' =1,_;

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

14 / 38

Abstract operations

0 1 t+1 n—t above

L
Concrete: P9t

Abstract: Io I

Concrete t +1 < x is abstracted as x =1;,1 Vx =1,_;.
Concrete x’ = x + 1, is abstracted as:
X = Io A\ X/ = Il
VX = Il AN (X/ = 11 V X/ = It+1)
Vx =Tia A(X =11 VX =1,4)
Vx=1,_+ N\ X' =1,_;

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

abstract increase may keep the same value!

14 / 38

Abstract CFA

-®

nrevd := z where (nrevd < z A z < nsnt + f)

46+

—(sv = VI)
t+ 1 < nrevd
e N
sv=\V0
inc nsnt
O,
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 15 / 38

Abstract CFA

-®

@

nrcvd := z where (nrevd < z A z < nsnt + f) [nrcvd =To A nsnt =T A (nrevd” =Ty V nrevd’ = Il)] V...

4a+

—(sv = VI)

¢<_

t+ 1 < nrevd

A

sv=\V0

inc nsnt

®

46*

—(sv = V1)

;><_

qs
nrevd =11 V nrevd =1,
N 9a
sv=\V0

[nsnt =11 A (nsnt’ =1y V nsnt’ = It+1)] V...

\

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 15 / 38

Abstraction overview

Parameterized family

{M(n, t,f)=P(n,t,f) | ---| P(n,t, fl: n>3tt>f,f>0} Y
N(n,t,f) processes l
l Parametric Interval Domain D

PARAMETRIC INTERVAL ‘
DATA ABSTRACTION

!

Uniform parameterized family

0 o B . p : > > B
{M('B t,f) Pl P :n>3tt>ff>0} P does not depend on n, t, f
N(n,t,f) processes
| P simulates P(n,t,f)

CHANGE REPRESENTATION

|

Counter representation

| one abstract system A that
PARAMETRIC INTERVAL :
— simulates for every n, t, f

COUNTER ABSTRACTION .
the behavior of M(n, t,)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 16 / 38

Counter abstraction

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 17 / 38

Classic (0,1, co)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1, co)-counter abstraction:

@ finitely many local states,
eg., {N,T,C}.

@ based on counter representation:
for each local states count how many processes are in it

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 18 / 38

Classic (0,1, co)-counter abstraction

Pnueli, Xu, and Zuck (2001) introduced (0, 1, co)-counter abstraction:

@ finitely many local states,
eg., {N,T,C}.

@ based on counter representation:
for each local states count how many processes are in it

@ abstract the number of processes in every state,
eg,. K: C—0, T—1 N~ “many”.

o perfectly reflects mutual exclusion properties
eg, G(K(C)=0VK(C)=1).

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 18 / 38

Limits of (0, 1, co)-counter abstraction

Our parametric data + counter abstraction:

@ we require finer counting of processes:

e t+ 1 processes in a specific state can force global progress,
e t processes cannot

@ mapping t, t+ 1, and n— t to “many” is too coarse.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

19 / 38

Limits of (0, 1, co)-counter abstraction

Our parametric data + counter abstraction:

@ we require finer counting of processes:

e t+ 1 processes in a specific state can force global progress,
e t processes cannot

@ mapping t, t+ 1, and n— t to “many” is too coarse.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

starting point of our approach...

19 / 38

Data + counter abstraction over parametric intervals
n=6t=1f=1

t+1=2,n—t=>5 1 process at (accepted, received=5)

nr. processes (counters) 3 processes at (sent, received=3)

2 3 2 3 4

received received
| sent | accepted |

Local state is (sv, nrevd),
where sv € {sent, accepted} and 0 < rcvd < n

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals
n=6t=1f=1

t+1=2,n—t=5

nr. processes (counters)

2 3 4
received received
sent accepted

Local state is (sv, nrevd),
where sv € {sent, accepted} and 0 < revd < n

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals
n=6t=1f=1

t+1=2,n—t=5

nr. processes (counters)

..

