Tutorial: Probabilistic Model Checking

Christel Baier Technische Universität Dresden

Probability elsewhere

Probability elsewhere

- randomized algorithms
 [Rabin 1960]
 symmetry breaking, fingerprint techniques,
 random choice of waiting times or IP addresses, ...
- stochastic control theory operations research

[Bellman 1957]

performance modeling

[Markov, Erlang, Kolm., ~ 1900]

- biological systems
- resilient systems

:

Probability elsewhere

- randomized algorithms [Rabin 1960] symmetry breaking, fingerprint techniques, random choice of waiting times or IP addresses, ...
- stochastic control theory [Bellman 1957] operations research
- performance modeling [Markov, Erlang, Kolm., ~ 1900]
- biological systems
- resilient systems

discrete or continuous-time Markovian models memoryless property: future system behavior depends only on the current state, but not on the past

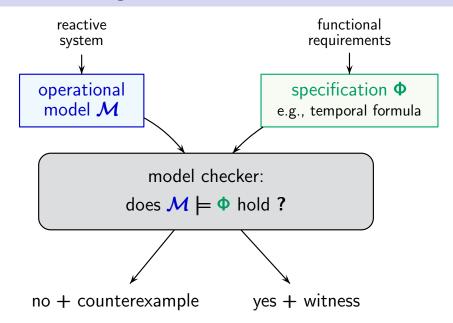
	purely probabilistic	probabilistic and nondeterministic
discrete time		
continuous time		

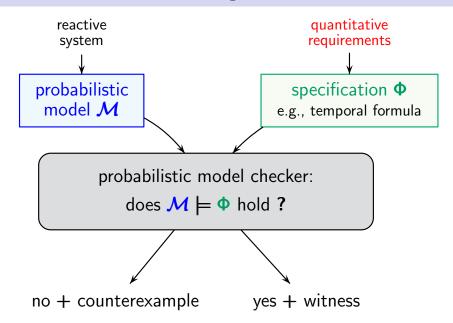
	purely probabilistic	probabilistic and nondeterministic
discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
continuous time		

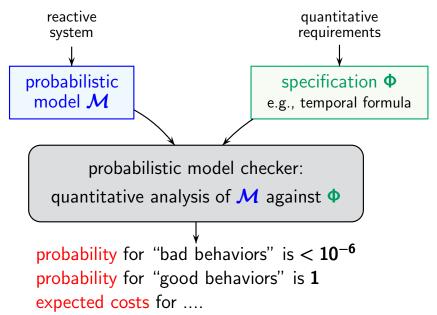
	purely probabilistic	probabilistic and nondeterministic
discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
continuous time	continuous-time Markov chain (CTMC)	continuous-time MDP interactive Markov chains
	П	probabilistic timed automata
		stochastic automata

	purely probabilistic	probabilistic and nondeterministic
discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
continuous time	continuous-time Markov chain (CTMC)	continuous-time MDP interactive Markov chains
	ı	probabilistic timed automata
		stochastic automata

Model checking







12/373

termination of probabilistic programs

[Hart/Sharir/Pnueli'83]

qualitative linear time properties [Vardi/Wolper'86]
 for discrete-time Markov models [Courcoubetis/Yannak.'88]

termination of probabilistic programs
 [HART/SHARIR/PNUELI'83]

• qualitative linear time properties [Vardi/Wolper'86] for discrete-time Markov models [Courcoubetis/Yannak.'88]

• probabilistic computation tree logic [Hansson/Jonsson'94] for discrete-time Markov models [Bianco/de Alfaro'95]

• continuous stochastic logic [Aziz et al'96] for continuous-time Markov chains [Baier et al'99]

• probabilistic timed automata [Jensen'96]

. [Kwiatkowska et al'00]

tools: PRISM, MRMC, STORM, IscasMC, PASS, ProbDiVinE, MARCIE, YMER, ...

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- * basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- rewards, cost-utility ratios, weights
- * conditional probabilities

Markov decision processes (MDP)

- * basic definitions
- PCTL/PCTL* model checking
- * fairness
- conditional probabilities
- rewards, quantiles
- * mean-payoff
- * expected accumulated weights

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- * rewards, cost-utility ratios, weights
- * conditional probabilities

Markov decision processes (MDP)

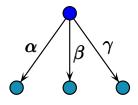
- basic definitions
- PCTL/PCTL* model checking
- fairness
- conditional probabilities
- rewards, quantiles
- * mean-payoff
- * expected accumulated weights

Markov chains

... transition systems with probabilistic distributions for the successor states

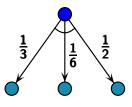
Markov chains

... transition systems with probabilistic distributions for the successor states



transition system nondeterministic branching

choice between action-labeled transitions



Markov chain probabilistic branching

discrete-time

$$\mathcal{M} = (S, P, \ldots)$$

$$\mathcal{M} = (S, P, \ldots)$$

countable state space 5

$$\mathcal{M} = (S, P, \ldots)$$

countable state space 5 ← here: finite

$$\mathcal{M} = (S, P, \ldots)$$

- countable state space *S* ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

s.t.
$$\sum_{s' \in S} P(s, s') = 1$$

$$\mathcal{M} = (S, P, \ldots)$$

- countable state space 5 ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

s.t.
$$\sum_{s' \in S} P(s, s') = 1$$

discrete-time or time-abstract: probability for the step $s \longrightarrow s'$

$$\mathcal{M} = (S, P, AP, L, \ldots)$$

- countable state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

s.t.
$$\sum_{s' \in S} P(s, s') = 1$$

- AP set of atomic propositions
- labeling function $L: S \to 2^{AP}$

$$\mathcal{M} = (S, P, AP, L, \ldots)$$

- countable state space 5 ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

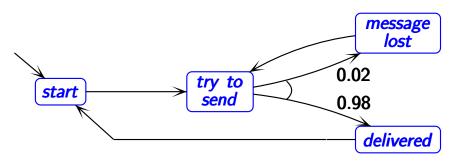
s.t.
$$\sum_{s' \in S} P(s, s') = 1$$

- AP set of atomic propositions
- labeling function $L: S \to 2^{AP}$
- $\mu: S \to [0,1]$ initial distribution
- wgt: S → Z where wgt(s) is the reward (or weight) earned per visit of state s

