
Undecidability of Parameterized Model Checking

Part III: Undecidability of Parameterized Model Checking

Annu Gmeiner Igor Konnov Ulrich Schmid

Helmut Veith Josef Widder

VTSA 2014, Luxembourg

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 1 / 1

Classic Model Checking Problems

Consider PN as interleaving of N processes of type P.

Finite-state MC

Input:

I a process template P (finite-state),

I an LTL formula ϕ,

I the number of processes N ≥ 1.

Problem: check, whether PN |= ϕ.

Decidable!

Parameterized MC

Input:

I a process template P (finite-state),

I an (indexed) LTL formula φ,

Problem: check, whether ∀N ≥ 1. PN |= φ(N). Decidable?

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 2 / 1

Classic Model Checking Problems

Consider PN as interleaving of N processes of type P.

Finite-state MC

Input:

I a process template P (finite-state),

I an LTL formula ϕ,

I the number of processes N ≥ 1.

Problem: check, whether PN |= ϕ. Decidable!

Parameterized MC

Input:

I a process template P (finite-state),

I an (indexed) LTL formula φ,

Problem: check, whether ∀N ≥ 1. PN |= φ(N). Decidable?

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 2 / 1

Classic Model Checking Problems

Consider PN as interleaving of N processes of type P.

Finite-state MC

Input:

I a process template P (finite-state),

I an LTL formula ϕ,

I the number of processes N ≥ 1.

Problem: check, whether PN |= ϕ. Decidable!

Parameterized MC

Input:

I a process template P (finite-state),

I an (indexed) LTL formula φ,

Problem: check, whether ∀N ≥ 1. PN |= φ(N). Decidable?
Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 2 / 1

The First Result: Undecidability of PMC

Apt & Kozen 1986:

One process P(n) with a parameterized loop bound n,

P(n) simulates n steps of a Turing machine

flag := false

for i := 1 to n do

simulate one step of T

if T has not halted then

flag := true

As non-halting is undecidable,

so is PMC for n non-communicating processes Pn(n).

Note: This proof is about sequential and unbounded programs.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3 / 1

The First Result: Undecidability of PMC

Apt & Kozen 1986:

One process P(n) with a parameterized loop bound n,

P(n) simulates n steps of a Turing machine

flag := false

for i := 1 to n do

simulate one step of T

if T has not halted then

flag := true

As non-halting is undecidable,

so is PMC for n non-communicating processes Pn(n).

Note: This proof is about sequential and unbounded programs.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 3 / 1

PMC for fixed (non-parameterized processes)

Suzuki 1988: PMCP is undecidable for an apparently simple case:

one fixed, finite-state process P independent of n,

Pn is a ring, processes communicate by token passing.

Pn simulates a Turing machine that writes not more than in 2n + 1 cells.

I Process P1 serves as a head and
stores three letters.

I Each process Pi , i > 1, stores
two letters.

I The head moves to the right
⇒ the tape is cyclically shifted.

P1

P2

P3

|ε|ε|

Pn|ε|ε|

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 1

PMC for fixed (non-parameterized processes)

Suzuki 1988: PMCP is undecidable for an apparently simple case:

one fixed, finite-state process P independent of n,

Pn is a ring, processes communicate by token passing.

Pn simulates a Turing machine that writes not more than in 2n + 1 cells.

I Process P1 serves as a head and
stores three letters.

I Each process Pi , i > 1, stores
two letters.

I The head moves to the right
⇒ the tape is cyclically shifted.

P1
|ω|τ |τ |

P2|τ |ε|

P3

|ε|ε|

Pn|ε|ε|

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 1

PMC for fixed (non-parameterized processes)

Suzuki 1988: PMCP is undecidable for an apparently simple case:

one fixed, finite-state process P independent of n,

Pn is a ring, processes communicate by token passing.

Pn simulates a Turing machine that writes not more than in 2n + 1 cells.

I Process P1 serves as a head and
stores three letters.

I Each process Pi , i > 1, stores
two letters.

I The head moves to the right
⇒ the tape is cyclically shifted.

P1
|ε|ω|τ |

P2|τ |ε|

P3

|ε|ε|

Pn|ε|ε|

τ

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 1

PMC for fixed (non-parameterized processes)

Suzuki 1988: PMCP is undecidable for an apparently simple case:

one fixed, finite-state process P independent of n,

Pn is a ring, processes communicate by token passing.

Pn simulates a Turing machine that writes not more than in 2n + 1 cells.

I Process P1 serves as a head and
stores three letters.

I Each process Pi , i > 1, stores
two letters.