2 3 4
received received
sent accepted

Local state is (sv, nrevd),
where sv € {sent, accepted} and 0 < rcvd < n

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals
=06, t=1, f=1 Parametricintervals:

n>3-tAt>f lp=1[0,1) L1 =[1,t+1)

It+1:[t+1,n—t)

nr. processes (counters)

_ T11
received received

sent accepted

A local state is (sv, nrevd),
where sv € {sent, accepted} and nrevd € {Ig, 11,111, 1n—t}

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Data + counter abstraction over parametric intervals

Parametricintervals:
n>3-tANt>f Ip=100,1) L1 =[1t+1)

It+1:[t+1,n—t)

nr. processes (counters)

In—t
S R SR
|
t+1 when all correct processes accepted,
__ all non-zero counters are in this area
Iy
Io
Io| It Tt 41 In—t IOT IJ Tt 41 I In—t
received received
| sent accepted

A local state is (sv, nrevd),
where sv € {sent, accepted} and nrevd € {lg, 11,1101, 1p—¢}

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 20 / 38

Abstraction refinement

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 21 / 38

Spurious behavior

abstraction adds behaviors (e.g., x>=x+1 may lead to x’ being equal to x)

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x>=x+1 may lead to x’ being equal to x)

= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

Three sources of spurious behavior
@ # processes decreasing or increasing
@ 7 messages sent # # processes which have sent a message

@ unfair loops

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Spurious behavior

abstraction adds behaviors (e.g., x’=x+1 may lead to x’ being equal to x)

= specs that hold in concrete system may be violated in abstract system
@ spurious counterexamples

@ we have to reduce the behaviors of the abstract system
make it more concrete

@ ...based on the counterexamples = CEGAR

Three sources of spurious behavior
@ # processes decreasing or increasing
@ 7 messages sent # # processes which have sent a message

@ unfair loops

...and a new abstraction phenomenon

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 22 / 38

Parametric abst. refinement — uniformly spurious paths

Classic case:

~

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 23 / 38

Parametric abst. refinement — uniformly spurious paths

Our case: e AN

-

Classic case: - \
//:,ac," \\

PR
<P AN

\

AV N Y

AR W N WY
AW N WA
AN W

« VNV VY
\AAAA,

AN WY
AU WY

-

-
NER Y ~ -
AN -

NN T T T T e

N\ _ -
N\ -
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos 4 VTSA, October 2014 23 / 38

AN WY
AN N U
AV U W WA

-
-
-

-
-
-

-
-
-
-

-

CEGAR — automated workflow

Model Checking

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38
CEGAR — automated workflow
s N
. correct
Model Checking >
. J
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow
(Abstraction refinement\
using SMT
counterexample
| Model Checking | correct |
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Abstraction refinement CE ieasible: bug
using SMT]

counterexample

Model Checking correct |

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38

CEGAR — automated workflow

Abstraction refinement CE ieasible: bug
using SMT]

CE spurious:

counterexample _ _
refined abstraction

p N
Model Checking correct ,
.)
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 24 / 38
What is SMT?
recall SAT:

@ given a Boolean formula, e.g., (maV —=bVc)A(-aVbVvdVe)

@ is there an assignment of TRUE and FALSE to variables a, b, c, d, e
such that the formula evaluates to TRUE?

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 25 / 38

What is SMT?

recall SAT:
@ given a Boolean formula, e.g., (maVv bV c)A(-aVvbVdVe)

@ is there an assignment of TRUE and FALSE to variables a, b, c, d, e
such that the formula evaluates to TRUE?

Satisfiability Modulo Theories (SMT) :
@ here just linear arithmetics

@ given a formula, e.g.,
x=y ANy=zANu#xAN(x+y<1A2x4+y=1)V3x+2y >3

@ is there an assignment of values to u, x, y, z such that formula
evaluates to TRUE?

@ practically efficient tools: YICES, Z3

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 25 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv, nrevd)

with sv € {v0, v1, sent, accepted} and rcvd € {Io,I1,1t11,1n—¢}}
An abstract global state is (k, nsnt),)

where nsnt € {Io, I, ey, In—t} and k: L — {Io, I1, Iey1, In—t}
Consider an abstract trace:

I‘ISAI'Itl = Iy n§nt2 =1 n§nt3 = It
ki(0) = ko(£) = ks(£) =
Lo, if £=(v1,1p) I, if £=(v1,1p) In—¢, if £=(v1,1p)
li, if £= (sent,Ip) Liy1, if £ = (sent,Iop)
Ip, otherwise Io, otherwise Io, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n>3tANt>FfANFf >0
zero counters (iZ4Ni#8)—>0<ks[i] <1 UNSAT
non-zero counters n—t<kydJNt+1<k3[8] <n—t

system size n— f = k3[0] + k3[1] + - - - + k3[15]

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv, nrcvd)
with sv € {v0, v1, sent, accepted} and rcvd € {Io,I1,1t11,1n—t}}