$$\mathcal{M} = (S, P, AP, L, \ldots)$$

- countable state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

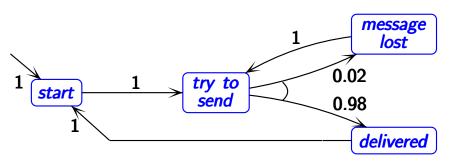
s.t.
$$\sum_{s' \in S} P(s, s') = 1$$



$$\mathcal{M} = (S, P, AP, L, \ldots)$$

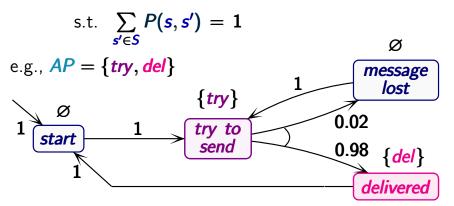
- countable state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$

s.t.
$$\sum_{s' \in S} P(s, s') = 1$$



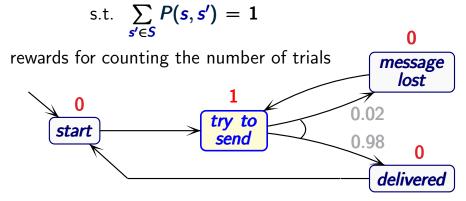
$$\mathcal{M} = (S, P, AP, L, \ldots)$$

- countable state space S ← here: finite
- transition probability function $P: S \times S \rightarrow [0,1]$



$$\mathcal{M} = (S, P, AP, L, \ldots)$$

- countable state space S
- transition probability function $P: S \times S \rightarrow [0,1]$



$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$

$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$

probability measure for measurable sets of paths:

$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$

probability measure for measurable sets of paths:

consider the σ -algebra generated by cylinder sets $\Delta(s_0 s_1 \dots s_n) = \text{ set of infinite paths}$ $s_0 s_1 \dots s_n s_{n+1} s_{n+2} s_{n+3} \dots$ finite path

$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$
initial distribution

probability measure for measurable sets of paths:

consider the σ -algebra generated by cylinder sets

$$\Delta(s_0 s_1 \dots s_n) = \text{set of infinite paths} \dots$$

$$\sigma$$
-algebra on universe \mathcal{U} : set $\mathcal{V} \subseteq 2^{\mathcal{U}}$ s.t.

- 1. $\mathcal{U} \in \mathcal{V}$
- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathcal{V}} T_i \in \mathcal{V}$

$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$

probability measure for measurable sets of paths:

consider the σ -algebra generated by cylinder sets

$$\Delta(s_0 s_1 \dots s_n)$$
 = set of infinite paths ...

here:
$$U = \text{set of infinite paths} \subseteq S^{\omega}$$

 $\mathcal{V} = \text{smallest subset of } 2^{\mathcal{U}} \text{ that contains}$ all cylinder sets and is closed under complement and countable unions

$$\mathcal{M} = (S, P, AP, L, \mu)$$
 where $\mu : S \rightarrow [0, 1]$

probability measure for measurable sets of paths:

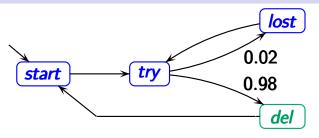
consider the σ -algebra generated by cylinder sets

$$\Delta(s_0 s_1 \dots s_n) = \text{ set of infinite paths}$$

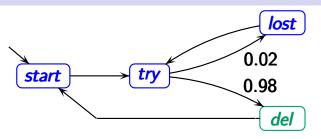
$$s_0 s_1 \dots s_n s_{n+1} s_{n+2} s_{n+3} \dots$$

probability measure is given by:

$$\Pr^{\mathcal{M}}(\Delta(s_0 s_1 \dots s_n)) = \mu(s_0) \cdot \prod_{1 \leq i \leq n} P(s_{i-1}, s_i)$$



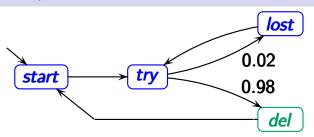
probability for delivering the message within 5 steps:



probability for delivering the message within 5 steps:

$$= \Pr^{\mathcal{M}}(\textit{start try del}) + \Pr^{\mathcal{M}}(\textit{start try lost try del})$$

notation:
$$\operatorname{Pr}^{\mathcal{M}}(s_0 s_1 \dots s_n) = \operatorname{Pr}^{\mathcal{M}}(\Delta(s_0 s_1 \dots s_n))$$

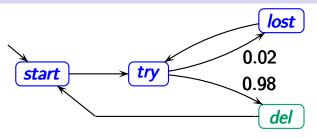


probability for delivering the message within 5 steps:

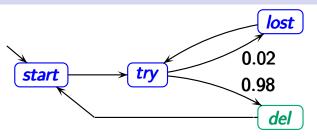
$$= \operatorname{Pr}^{\mathcal{M}}(\operatorname{start} \operatorname{try} \operatorname{del}) + \operatorname{Pr}^{\mathcal{M}}(\operatorname{start} \operatorname{try} \operatorname{lost} \operatorname{try} \operatorname{del})$$

$$= 0.98 + 0.02 \cdot 0.98 = 0.9996$$

notation:
$$\Pr^{\mathcal{M}}(s_0 s_1 \dots s_n) = \Pr^{\mathcal{M}}(\Delta(s_0 s_1 \dots s_n))$$

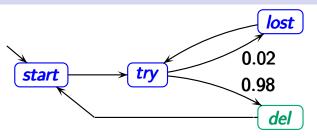


probability for eventually delivering the message:



probability for eventually delivering the message:

$$= \sum_{n=0}^{\infty} \Pr^{\mathcal{M}}(start try (lost try)^n del)$$



probability for eventually delivering the message:

$$= \sum_{n=0}^{\infty} \Pr^{\mathcal{M}}(start try (lost try)^n del)$$

$$=\sum_{n=0}^{\infty} 0.02^n \cdot 0.98 = 1$$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that: 1. $\mathcal{U} \in \mathcal{V}$

2. if
$$T \in \mathcal{V}$$
 then $\mathcal{U} \setminus T \in \mathcal{V}$

3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of ${\cal V}$ are called events.

