
Syntax-Guided Synthesis

Rajeev Alur

University of Pennsylvania

1

Program Verification

2

Verifier

Proof of
correctness or

Witness of a bug

Specification S Program P

Classical Program Synthesis

3

Synthesizer

Specification S
High Level
“WHAT”

Program P
Low Level
“HOW”

Syntax-Guided Synthesis

4

Synthesizer

Program P

Specification S
given by

logical constraints

Syntactic restrictions R
on the

space of programs

www.sygus.org

Outline

 Motivating Examples

 Formalization of SyGuS

 Solving SyGuS

 SyGuS Competition and Conclusions

5

Syntax-Guided Program Synthesis

 Find a program snippet P such that
1. P is in a set E of programs (syntactic constraint)
2. P satisfies logical specification j (semantic constraint)

 Core computational problem with many applications
Programming by examples
Automatic program repair
Program superoptimization
Template-guided invariant generation
Autograding for programming assignments
Synthesis of FSA-attack-resilient cryptographic circuits

6

www.sygus.org

Programming By Examples

 Find a program P for bit-vector transformation such that
1. P is constructed from standard bit-vector operations

|, &, ~, +, -, <<, >>, 0, 1, …
2. P is consistent with the following input-output examples

00101  00100
01010  01000
10110  10000

 Resets rightmost substring of contiguous 1’s to 0’s

 Desired solution:
x & (1 + (x | (x-1))

7

Input Output

(425)-706-7709 425-706-7709

510.220.5586 510-220-5586

1 425 235 7654 425-235-7654

425 745-8139 425-745-8139

FlashFill: Programming by Examples
Ref: Gulwani (POPL 2011)

Wired: Excel is now a lot easier for people who aren’t spreadsheet-
and chart-making pros. The application’s new Flash Fill feature
recognizes patterns, and will offer auto-complete options for
your data. For example, if you have a column of first names
and a column of last names, and want to create a new column of
initials, you’ll only need to type in the first few boxes before
Excel recognizes what you’re doing and lets you press Enter to
complete the rest of the column.

8

http://www.wired.com/gadgetlab/2012/07/first-look-at-microsoft-office-2013-and-office-365-going-to-the-cloud/2/

Superoptimizing Compiler

Given a program P, find a “shorter” equivalent program P’

multiply (x[1,n], y[1,n]) {

x1 = x[1,n/2];

x2 = x[n/2+1, n];

y1 = y[1, n/2];

y2 = y[n/2+1, n];

a = x1 * y1;

b = shift(x1 * y2, n/2);

c = shift(x2 * y1, n/2);

d = shift(x2 * y2, n);

return (a + b + c + d)

}

Replace with equivalent code
with only 3 multiplications

9

Side Channel Attacks on Cryptographic Circuits

10

PPRM1 AES S-box implementation [Morioka & Satoh, in CHES 2002]

1. The only non-linear function in Advanced Encryption Standard algorithm

2. Vulnerable to Fault Sensitivity Analysis attack

Side Channel Attacks on Cryptographic Circuits

11

Time at which O0 changes is different when In2=0 vs In2=1
Consequence: Timing-based attack can reveal secret input In2

Countermeasure to Attack

12

FSA attack resilient ckt: All input-to-output paths have same delays
Manually hand-crafted solution [Schaumont et al, DATE 2014]

Verification problem: Is attack resilient ckt equivalent to original?

Synthesis of Attack Countermeasures

13

Given a ckt C, automatically synthesize a ckt C’ such that
1. C’ is functionally equivalent to C [sematic constraint]
2. All input-to-output paths in C’ have same length [syntactic constraint]

Existing EDA tools cannot handle this synthesis problem

Autograder: Feedback on Programming Homeworks
Singh et al (PLDI 2013)

Student Solution P
+ Reference Solution R
+ Error Model

14

Find min no of edits to P so
as to make it equivalent to R

Automatic Invariant Generation

SelectionSort(int A[],n) {
i := 0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant: ?

Invariant: ?

15

Constraint solver

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. ? ∧ ?

Invariant:
? ∧ ? ∧
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?)

16

Template-based Automatic Invariant Generation

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {
v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]

Invariant:
i<j ∧
i≤v<n ∧
(∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]) ∧
(∀k. i1≤k<j ∧

k≥0 ⇒ A[v]≤A[k])

17

Syntax-Guided Program Synthesis

 Find a program snippet P such that
1. P is in a set E of programs (syntactic constraint)
2. P satisfies logical specification j (semantic constraint)

 Core computational problem with many applications
Programming by examples
Automatic program repair
Program superoptimization
Template-guided invariant generation
Autograding for programming assignments
Synthesis of FSA-attack-resilient cryptographic circuits

18

Can we formalize and standardize this computational problem?