An abstract global state is (k, nsnt),
where nsnt € {IO;ILIt—{—laIn—t} and k: L — {1071171t—|—171n—t}

Consider an abstract trace:

nsnt; = I nsnty = I nsntz = ;11
ki(6) = ka(€) = ks(€) =
Lo, if £=(v1,1p) I, if £=(v1,1p) I, if £=(v1,1p)
L, if £= (sent,Ip) liy1, if £ = (sent,Ip)
Ip, otherwise Ip, otherwise Ip, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n>3tANt>FfANFf >0
zero counters (iZ4Ni#8)—>0<ks[i] <1 UNSAT
non-zero counters n—t<ky[dJAt+1< ks8] <n—t
system size n— f = k3[0] + k3[1] + - - - + k3[15]
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Counter example: losing processes

Output of data abstraction: 16 local states: L = {(sv, nrcvd)
with sv € {v0, v1, sent, accepted} and rcvd € {Io,I1,1t11,1n—¢}}

An abstract global state is (k, nsnt),
where nsnt € {Io, I, ey, In—t} and k: L — {Io, I1, Iey1, In—t}
Consider an abstract trace:

n§nt1 = Iy n§nt2 =1 n§nt3 = It
ki(0) = ko(£) = ks(£) =
Lo, if £=(v1,1p) I, if £=(v1,1p) In—¢, if £=(v1,1p)
li, if £= (sent,Ip) Liy1, if £ = (sent,Iop)
Ip, otherwise Io, otherwise Io, otherwise

Encode the last state in SMT as a conjunction T of the constraints:

resilience condition n>3tANt>FfANFf >0
zero counters (iZ4Ni#8)—>0<ks[i] <1 UNSAT
non-zero counters n—t<kydJNt+1<k3[8] <n—t

system size n— f = k3[0] + k3[1] + - - - + k3[15]

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 26 / 38

Remove transitions

@ We ask the SMT solver:

is there a satisfiable assignment for 77

o if yes,

then the state is OK, may be part of a real counterexample

@ if not, then the state is spurious

remove transitions to that state in the abstract system

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 27 / 38
Liveness

@ distributed algorithm requires reliable communication

@ every message sent is eventually received

@ —in_transit = [Vi. nrcvd; > nsnt]

e fairness F G —in_transit necessary to verify liveness,

e.g., (FG —in_transit — (G ([Vi. sv; = v1] = F[Vi. sv; = accept])))

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 28 / 38

L iveness

distributed algorithm requires reliable communication
every message sent is eventually received
—in_transit = [Vi. nrcvd; > nsnt]

fairness F G —in_transit necessary to verify liveness,
e.g., (FG —in_transit — (G ([Vi. sv; = v1] = F[Vi. sv; = accept])))
counter example (lasso):

L)) 53

—in_transit O—>O—> «+ () ~in_transit

~ ~in_transit
51 /—in_transit

—in_transit

Sk

—in_transit

<—QO<+ -+ QO —in_transit

—in_transit

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 28 / 38

Liveness — fairness suppression

52 53

—in_transit OQ—»CO ++ +QQ —in_transit

~~in_transit
S1 /—in_transit

O—0O> - -O—> —in_transit

Sk

—in_transit (Q)<+—O= « -+ —in_transit

—in_transit

if there is a spurious s; (all its concretizations violate —in_transit),

then the loop is spurious.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38

Liveness — fairness suppression

S2 53

—in_transit QO ++ < —in_transit

~~in_transit
S1 /—in_transit

O—0O> - -O—> —in_transit

Sk

—in_transit Q)<+—O< - —in_transit

—in_transit

if there is a spurious s; (all its concretizations violate —in_transit),

then the loop is spurious.

refine fairess to F G —in_transit A GF | A “out of s/
1<j<k
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38
Liveness — fairness suppression
52 53
—in_transit OQ—»O ++ Q) —in_transit
~~in_transit
51 /—in_transit
O—0O> - -O—> —in_transit
Sk
—in_transit (Q)<+—O= « -+ —in_transit
—in_transit
if there is a spurious s; (all its concretizations violate —in_transit),
then the loop is spurious.
refine fairness to F G —in_transit A GF | /\ “out of 5!
1<j<k
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 29 / 38

experimental evaluation

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

30 /38

Concrete vs. parameterized (Byzantine case)

10000 - 4096 -
-
1000 - /I 2048 -
100 - . 1024 -
z 512 /

10 s

1- = 256 - /

Time to check relay (sec, logscale) Memory to check relay (MB, logscale)

e y
011 cLen® B 128*
/./ ﬁlbstract, (R‘) -

| I | | 6418 B 77./ | | |
5 6 7 8 9 10 4 5 6 7 8 9

number of processes, n

0.015/

number of processes, n

@ Parameterized model checking performs well (the red line).
@ Experiments for fixed parameters quickly degrade
(n =9 runs out of memory).