DTMCs:
$$U = \text{set of infinite paths}$$

$$\mathcal{V} \ = \left\{ egin{array}{l} \sigma ext{-algebra generated by the} \\ \operatorname{cylinder sets} \end{array}
ight.$$

$$\Delta(s_0 s_1 \dots s_n) = \begin{cases} \text{ set of infinite paths } \pi \text{ of the form} \\ s_0 s_1 \dots s_n s_{n+1} s_{n+2} s_{n+3} \dots \end{cases}$$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

step-bounded reachability: "visit G within n steps"

$$\lozenge^{\leqslant n}G = \bigcup_{0\leqslant i\leqslant n} \bigcup_{s_0,\ldots,s_i} \Delta(s_0 s_1 \ldots s_{i-1} s_i)$$

where $s_i \in G$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that: 1. $\mathcal{U} \in \mathcal{V}$

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

step-bounded reachability: "visit G within n steps"

$$\lozenge^{\leqslant n}G = \bigcup_{0\leqslant i\leqslant n} \bigcup_{s_0,\ldots,s_i} \Delta(s_0 s_1\ldots s_{i-1} s_i)$$

where $s_i \in G$ and $s_0, \ldots, s_{i-1} \notin G$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

step-bounded reachability: "visit G within n steps"

$$\Diamond^{\leqslant n}G = \bigcup_{0\leqslant i\leqslant n} \bigcup_{s_0,\ldots,s_i} \Delta(s_0 s_1 \ldots s_{i-1} s_i)$$

$$\Pr^{\mathcal{M}}(\Diamond^{\leqslant n}G) = \sum_{0\leqslant i\leqslant n} \sum_{s_0,\ldots,s_i} \Pr^{\mathcal{M}}(s_0 s_1 \ldots s_{i-1} s_i)$$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

unbounded reachability: "visit **G** eventually"

$$\Diamond G = \bigcup_{i \in \mathbb{N}} \bigcup_{s_0, \dots, s_i} \Delta(s_0 s_1 \dots s_{i-1} s_i)$$

where $s_i \in G$ and $s_0, \ldots, s_{i-1} \notin G$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

unbounded reachability: "visit **G** eventually"

$$\Diamond G = \bigcup_{i \in \mathbb{N}} \bigcup_{s_0, \dots, s_i} \Delta(s_0 s_1 \dots s_{i-1} s_i)$$

$$\Pr^{\mathcal{M}}(\Diamond G) = \sum_{i \in \mathbb{N}} \sum_{s_0, \dots, s_i} \Pr^{\mathcal{M}}(s_0 s_1 \dots s_{i-1} s_i)$$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

repeated reachability: "visit G infinitely often"

$$\Box \Diamond G = \bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} \bigcup_{s_0, \dots, s_i} \Delta(s_0 s_1 \dots s_{i-1} s_i)$$

where $s_i \in G$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

repeated reachability: "visit G infinitely often"

$$\Box \Diamond G = \bigcap_{n \in \mathbb{N}} \bigcup_{i \geq n} \bigcup_{s_0, \dots, s_i} \Delta(s_0 s_1 \dots s_{i-1} s_i)$$

where $s_i \in G$, but possibly $s_j \in G$ for some j < i

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that:

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

persistence: "from some moment on always G"

$$\Diamond \Box G = Paths^{\mathcal{M}} \setminus \Box \Diamond \neg G$$

A σ -algebra is a pair $(\mathcal{U}, \mathcal{V})$ where \mathcal{U} is a set and $\mathcal{V} \subseteq 2^{\mathcal{U}}$ such that: 1 $\mathcal{U} \in \mathcal{V}$

- 2. if $T \in \mathcal{V}$ then $\mathcal{U} \setminus T \in \mathcal{V}$
- 3. if $T_i \in \mathcal{V}$ for $i \in \mathbb{N}$ then $\bigcup_{i \in \mathbb{N}} T_i \in \mathcal{V}$

The elements of \mathcal{V} are called events.

persistence: "from some moment on always **G**"

$$\Diamond \Box G = Paths^{\mathcal{M}} \setminus \Box \Diamond \neg G$$

$$\Pr^{\mathcal{M}}(\Diamond \Box G) = 1 - \Pr^{\mathcal{M}}(\Box \Diamond \neg G)$$

general definition of a stochastic process: family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

general definition of a stochastic process:

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain, e.g., \mathbb{N} or $\mathbb{R}_{\geqslant 0}$
- ${\it S}$ is a set with fixed ${\it \sigma}$ -algebra
- ${\cal U}$ is a sample space with fixed σ -algebra

DTMC
$$\mathcal{M} = (S, P, ...)$$

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain \leftarrow *Time* = \mathbb{N}
- **S** is a set ← state space
- *U* is a sample space ← set of infinite paths

DTMC
$$\mathcal{M} = (S, P, ...)$$

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain \leftarrow *Time* = \mathbb{N}
- S is a set ← state space
- \mathcal{U} is a sample space \longleftarrow set of infinite paths

If
$$t \in \mathbb{N}$$
 and $\pi = s_0 s_1 s_2 s_3 \ldots s_t \ldots$ then $X_t(\pi) = s_t$.