Inspiration: Success of SMT solvers in formal verification

SMT: Satisfiability Modulo Theories

 Computational problem: Find a satisfying assignment to a formula

Boolean + Int types, logical connectives, arithmetic operators
Bit-vectors + bit-manipulation operations in C
Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

 “Modulo Theory”: Interpretation for symbols is fixed

Can use specialized algorithms (e.g. for arithmetic constraints)

19

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure

SMT Success Story

20

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE VCC Spec# …

…

Syntax-Guided Synthesis (SyGuS) Problem

 Fix a background theory T: fixes types and operations

 Function to be synthesized: name f along with its type

General case: multiple functions to be synthesized

 Inputs to SyGuS problem:

Specification j

Typed formula using symbols in T + symbol f

Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

 Computational problem:

Output e in E such that j[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13
with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa 21

SyGuS Example

 Theory QF-LIA (Quantifier-free linear integer arithmetic)

Types: Integers and Booleans

Logical connectives, Conditionals, and Linear arithmetic

Quantifier-free formulas

 Function to be synthesized f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y))

 Candidate Implementations: Linear expressions

LinExp := x | y | Const | LinExp + LinExp | LinExp - LinExp

 No solution exists

22

SyGuS Example

 Theory QF-LIA

 Function to be synthesized: f (int x, int y) : int

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y))

 Candidate Implementations: Conditional expressions without +

Term := x | y | Const | If-Then-Else (Cond, Term, Term)

Cond := Term <= Term | Cond & Cond | ~ Cond | (Cond)

 Possible solution:

If-Then-Else (x ≤ y, y, x)

23

From SMT-LIB to SYNTH-LIB

(set-logic LIA)

(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1

(+ Start Start)

(- Start Start)

(ite StartBool Start Start)))

(StartBool Bool ((and StartBool StartBool)

(or StartBool StartBool)

(not StartBool)

(<= Start Start))))

(declare-var x Int)

(declare-var y Int)

(constraint (>= (max2 x y) x))

(constraint (>= (max2 x y) y))

(constraint (or (= x (max2 x y)) (= y (max2 x y))))

(check-synth)

24

www.sygus.org

Let Expressions and Auxiliary Variables

 Synthesized expression maps directly to a straight-line program

 Grammar derivations correspond to expression parse-trees

 How to capture common subexpressions (which map to aux vars) ?

 Solution: Allow “let” expressions

 Candidate-expressions for a function f(int x, int y) : int

T := (let [z = U] in z + z)

U := x | y | Const | (U) | U + U | U - U

25

Invariant Generation as SyGuS

26

bool x, y, z
int a, b, c

while(Test) {
loop-body
….

}

 Goal: Find inductive loop invariant automatically

 Function to be synthesized

Inv (bool x, bool z, int a, int b) : bool

 Compile loop-body into a logical predicate

Body(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’)

 Specification:

(Inv & Body & Test’) ⇒ Inv’

& Pre ⇒ Inv & (Inv & ~Test ⇒ Post)

 Template for set of candidate invariants

Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)

Cond := x | z | Cond & Cond | ~ Cond | (Cond)

Program Optimization as SyGuS

 Type matrix: 2x2 Matrix with Bit-vector[32] entries

Theory: Bit-vectors with arithmetic

 Function to be synthesized f(matrix A, B) : matrix

 Specification: f(A,B) is matrix product

f(A,B)[1,1] = A[1,1]*B[1,1] + A[1,2]*B[2,1]

…

 Set of candidate implementations

Expressions with at most 7 occurrences of *

Unrestricted use of +

let expressions allowed

 Benefit of saving this one multiplication: Strassen’s O(n2.87) algorithm
for matrix multiplication

 Can we use only 6 multiplication operations?
27

Optimality

 Specification for f(int x) : int

x ≤ f(x) & -x ≤ f(x)

 Set E of implementations: Conditional linear expressions

 Multiple solutions are possible

If-Then-Else (0 ≤ x , x, 0)

If-Then-Else (0 ≤ x , x, -x)

 Which solution should we prefer?