@ We found counter-examples for the cases n = 3t and f > t,
where the resilience condition is violated.

10

31/38

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

Experimental results at a glance

Algorithm Fault Resilience Property Valid? #Refinements Time

ST87 Byz n> 3t U v 0 4 sec

ST87 Byz n > 3t C v 10 32 sec.

ST87 Byz n > 3t R v 10 24 sec.

ST87 SYMM n>2t U v 0 1 sec.

ST87 SYMM n> 2t C v 2 3 sec.

ST87 SYMM n> 2t R v 12 16 sec.

ST87 OwmiIT n > 2t U v 0 1 sec.

ST87 OMIT n> 2t C v 5 6 sec.

ST87 OwmIT n > 2t R v 5 10 sec.

ST87 CLEAN n>t U v 0 2 sec

ST87 CLEAN n>t C v 4 8 sec.

ST87 CLEAN n>t R v 13 31 sec.

CT96 CLEAN n>t U v 0 1 sec.

CT96 CLEAN n>t A v 0 1 sec.

CT96 CLEAN n>t R v 0 1 sec.

CT96 CLEAN n>t C X 0 1 sec.

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 32/ 38
When resilience condition is wrong...
Algorithm Fault Resilience Property Valid? #Refinements Time
ST87 Byz n>3tANf <t+l) X 9 56 sec.
ST87 Byz n>3tANf <t+l C X 11 52 sec.
ST87 Byz n>3tAf <ttl R X 10 17 sec.
ST87 Byz n>3tANf <t U Ve 0 5 sec.
ST87 Byz n>3tANf <t C Ve 9 32 sec.
ST87 Byz n>3tNf <t R X 30 78 sec.
ST87 SYMM n>2tAf <t+l U X 0 2 sec.
ST87 SYMM n>2tAf <t+1 C X 2 4 sec.
ST87 SYMM n>2tAf <t+l R Ve 8 12 sec.
ST87 OMIT n>2tANf<t) Ve 0 1 sec.
ST87 OMIT n>2tANf<t C X 0 2 sec.
ST87 OMIT n>2tAf<t R X 0 2 sec.
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 33 / 38

Summary of results

@ Abstraction tailored for distributed algorithms

e threshold-based
o fault-tolerant
o allows to express different fault assumptions

@ Verification of threshold-based fault-tolerant algorithms
e with threshold guards that are widely used
o Byzantine faults (and other)
e for all system sizes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 34 / 38
Related work: non-parameterized
Model checking of the small size instances:
@ clock synchronization [Steiner, Rushby, Sorea, Pfeifer 2004]
@ consensus [Tsuchiya, Schiper 2011]
@ asynchronous agreement, folklore broadcast, condition-based
consensus [John, Konnov, Schmid, Veith, Widder 2013]
@ and more...
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 35 /38

Related work: parameterized case
Regular model checking of fault-tolerant distributed protocols:
[Fisman, Kupferman, Lustig 2008]
@ “First-shot” theoretical framework.
@ No guards like x >t +1, only x > 1.
@ No implementation.
@ Manual analysis applied to folklore broadcast (crash faults).
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 36 / 38

Related work: parameterized case

Regular model checking of fault-tolerant distributed protocols:
[Fisman, Kupferman, Lustig 2008]
“First-shot” theoretical framework.

No guards like x > t 4+ 1, only x > 1.
No implementation.

Manual analysis applied to folklore broadcast (crash faults).

Backward reachability using SMT with arrays:

[Alberti, Ghilardi, Pagani, Ranise, Rossi 2010-2012]

Implementation.

°
@ Experiments on Chandra-Toueg 1990.
@ No resilience conditions like n > 3t.