DTMC
$$\mathcal{M} = (S, P, ...)$$

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain \leftarrow *Time* = \mathbb{N}
- **S** is a set ← state space
- \mathcal{U} is a sample space \longleftarrow set of infinite paths

If
$$t \in \mathbb{N}$$
 and $\pi = s_0 s_1 \dots s_{t-2} u s_t \dots$ then $X_t(\pi) = s_t$.

Markov property:

$$\Pr^{\mathcal{M}}(X_t = s \mid X_{t-1} = u) =$$

 $\Pr^{\mathcal{M}}(X_t = s \mid X_{t-1} = u, X_{t-2} = s_{t-2}, ..., X_0 = s_0)$

DTMC
$$\mathcal{M} = (S, P, ...)$$

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain \leftarrow *Time* = \mathbb{N}
- **S** is a set ← state space
- \mathcal{U} is a sample space \longleftarrow set of infinite paths

If
$$t \in \mathbb{N}$$
 and $\pi = s_0 s_1 \dots s_{t-2} u s_t \dots$ then $X_t(\pi) = s_t$.

Markov property:

$$\Pr^{\mathcal{M}}(X_t = s \mid X_{t-1} = u) = P(u, s) =$$

 $\Pr^{\mathcal{M}}(X_t = s \mid X_{t-1} = u, X_{t-2} = s_{t-2}, ..., X_0 = s_0)$

DTMC
$$\mathcal{M} = (S, P, ...)$$

family $(X_t)_{t \in Time}$ of random variables $X_t : \mathcal{U} \to S$

- *Time* is a time domain \leftarrow *Time* = \mathbb{N}
- **S** is a set ← state space
- \mathcal{U} is a sample space \longleftarrow set of infinite paths

If
$$t \in \mathbb{N}$$
 and $\pi = s_0 s_1 \dots s_{t-2} u s_t \dots$ then $X_t(\pi) = s_t$.

Markov property:

$$\Pr^{\mathcal{M}}(X_t = s \mid X_{t-1} = u) = P(u, s) =$$

 $\Pr^{\mathcal{M}}(X_1 = s \mid X_0 = u)$ time-homogeneous

Transient and long-run distribution

Transient and long-run distribution

transient: ... refers to a fixed time point t

long-run: ... when time tends to infinity

$$\mu_t(s) = \Pr^{\mathcal{M}} \{ s_0 s_1 s_2 \dots \in Paths^{\mathcal{M}} : s_t = s \}$$

$$= \Pr^{\mathcal{M}} (X_t = s)$$

$$\mu_t(s) = \Pr^{\mathcal{M}} \{ s_0 s_1 s_2 \dots \in Paths^{\mathcal{M}} : s_t = s \}$$

$$= \mu \cdot P^t \cdot id_s$$
initial distribution
(row vector)

$$\mu_{t}(s) = \Pr^{\mathcal{M}} \{ s_{0} s_{1} s_{2} \dots \in Paths^{\mathcal{M}} : s_{t} = s \}$$

$$= \mu \cdot P^{t} \cdot id_{s}$$

$$t\text{-th power of transition probability matrix}$$

$$P^t = P^{t-1} \cdot P$$

$$\mu_{t}(s) = \Pr^{\mathcal{M}} \{ s_{0} s_{1} s_{2} \dots \in Paths^{\mathcal{M}} : s_{t} = s \}$$

$$= \mu \cdot P^{t} \cdot id_{s}$$

$$\text{column vector } (0 \dots 0, 1, 0, \dots 0)$$

$$\text{representing Dirac distribution}$$

$$\text{for state } s$$

$$\mu_{t}(s) = \Pr^{\mathcal{M}} \{ s_{0} s_{1} s_{2} \dots \in Paths^{\mathcal{M}} : s_{t} = s \}$$

$$= \mu \cdot P^{t} \cdot id_{s} = \mu_{t-1} \cdot P \cdot id_{s}$$

$$\downarrow column vector (0 \dots 0, 1, 0, \dots 0)$$
representing Dirac distribution
for state s

Let $\mathcal{M} = (S, P, \mu, ...)$ be a DTMC, $t \in \mathbb{N}$ and $s \in S$. transient state probability:

$$\mu_{t}(s) = \Pr^{\mathcal{M}} \{ s_{0} s_{1} s_{2} \dots \in Paths^{\mathcal{M}} : s_{t} = s \}$$

$$= \mu \cdot P^{t} \cdot id_{s} = \mu_{t-1} \cdot P \cdot id_{s}$$

transient state distribution for time point t-1

Thus:
$$\mu_0 = \mu$$
 initial distribution $\mu_t = \mu_{t-1} \cdot P$ for $t \geqslant 1$

Long-run distributions

Let
$$\mathcal{M} = (S, P, \mu, ...)$$
 be a DTMC.

steady-state probability:
$$\widetilde{\mu}(s) = \lim_{t \to \infty} \mu_t(s)$$

 $\mu_t(s)$ probability for being in state s after t steps

Long-run distributions

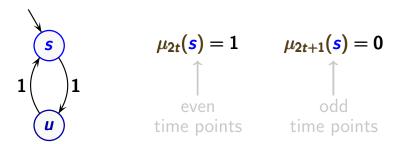
Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$

limit may not exist

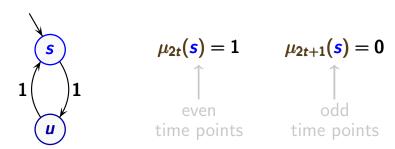
 $\mu_t(s)$ probability for being in state s after t steps

Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$

limit may not exist



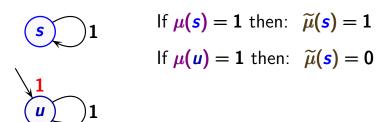
Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$



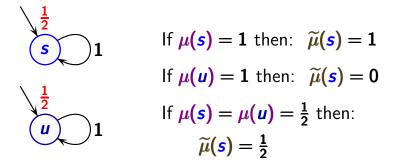
Let
$$\mathcal{M} = (S, P, \mu, ...)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s) = \lim_{t \to \infty} \mu_t(s)$