Need a way to rank solutions (e.g. size of parse tree)

28

Synthesis Puzzle: Cinderella v. stepmother

There are five buckets arranged in a circle. Each bucket can hold upto B
liters of water. Initially all buckets are empty. The wicked stepmother
and Cinderella take turns playing the following game:

Stepmother brings 1 liter of additional water and splits it into 5 buckets.
If any of the buckets overflows, stepmother wins the game.
If not, Cinderella gets to empty two adjacent buckets. If the game goes
on forever, Cinderella wins.

Find B* such that if B < B* the stepmother has a winning strategy, and if
B = B*, Cinderella has a winning strategy.
And give a proof that your strategies work!

Reference: Bodlaender et al, IFIP TCS 2012

29

Stepmother wins if B<2

Round 1:
Stepmother: Add 0.5 lit to buckets 1 and 3
Cinderella: Empty one of the buckets, say third

Round 2:
Stepmother: Add 0.25 lit to bucket 1 and 0.75 lit to bucket 3
Cinderella: Empty bucket 3

…

After n rounds, bucket 1 contains 1 – 1/2n lit of water

If B < 2, then after some N rounds bucket 1 contains more than B-1 lit of
water, stepmother can win in (N+1)th round by adding 1 lit to it

30

Cinderella wins if B=2

Cinderella maintains the following invariant:
(a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0)

a1, a2, a3, a4, a5: water quantities starting at some bucket

If this condition holds after n rounds, stepmother cannot win in the next
round. Thus, if this is an invariant, then Cinderella wins.

Invariant holds initially.

Assume the invariant holds at the beginning of a round.

Goal: Cinderella can enforce the invariant, no matter what the stepmother
does, after her own turn.

31

Cinderella wins if B=2

At the beginning of the round, we have:
(a1 + a3 < 1) & (a2 <= 1) & (a4 = 0) & (a5 = 0)

b1, b2, b3, b4, b5: water quantities after stepmother’s turn

Claim: b1 + b3 + b4 + b5 < 2

Either (b1 + b4 < 1) or (b3 + b5 < 1)

Suppose (b1 + b4 < 1). Other case similar.

Cinderella strategy: empty buckets 2 and 3.
We have: (b4 + b1 < 1) & (b5 <= 1) & (b2 = 0) & (b3 = 0)

32

Syntax-Guided Synthesis (SyGuS) Problem

 Fix a background theory T: fixes types and operations

 Function to be synthesized: name f along with its type

General case: multiple functions to be synthesized

 Inputs to SyGuS problem:

Specification j

Typed formula using symbols in T + symbol f

Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

 Computational problem:

Output e in E such that j[f/e] is valid (in theory T)

33

Solving SyGuS

 Is SyGuS same as solving SMT formulas with quantifier alternation?

 SyGuS can sometimes be reduced to Quantified-SMT, but not always

Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X. j [f/ ax+by+c]

Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

 Syntactic structure of the set E of candidate implementations can be
used effectively by a solver

 Existing work on solving Quantified-SMT formulas suggests solution
strategies for SyGuS

34

SyGuS as Active Learning

35

Learning
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate

Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

Counterexample-Guided Inductive Synthesis

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y))

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

36

Learning
Algorithm

Verification
Oracle

Examples = { }

Candidate

f(x,y) = x

Example

(x=0, y=1)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y))

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

37

Learning
Algorithm

Verification
Oracle

Examples =

{(x=0, y=1) } Candidate

f(x,y) = y

Example

(x=1, y=0)

CEGIS Example

 Specification: (x ≤ f(x,y)) & (y ≤ f(x,y))

 Set E: All expressions built from x,y,0,1, Comparison, +, If-Then-Else

38

Learning
Algorithm

Verification
Oracle

Examples =

{(x=0, y=1)

(x=1, y=0)

(x=0, y=0)

(x=1, y=1)}
Candidate

ITE (x ≤ y, y,x)

Success

Goal: Find f such that for all x in D, j(x, f) holds

I = { }; /* Interesting set of inputs */

Repeat

Learn: Find f such that for all x in I, j(f, x) holds

Verify: Check if for all x in D, j(f, x) holds

If so, return f

If not, find x such that ~ j(f, x) holds, and add x to I

39

Counterexample-guided Inductive Synthesis (CEGIS)

SyGuS Solutions

 CEGIS approach (Solar-Lezama et al, ASPLOS’08)

 Similar strategies for solving quantified formulas and invariant
generation

 Learning strategies based on:

Enumerative (search with pruning): Udupa et al (PLDI’13)

Symbolic (solving constraints): Gulwani et al (PLDI’11)

Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

40

Enumerative Learning

 Find an expression consistent with a given set of concrete examples

 Enumerate expressions in increasing size, and evaluate each expression
on all concrete inputs to check consistency

 Key optimization for efficient pruning of search space:

Expressions e1 and e2 are equivalent

if e1(a,b)=e2(a,b) on all concrete values (x=a,y=b) in Examples

Only one representative among equivalent subexpressions needs

to be considered for building larger expressions

 Fast and robust for learning expressions with ~ 20 nodes

41

Enumerative Search Example

 Spec: (f(x,y) > x) & (f(x,y) > y)

 Grammar: E := x | y | 0 | 1 | E + E

 Examples = { (x=0, y=1) }

 Find an expression f such that (f(0,1) > 0) & (f(0,1) > 1)

 Expressions of size 1: x, y, 0, 1

 But x is equivalent to 0 for all points in Examples

 Also y is equivalent to 1, so only interesting expressions of size 1: x, y

 Neither f=x nor f=y satisfies the spec (f(0,1) > 0) & (f(0,1) > 1)

 So we need to enumerate expressions of larger size

 Expressions of size 3: x+x, x+y, y+x, y+y

 Can discard x+x as it is equivalent to x (for points in current Examples)

 Expressions x+y and y+x are equivalent to y

 Only interesting expression of size 3: y+y

 f(x,y)=y+y does satisfy (f(0,1)>0) & (f(0,1)>1), so return y+y
42

Symbolic Learning

 Use a constraint solver for both the synthesis and verification step.

43

 Each production in the grammar is thought of as a component.
Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these component
corresponds to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x

Term

y

Term

0

Term

1

Term

Symbolic Learning

44

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:

Shape is a DAG, Types are consistent

Spec j[f/e] is satisfied on every concrete input values in I

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of
components in the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

Stochastic Learning

 Idea: Find desired expression e by probabilistic walk on graph where
nodes are expressions and edges capture single-edits

 Metropolis-Hastings Algorithm: Given a probability distribution P over
domain X, and an ergodic Markov chain over X, samples from X

 Fix expression size n. X is the set of expressions En of size n. P(e)
∝Score(e) (“Extent to which e meets the spec φ”)

 For a given set Examples, Score(e) = exp(- 0.5 Wrong(e)), where
Wrong(e) = No of inputs in Examples for which ~ j [f/e]

 Score(e) is large when Wrong(e) is small. Expressions e with Wrong(e) =
0 more likely to be chosen in the limit than any other expression

45

 Initial candidate expression e sampled uniformly from En

 When Score(e) = 1, return e

 Pick node v in parse tree of e uniformly at random. Replace subtree
rooted at e with subtree of same size, sampled uniformly

Stochastic Learning

46

+

z

e

+

yx

+

z

e’

-

1z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

SyGuS Solvers Synthesis Tools

47

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014

Program
optimization

Program
repair

Programming
by examples

Invariant
generation

Techniques for Solvers:
Learning, Constraint solvers, Enumerative/stochastic search

Collaborators: Fisman, Singh, Solar-Lezama

SyGuS Progress

 Over 1500 benchmarks

 Hacker’s delight: Programming by examples for bit-vector

 Invariant generation (based on verification competition SV-Comp)

 FlashFill (programming by examples system for string manipulation
programs from Microsoft)

 Synthesis of attack-resilient crypto circuits

 Program repair

Motion planning

 ICFP programming competition

 Special tracks for competition

 Invariant generation

 Programming by examples

 Conditional linear arithmetic

48

www.sygus.org

SyGuS Progress

 Solution strategies

Enumerative (search with pruning) (Udupa… PLDI’13)

Symbolic (solving constraints) (Gulwani… PLDI’11)

Stochastic (probabilistic walk) (Schkufza… ASPLOS’13)

Implication counterexamples for invariant learning (Garg… POPL’15)

CVC4: integrating synthesis with SMT solver (Reynolds… CAV’15)

Decision trees + Enumerative search (Radhakrishna… 2016)

Guiding search based on learnt probabilistic models (Lee… 2017)

 Increasing interest in PL/FM/SE communities

 Synthesis of Fault-Attack Countermeasures for Cryptographic
Circuits (Wang… CAV’16)

 Counterexample-guided model synthesis (Biere… TACAS’17)