°

Safety only.
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 36 / 38

Our current work

. Discrete . . Continuous
Discrete . Discrete Continuous .
partially partially
synchronous asynchronous synchronous
synchronous synchronous

one-shot broadcast, c.b.consensus
core of {ST87,

One instance/ BT87, CTO6)

Inite payloa MAQ06 (common),

MRO04 (binary)
Many inst./

finite payload
Many inst./
unbounded

payload

Messages with

reals

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 37 / 38

Future work: threshold guards + orthogonal features

. Discrete . . Continuous
Discrete . Discrete Continuous .
partially partially
synchronous asynchronous synchronous
synchronous synchronous
one-shot broadcast, c.b.consensus
core of {ST87,
One instance/
BT87, CT96},
finite payload
MAO06 (common),
MRO04 (binary) lock
. clock sync
Many inst./ CT96 y
.. DHM12 FSFK06
finite payload (failure detectg
Many inst./
unbounded ST87 WS09
L98 (Paxos)
payload failure-detectors
Messages with approx. agreement
AKO00 DLPSW86 ST87 (JACM)
reals

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 37 / 38

Thank you!

 http://forsyte.at/software /bymc |

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 38 / 38
the impl tat
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 39 / 38

WITH

Tool Chain: BYMC

Parametric Promela code ———

PARAMETRIC DATA ABSTRACTION

STATIC ANALYSIS + YICES

Parametric Interval Domain D

J

YICES

Parametric Promela code

PARAMETRIC COUNTER AB-
STRACTION WITH YICES
normal
—_— SPIN
Promela code l

—— counterexample

property holds

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 40 / 38
Tool Chain: BYMC
Parametric Promela code ——— STATIC ANALYSIS + YICES
Parametric Interval Domain D
PARAMETRIC DATA ABSTRACTION J
WITH YICES
P P | d CONCRETE COUNTER
arametric Fromela code REPRESENTATION (VASS)
PARAMETRIC COUNTER AB-
SMT formula
STRACTION WITH YICES
REFINE YICES — sat
unsat
normal
—_— SPIN —— counterexample
Promela code l
property holds counterexample feasible
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 40 / 38

Tool Chain: BYMC

Parametric Promela code ———

PARAMETRIC DATA ABSTRACTION

STATIC ANALYSIS + YICES

Parametric Interval Domain D

J

WITH YICES

CONCRETE COUNTER

Parametric Promela code

PARAMETRIC COUNTER AB-
STRACTION WITH YICES

invariant candidates
}

normal
—_— SPIN
Promela code l

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant

REFINE

REPRESENTATION (VASS)

SMT formula

(by the user)

YICES — sat
unsat

—— counterexample

property holds counterexample feasible

Distributed Algos VTSA, October 2014

40 / 38

Experimental setup

Fia £ Vi Hitoy Bockmaks Toos Hop
YU Byt osel |+
Ty

forsyte/™ ...
[= = e e . I
ByMC: Byzantine Model Checker -

jomain:
nnnnnnnnnnnn

airness.
e ABSTRA!

n sitaz [Running| - Oracle VM VirtualBox

0,0,
[

CT system (produced by spin):

,0,0,3,0,0,0,0,0,0,0,0,0,0,0},0}
.0,0,0},0}

oo
W

oo
oo
oo
oo

oo
oo

|
809 & 50| 6 SRight ci

and a virtual machine with full

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant

The tool (source code in OCaml),

the code of the distributed algorithms in Parametric Promela,

setup

are available at: http://forsyte.at/software/bymc

Distributed Algos VTSA, October 2014

41 / 38

Running the tool— concrete case

@ user specifies parameter value

@ useful to check whether the code behaves as expected

e model checking problem in directory
“./x/spin-bcast-byz-relay-N=4,T=1,F=1"

@ in concrete.prm

@ parameters are replaced by numbers
@ process prototype is replaced with N — F = 3 active processes

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

@ $bymc/verifyco-spin "N=4,T=1,F=1" bcast-byz.pml relay

42 /38

Running the tool — parameterized model checking

@ PIA data and counter abstraction

@ finite-state model checking on abstract model

@ $bymc/verifypa-spin bcast-omit.pml relay
e model checking problem in directory
“./x/bcast-byz-relay-yymmdd-HHMM. x"

e directory contains

@ abs-interval.prm: result of the data abstraction;
abs-counter.prm: result of the counter abstraction;
abs-vass.prm: auxiliary abstraction for abstraction refinement;
mc.out: the last output by SPIN;

cex.trace: the counterexample (if there is one);

yices.log: communication log with YICES.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

43 / 38

Fairness, Refinement, and Invariants

@ In the Byzantine case we have in_transit : Vi.(nrcvd; > nsnt) and
G F —in_transit.