If
$$\mu(s)=1$$
 then: $\widetilde{\mu}(s)=1$

Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$



Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$



Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$

- limit may not exist or depend on the initial distribution μ
- if existing for all states s then $\widetilde{\mu} = \widetilde{\mu} \cdot P$

Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$

long-run fraction of being in state s (Cesàro limit):

Let $\mathcal{M} = (S, P, \mu, ...)$ be a DTMC.

steady-state probability:
$$\widetilde{\mu}(s) = \lim_{t \to \infty} \mu_t(s)$$

long-run fraction of being in state **s** (Cesàro limit):

$$\theta(s) = \lim_{T \to \infty} \frac{1}{T+1} \cdot \sum_{t=0}^{T} \mu_t(s)$$

Let $\mathcal{M} = (S, P, \mu, \ldots)$ be a DTMC.

steady-state probability:
$$\widetilde{\mu}(s) = \lim_{t \to \infty} \mu_t(s)$$

long-run fraction of being in state **s** (Cesàro limit):

$$\theta(s) = \lim_{T \to \infty} \frac{1}{T+1} \cdot \sum_{t=0}^{T} \mu_t(s)$$

Cesàro limit always exists

Let $\mathcal{M} = (S, P, \mu, ...)$ be a DTMC.

steady-state probability:
$$\widetilde{\mu}(s) = \lim_{t \to \infty} \mu_t(s)$$

long-run fraction of being in state **s** (Cesàro limit):

$$\theta(s) = \lim_{T \to \infty} \frac{1}{T+1} \cdot \sum_{t=0}^{T} \mu_t(s)$$

- Cesàro limit always exists
- if the steady-state probabilities exists: $\widetilde{\mu}(s) = \theta(s)$

Let
$$\mathcal{M}=(S,P,\mu,\ldots)$$
 be a DTMC. steady-state probability: $\widetilde{\mu}(s)=\lim_{t\to\infty}\mu_t(s)$

long-run fraction of being in state s (Cesàro limit):

$$\theta(s) = \lim_{T \to \infty} \frac{1}{T+1} \cdot \sum_{t=0}^{T} \mu_t(s)$$

- Cesàro limit always exists
- if the steady-state probabilities exists: $\widetilde{\mu}(s) = \theta(s)$
- if \mathcal{M} is strongly connected: θ is computable via the balance equation $\theta = \theta \cdot P$ where $\sum_{s \in S} \theta(s) = 1$

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

Almost surely, i.e., with probability 1:

eventually forever **C**

A bottom strongly connected component will be reached and all its states visited infinitely often.

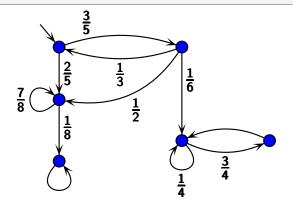
$$\Pr^{\mathcal{M}} \left\{ \begin{array}{l} s_0 \, s_1 \, s_2 \ldots \in \textit{Paths}^{\mathcal{M}} : \\ \\ \text{there exists } i \geqslant 0 \text{ and a BSCC } \textit{\textbf{C}} \text{ s.t.} \end{array} \right.$$
 $\forall j \geqslant i. \, s_j \in \textit{\textbf{C}} \ \land \ \forall s \in \textit{\textbf{C}} \ \exists \ j. \, s_j = s \ \right\} = 1$

visit each state in C

infinitely often

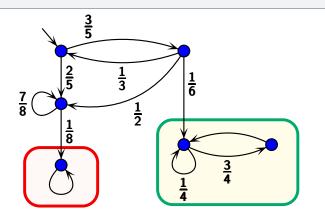
Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.



Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.



2 BSCCs

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

long-run distribution:

 $\theta(s) > 0$ iff **s** belongs to some BSCC

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be reached and all its states visited infinitely often.

long-run distribution:

- $\theta(s) > 0$ iff **s** belongs to some BSCC
- if s is a state of BSCC B then:

$$\theta(s) = \Pr^{\mathcal{M}}(\lozenge B) \cdot \theta^{B}(s)$$

probability for long-run probability reaching B for state s inside B

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- * rewards, cost-utility ratios, weights
- conditional probabilities

Markov decision processes (MDP)

- * basic definitions
- PCTL/PCTL* model checking
- * fairness
- conditional probabilities
- rewards, quantiles
- mean-payoff
- * expected accumulated weights

Probabilistic computation tree logic

Probabilistic computation tree logic

PCTL/PCTL*

[Hansson/Jonsson 1994]

- probabilistic variants of CTL/CTL*

Probabilistic computation tree logic

PCTL/PCTL*

[Hansson/Jonsson 1994]

- probabilistic variants of CTL/CTL*
- contains a probabilistic operator P
 to specify lower/upper probability bounds
- operators for expected costs, long-run averages, ...
 will be considered later

Syntax of PCTL*

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \dots$$

path formulas:

$$\varphi ::= \dots$$

Syntax of PCTL*

```
state formulas:  \Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathrm{I}}(\varphi)  path formulas:  \varphi ::= \dots
```

where $a \in AP$ is an atomic proposition $I \subseteq [0,1]$ is a probability interval

Syntax of PCTL*

state formulas: $\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathrm{I}}(\varphi)$ path formulas: $\varphi ::= \dots$

where $a \in AP$ is an atomic proposition $I \subseteq [0,1]$ is a probability interval

qualitative properties: $\mathbb{P}_{>0}(\varphi)$ or $\mathbb{P}_{=1}(\varphi)$ quantitative properties: e.g., $\mathbb{P}_{>0.5}(\varphi)$ or $\mathbb{P}_{\leqslant 0.01}(\varphi)$

state formulas: $\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$ path formulas: $\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \dots$ state formula

state formulas: $\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$

path formulas:

$$\varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \dots$$

state formulas: $\Phi ::= \mathit{true} \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$ path formulas: $\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \, \mathsf{U} \, \varphi_2$

state formulas:

$$\Phi ::= true \mid a \mid \Phi_1 \wedge \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$

path formulas:

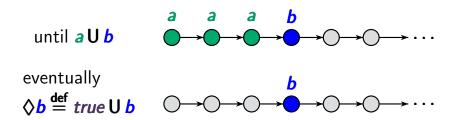
$$\varphi ::= \Phi \mid \varphi_1 \wedge \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$

state formula $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \cdots$

Derived path operators: eventually, always

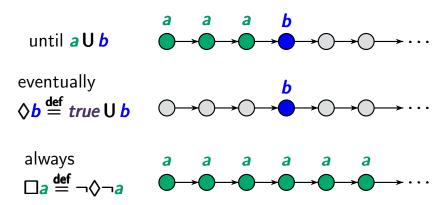
Derived path operators: eventually, always

syntax of path formulas: $\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$



Derived path operators: eventually, always

syntax of path formulas:
$$\varphi ::= \Phi \mid \varphi_1 \land \varphi_2 \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi_1 \cup \varphi_2$$



Semantics of PCTL*

Semantics of PCTL*

Let $\mathcal{M} = (S, P, AP, L)$ be a Markov chain.

Define by structural induction:

- a satisfaction relation ⊨ for states s ∈ S and PCTL* state formulas
- a satisfaction relation |= for infinite
 paths π in M and PCTL* path formulas

Semantics of PCTL*

```
s \models true
s \models a iff a \in L(s)
s \models \neg \Phi iff s \not\models \Phi
s \models \Phi_1 \land \Phi_2 iff s \models \Phi_1 and s \models \Phi_2
s \models \mathbb{P}_{\mathbf{I}}(\varphi) iff \Pr_{s}^{\mathcal{M}}(\varphi) \in \mathbf{I}
```

Semantics of PCTL*

$$s \models true$$
 $s \models a$ iff $a \in L(s)$
 $s \models \neg \Phi$ iff $s \not\models \Phi$
 $s \models \Phi_1 \land \Phi_2$ iff $s \models \Phi_1$ and $s \models \Phi_2$
 $s \models \mathbb{P}_{\mathbf{I}}(\varphi)$ iff $\Pr_{s}^{\mathcal{M}}(\varphi) \in \mathbf{I}$

probability measure of the set of paths π with $\pi \models \varphi$

when **s** is viewed as the unique starting state

Semantics of PCTL* path formulas

let $\pi = s_0 s_1 s_2 s_3 \dots$ be an infinite path in \mathcal{M}

Semantics of PCTL* path formulas

let $\pi = s_0 s_1 s_2 s_3 \dots$ be an infinite path in \mathcal{M}

$$\pi \models \Phi \qquad \text{iff} \quad s_0 \models \Phi$$

$$\pi \models \neg \varphi \qquad \text{iff} \quad \pi \not\models \varphi$$

$$\pi \models \varphi_1 \land \varphi_2 \quad \text{iff} \quad \pi \models \varphi_1 \quad \text{and} \quad \pi \models \varphi_2$$

$$\pi \models \bigcirc \varphi \qquad \text{iff} \quad s_1 s_2 s_3 \dots \models \varphi$$

$$\pi \models \varphi_1 \cup \varphi_2 \quad \text{iff} \quad \text{there exists } \ell \geqslant 0 \text{ such that}$$

$$s_\ell s_{\ell+1} s_{\ell+2} \dots \models \varphi_2$$

$$s_i s_{i+1} s_{i+2} \dots \models \varphi_1 \quad \text{for } 0 \leqslant i < \ell$$

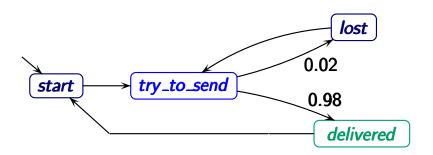
Examples for PCTL*-specifications

Examples for PCTL*-specifications

communication protocol:

$$\mathbb{P}_{=1}(\Box(try_to_send \longrightarrow \mathbb{P}_{\geqslant 0.9}(\bigcirc delivered)))$$

$$\mathbb{P}_{=1}\big(\ \Box(\ try_to_send\ \longrightarrow\ \neg start\ U\ delivered\ \big)\ \big)$$



Examples for PCTL*-specifications

communication protocol:

$$\mathbb{P}_{=1}\big(\Box (try_to_send \longrightarrow \mathbb{P}_{\geqslant 0.9}(\bigcirc delivered)) \big)$$

$$\mathbb{P}_{=1}\big(\Box (try_to_send \longrightarrow \neg start \cup delivered) \big)$$

leader election protocol for *n* processes:

$$\mathbb{P}_{=1}\big(\lozenge \frac{leader_elected}{} \big)$$

$$\mathbb{P}_{\geqslant 0.9}\big(\bigvee_{i \leqslant n} \bigcirc^{i} \frac{leader_elected}{} \big)$$

PCTL* model checking for DTMC

PCTL* model checking for DTMC

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

PCTL* model checking for DTMC

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

main procedure as for CTL*:

recursively compute the satisfaction sets

$$Sat(\Psi) = \{ s \in S : s \models \Psi \}$$

for all state subformulas Ψ of Φ

```
Sat(true) = S state space of \mathcal{M}

Sat(a) = \{ s \in S : a \in L(s) \}

Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)

Sat(\neg \Phi) = S \setminus Sat(\Phi)
```

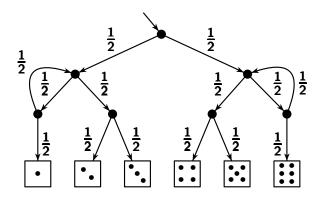
```
Sat(true) = S \text{ state space of } \mathcal{M}
Sat(a) = \left\{ s \in S : a \in L(s) \right\}
Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \left\{ s \in S : \operatorname{Pr}_{s}^{\mathcal{M}}(\varphi) \in \mathbf{I} \right\}
```