 Syntax-Guided Optimal Synthesis for Chemical Reaction Networks;
(Cardelli… CAV’17)

49

www.sygus.org

Scaling Enumerative Search by Divide&Conquer

 For the spec (f(x,y) >= x) & (f(x,y) >= y), the answer is

if-then-else (x>=y, x, y)

 Size of expressions in conditionals and terms can be much smaller than
the size of the entire expression!

 f(x,y) = x is correct when x >= y and f(x,y) = y is correct when x <= y

 Key idea:

 Generate partial solutions that are correct on subsets of inputs and
combine them using conditionals

 Enumerate terms and tests for conditionals separately

 Does not work in general

 Correctness of outputs for different inputs can be determined
independently

 Plainly separable specifications: Each conjunct of the specification
contains a unique invocation of the unknown function

50

Divide & Conquer Overview

51

Partial Solutions

0
1
𝑥
𝑦

Examples

(1, 1)
(1, 2)
(2, 1)
…

Step 1: Propose terms

until all points covered

Step 2: Generate predicates

Predicates

0 ≥ 1
1 ≥ 1
𝑥 ≥ 1
𝑥 ≥ 2
𝑥 ≥ 𝑦

𝑖𝑓 𝑥 ≥ 𝑦 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑦Step 3: Combine!

Conditional Expression Grammars

52
Separate grammars for predicates and terms
Can be automatically for typical grammars

Expr ::= T | if (C) Expr else Expr
T ::= x | y | 0 | 1 | T + T | T – T
C ::= T >= T | T = T | T <= T | …

Conditional Linear Expressions

T ::= x | y | 0 | 1 | T + T | T – T

Term Grammar

C ::= T >= T | T = T | T <= T | …

Predicate Grammar

Algorithm Overview

53

Term

Enumerator
Predicate

Enumerator

Term

Grammar
Predicate

Grammar

Terms Predicates

Decision

Tree

Learning

Expression

Decision Tree Learning

54

(1, 1)
(1, 2)
(2, 1)

0
1
2
𝑥
𝑦

0 ≥ 1
1 ≥ 1
𝑥 ≥ 1
𝑥 ≥ 2
𝑥 ≥ 𝑦

𝑥 ≥ 𝑦

2, 1
(1, 1)

(1, 2)

𝑥 ≥ 𝑦

𝑥 𝑦

𝑖𝑓 𝑥 ≥ 𝑦 𝑡ℎ𝑒𝑛 𝑥 𝑒𝑙𝑠𝑒 𝑦

Check if each set of examples can be covered by one term
If not, pick a predicate and split the set

How to choose a splitting predicate ?

 Given:

a set P of predicates/attributes (e.g. x <=y, …)

a set T of terms/labels (e.g. x, y, …)

a set X of examples/points (e.g. (x=0,y=1), …)

a specification (e.g. f(x,y)>= x & f(x,y)>=y)

 A point x has label t, if setting f=t satisfies specification for x

 For each predicate p, let Xp be points in X that satisfy p

 For a subset Y of points, H(Y) is the “entropy” of Y and depends on how
points in Y are labeled with terms in T

 For a predicate p,

Gain(p) = | Xp |/|X| * H(Xp) + | X~p |/|X| * H(X~p)

 Split X using the predicate p in P for which Gain(p) is maximum

55

Back to Synthesis of Attack Countermeasures

56

Given a ckt C, automatically synthesize a ckt C’ such that
1. C’ is functionally equivalent to C [sematic constraint]
2. All input-to-output paths in C’ have same length [syntactic constraint]

Can be encoded directly as a SyGuS problem (Wang et al, CAV’16)

SyGuS Result

57

Original ckt prone to attack

Hand-crafted attack resilient ckt

SyGuS-generated Attack resilient ckt

Fully automatic
Smaller size
Shorter delays

 Problem definition

Syntactic constraint on space of allowed programs

Semantic constraint given by logical formula

 Solution strategies

Counterexample-guided inductive synthesis

Search in program space + Verification of candidate solutions

 Applications

Programming by examples

Program optimization with respect to syntactic constraints

 Annual competition (SyGuS-comp)

Standardized interchange format + benchmarks repository
58

Conclusions

www.sygus.org

CAV: A Story of Battling Exponentials

Model Checking

Searching for bugs
in state-space

Constraint Solving

Searching for a
satisfying assignment

Syntax-Guided Synthesis

Searching for a
correct expression

59

www.sygus.org