@ In this case communication fairness implies computation fairness.

@ But in the abstract version nsnt can deviate from the number of
processes who sent the echo message.

@ In this case the user formulates a simple state invariant candidate,
e.g., nsnt = K([sv = SE V sv = AC]) (on the level of the original
concrete system).

@ The tool checks automatically, whether the candidate is actually a
state invariant.

@ After the abstraction the abstract version of the invariant restricts
behavior of the abstract transition system.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

the

44 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014

45 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

52 53
in_transit QO—»O «++QQ in_transit
in_transit

S1 /in_transit

O—0O> - -O— in_transit

Sk

in_transit Q<+—O< ++ Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38
Parametric abstraction refinement — justice suppression
justice G F —in_transit necessary to verify liveness
counter example:

S2 53
in_transit O—»O +++QQ in_transit
/ in_transit
S1/in_transit
O—>O—> .. O—> In_transit
Sk
In_transit 4—04— . O in_transit
in_transit
if Vj all concretizations of s; violate —in_transit, then CE is spurious.
refine justice to G F —in_transit A GF | \/ -at(s;)
1<j<k
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

52 53
in_transit QO—»O «++QQ in_transit
in_transit

S1 /in_transit

O—0O> - -O— in_transit

Sk

in_transit Q<+—O< ++ Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ —at(s;)
1<j<k

... we use unsat cores to refine several loops at once

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 45 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

52 53
in_transit QO—»O «++QQ in_transit
in_transit

S1 /in_transit

O—0O> - -O— in_transit

Sk

in_transit Q<+—O< ++ Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38
Parametric abstraction refinement — justice suppression
justice G F —in_transit necessary to verify liveness
counter example:

S2 53
in_transit O—»O +++QQ in_transit
/ in_transit
S1/in_transit
O—>O—> .. O—> In_transit
Sk
In_transit 4—04— . O in_transit
in_transit
if Vj all concretizations of s; violate —in_transit, then CE is spurious.
refine justice to G F —in_transit A GF | \/ -at(s;)
1<j<k
Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

Parametric abstraction refinement — justice suppression

justice G F —in_transit necessary to verify liveness
counter example:

52 53
in_transit QO—»O «++QQ in_transit
in_transit

S1 /in_transit

O—0O> - -O— in_transit

Sk

in_transit Q<+—O< ++ Q) in_transit

in_transit

if Vj all concretizations of s; violate —in_transit, then CE is spurious.

refine justice to G F —in_transit A GF | \/ —at(s;)
1<j<k

... we use unsat cores to refine several loops at once
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 46 / 38

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
It solves an agreement problem depending on the inputs v;.

Vartables of process i
vi: {0, 1} init with 0 or 1
accept;: {0, 1} init with 0

An indivisible step:
if Vi = 1
then send (echo) to all;

if received (echo) from at least
t 4+ 1 distinct processes
and not sent (echo) before
then send (echo) to all;

if received (echo) from at least
n - t distinct processes
then accept; :(= 1;

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 47 / 38

Vartables of process i
vi: {0, 1} init with 0 or 1
accept;: {0, 1} init with 0

An indivisible step:
if Vi = 1
then send (echo) to all;

if received (echo) from at least
t 4+ 1 distinct processes
and not sent (echo) before
then send (echo) toall;

if received (echo) from at least
n - t distinct processes
then accept; :(= 1;

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

asynchronous reliable broadcast (srikanth & toueg 1987)

the core of the classic broadcast algorithm from the da literature.
it solves an agreement problem depending on the inputs v;.

asynchronous

t byzantine faults

correct if n > 3t
resilience condition rc

parameterized process

skeleton p(n, t)
VTSA, October 2014 47 / 38

Abstract CFA

A J

nrevd := z where (nrevd < z Az < nsnt + f)

4a+

—(sv = VI)

¢<_

t+ 1 < nrevd

A

sv=\V0

inc nsnt

®

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos

VTSA, October 2014 48 / 38

Abstract CFA

@
@

nrevd = z where (nrevd < z Az < nsnt + f) [nrevd =g A nsnt =1 A (nrevd’ = 1o V nrevd’ =1;)] V..
¥

46+
—®

—(sv = VI) —(sv = V1)

l
(@)

t+ 1 < nrevd nrevd =1i9 V nrevd =1,
7 T gs
sv=\V0 sv=\V0
inc nsnt [nsnt =Ty A (nsnt’ =11 V nsnt’ =Teqq)] V...

® ©

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 48 / 38