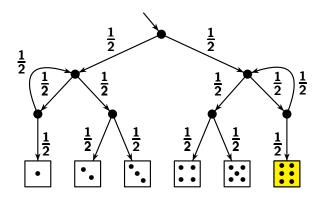
```
Sat(true) = S state space of M
              = \{ s \in S : a \in L(s) \}
Sat(a)
Sat(\Phi_1 \wedge \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \{ s \in S : \Pr_{s}^{\mathcal{M}}(\varphi) \in \mathbf{I} \}
       special case: \varphi = \Diamond \Phi
```

```
Sat(true) = S \text{ state space of } \mathcal{M}
Sat(a) = \left\{ s \in S : a \in L(s) \right\}
Sat(\Phi_1 \land \Phi_2) = Sat(\Phi_1) \cap Sat(\Phi_2)
Sat(\neg \Phi) = S \setminus Sat(\Phi)
Sat(\mathbb{P}_{\mathbf{I}}(\varphi)) = \left\{ s \in S : \Pr_s^{\mathcal{M}}(\varphi) \in \mathbf{I} \right\}
```

special case:
$$\varphi = \Diamond \Phi$$

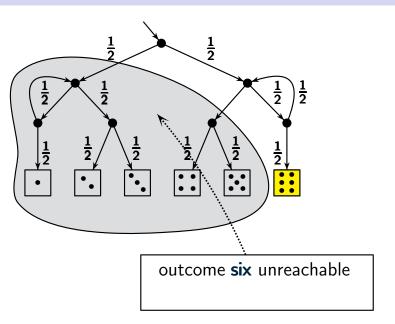
- 1. compute recursively $Sat(\Phi)$
- 2. compute $x_s = \Pr_s^{\mathcal{M}}(\Diamond \Phi)$ by solving a linear equation system

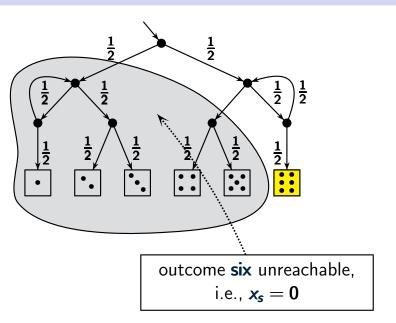


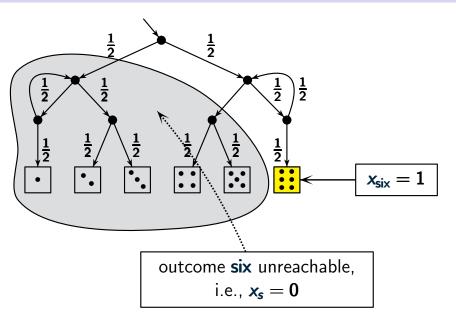


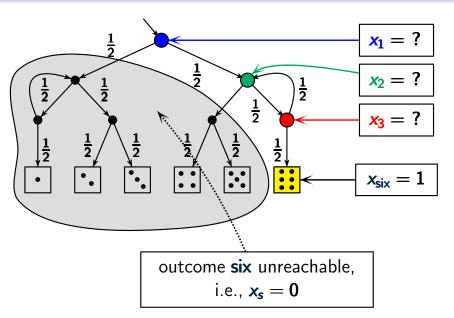
probability for the outcome six

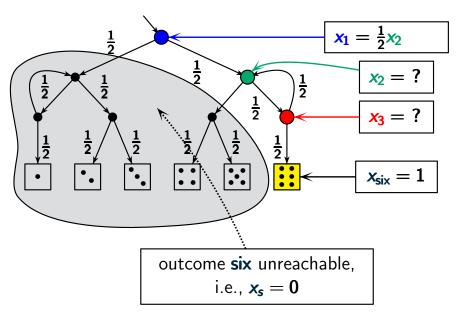
$$Pr^{\mathcal{M}}(\lozenge six) =$$
?

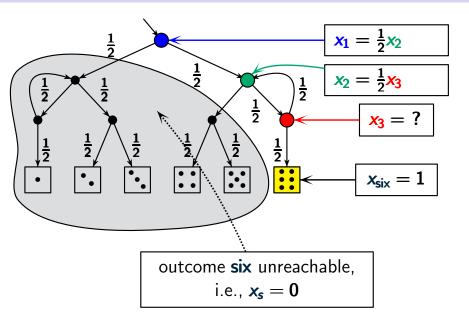


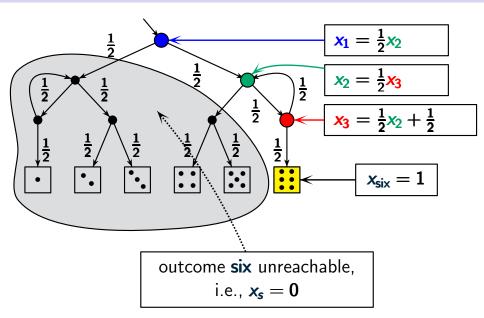






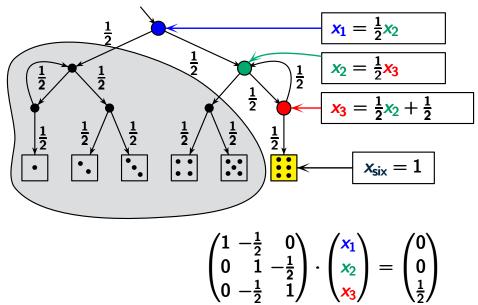






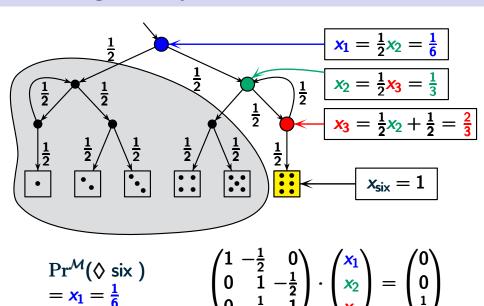
Simulating a dice by a coin

[Knuth]



Simulating a dice by a coin

[KNUTH]



134 / 373

given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

 $\Diamond T$ "eventually reaching T"

given: DTMC
$$\mathcal{M} = (S, P, ...)$$
 and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1

$$S^{0} = \{ s \in S : x_{s} = 0 \}$$

$$S^{1} = \{ s \in S : x_{s} = 1 \}$$

2. ...