I The head moves to the right
⇒ the tape is cyclically shifted.

P1
|ε|ω|τ |

P2|τ |τ |

P3

|ε|ε|

Pn|ε|ε|

ε

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 1

PMC for fixed (non-parameterized processes)

Suzuki 1988: PMCP is undecidable for an apparently simple case:

one fixed, finite-state process P independent of n,

Pn is a ring, processes communicate by token passing.

Pn simulates a Turing machine that writes not more than in 2n + 1 cells.

I Process P1 serves as a head and
stores three letters.

I Each process Pi , i > 1, stores
two letters.

I The head moves to the right
⇒ the tape is cyclically shifted.

I The proof is very technical.

I A simpler proof is given by
Emerson & Namjoshi, 1995.

P1
|ε|ω|τ |

P2|τ |τ |

P3

|ε|ε|

Pn|ε|ε|

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 4 / 1

Many more results on Parameterized Model Checking

We have recently finished a book on:
“Decidability of Parameterized Verification”.

To appear in Synthesis Lectures on Distributed Computing Theory.

Token-Passing Systems Rendezvous/Broadcast Guarded Protocols Ad-Hoc Networks

Process Templates Single Multiple Multiple Single

Synchr. Primitives Single Multiple Multiple Single

System Model:

+Directions

Basic Model

+Guards +Lossy Com.

Specifications: LTL, CTL∗ LTL, (ω-)regular LTL, (ω-)regular
Cover, Repeat,

Target

Topologies: Ring, Arbitrary Clique Clique

Clique,

Bounded Graphs,
All

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 5 / 1

Fault-tolerant distributed algorithms
and parameterized model checking

Recall our parameterized problem:

I given a process of a distributed algorithm and spec. ϕ

I show for all n, t, and f satisfying n > 3t ∧ t ≥ f ≥ 0
P(n, t, f) ‖ · · · ‖ P(n, t, f) |= ϕ

I every M(n, t, f) is a system of n − f correct processes

The problem statement is different!

I Processes are parameterized in n, t, and f .

I Processes communicate by sending messages to
everybody.

I Processes count received messages.

I LTL specifications over [∀i . f (i)] and [∃i . f (i)].

n

?
?

?
t f

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 6 / 1

Is our parameterized model
checking problem decidable?

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 7 / 1

Undecidability of PMC for FTDA

Given a two-counter machine M,

we construct a process P and an LTL formula ϕ.

Then the non-halting of M is formulated as: ∀n ≥ 2. Pn |= ϕ.

The idea of the proof:

I Construct a finite-state process P

I P has only finitely many locations

I P does not communicate at all

I LTL formulas with G and F over atomic propositions like [∃i .pci = Z].

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 8 / 1

Counter Machines

A machine is composed of the following commands

`i : inc C(`i); goto `j

`i : if C(`i) = 0 then goto `j

else dec C(`i); goto `k

`m : halt

over a few counters, e.g., C(`i) ∈ {B,C}.

The halting (as well as non-halting) of a two-counter machine is
undecidable [Minsky1967].

Many undecidability results are proven by reduction to halting of a 2CM.

For instance, [Esparza 1997]:
checking, whether a Petri net satisfies a linear µ-calculus formula
simulates halting of a two-counter machine.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 / 1

Counter Machines

A machine is composed of the following commands

`i : inc C(`i); goto `j

`i : if C(`i) = 0 then goto `j

else dec C(`i); goto `k

`m : halt

over a few counters, e.g., C(`i) ∈ {B,C}.

The halting (as well as non-halting) of a two-counter machine is
undecidable [Minsky1967].

Many undecidability results are proven by reduction to halting of a 2CM.

For instance, [Esparza 1997]:
checking, whether a Petri net satisfies a linear µ-calculus formula
simulates halting of a two-counter machine.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 9 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B
inc C

dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B
inc C

dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B
inc C

dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B

inc C
dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B

inc C

dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

How a configuration looks like?

The process states are partitioned into four classes:

sv = `0

sv = `1

control
flow

sv = idleB

counter B

sv = idleC

counter C

sv = idleD free tokens (capacity D)

inc B

dec B
inc C

dec C

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 10 / 1

Conclusions

Parameterized model checking is undecidable for our problem.

We need either abstraction techniques, or semi-decision procedures.

In Part IV, we continue with abstraction techniques for parameterized
model checking of fault-tolerant distributed algorithms.

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 11 / 1

Thank you!

Helmut Veith (www.forsyte.at) Checking Fault-Tolerant Distributed Algos VTSA, October 2014 12 / 1