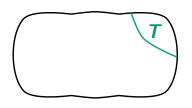
 $\Diamond T$ "eventually reaching T"

given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1

$$S^{0} = \{ s \in S : x_{s} = 0 \}$$
$$S^{1} = \{ s \in S : x_{s} = 1 \}$$

2. ...



state space **S**

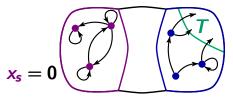
given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1

$$S^{0} = \{ s \in S : x_{s} = 0 \}$$

$$S^{1} = \{ s \in S : x_{s} = 1 \}$$

2. ...



state space **S**

 $x_s = 1$

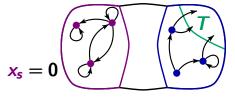
given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1

$$S^{0} = \left\{ s \in S : x_{s} = 0 \right\} = \left\{ s : s \not\models \exists \Diamond T \right\}$$

$$S^{1} = \left\{ s \in S : x_{s} = 1 \right\}$$

2. ...



state space **S**

$$x_s = 1$$

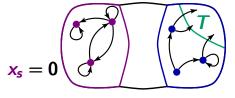
given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute **5**⁰ and **5**¹

$$S^{0} = \{ s \in S : x_{s} = 0 \} = \{ s : s \not\models \exists \lozenge T \}$$

$$S^{1} = \{ s \in S : x_{s} = 1 \} = \{ s : s \not\models \exists (\neg T) \cup S^{0} \}$$

2. ...



state space \boldsymbol{S}

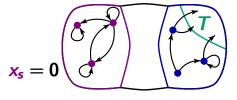
$$x_s =$$

given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1 \longleftarrow graph algorithms $S^0 = \{s \in S : x_s = 0\} = \{s : s \not\models \exists \lozenge T\}$ $S^1 = \{s \in S : x_s = 1\} = \{s : s \not\models \exists (\neg T) \cup S^0\}$

2. ...

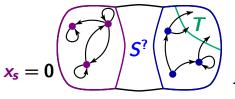


state space \boldsymbol{S}

$$x_s = 1$$

given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

2. compute x_s for $s \in S^? = S \setminus (S^0 \cup S^1)$

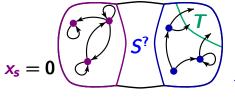


state space S

$$x_s = 1$$

given: DTMC $\mathcal{M} = (S, P, ...)$ and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

2. compute x_s for $s \in S^? = \{s : 0 < x_s < 1\}$



state space \boldsymbol{S}

$$x_s = 1$$

given: DTMC
$$\mathcal{M} = (S, P, ...)$$
 and $T \subseteq S$ task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S$

1. compute S^0 and S^1

$$S^{0} = \{ s \in S : x_{s} = 0 \} = \{ s : s \not\models \exists \lozenge T \}$$

$$S^{1} = \{ s \in S : x_{s} = 1 \} = \{ s : s \not\models \exists (\neg T) \cup S^{0} \}$$

2. compute x_s for $s \in S^? = \{s : 0 < x_s < 1\}$

by solving a linear equation system

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$P(s, S^1) = \sum_{u \in S^1} P(s, u)$$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^?} P(s, s') \cdot x_{s'} + \underbrace{P(s, S^1)}_{\text{probability for paths of the form}}_{\text{probability for paths of the form}$$

$$s \underbrace{u_1 u_2 \dots u_k}_{u_j \in S^1} t \text{ with } t \in T$$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_{s} = \sum_{s' \in S^{?}} P(s, s') \cdot x_{s'} + P(s, S^{1})$$

probability for paths of the form

$$\underbrace{s}_{s_i \in S^?} \underbrace{u_1 u_2 \dots u_k}_{u_j \in S^1} t \quad \text{with } t \in T$$

$$m \geqslant 1$$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$x = A \cdot x + b$$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$x = A \cdot x + b$$

matrix
$$\mathbf{A} = (P(s, s'))_{s,s' \in S^?}$$

vectors $\mathbf{x} = (x_s)_{s \in S^?}$
 $\mathbf{b} = (P(s, S^1))_{s \in S^?}$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$x = A \cdot x + b$$
iff
$$(I - A) \cdot x = b$$

matrix
$$\mathbf{A} = (P(s, s'))_{s,s' \in S^?}$$

vectors $\mathbf{x} = (x_s)_{s \in S^?}$
 $\mathbf{b} = (P(s, S^1))_{s \in S^?}$

identity matrix I

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$x = A \cdot x + b$$
iff
$$(I - A) \cdot x = b$$

linear equation system with non-singular matrix $\mathbf{I} - \mathbf{A}$

task: compute $x_s = \Pr_s^{\mathcal{M}}(\lozenge T)$ for all $s \in S^?$

by solving the equation system:

$$x_s = \sum_{s' \in S^7} P(s, s') \cdot x_{s'} + P(s, S^1)$$

$$x = A \cdot x + b$$
iff
$$(I - A) \cdot x = b$$

linear equation system with non-singular matrix I - Aunique solution

$$\mathbb{P}_{I}(\Diamond \Phi) \stackrel{\mathsf{def}}{=} \mathbb{P}_{I}(\mathsf{true} \, \mathsf{U} \, \Phi)$$

state formulas:
$$\Phi ::= true \mid a \mid \Phi_1 \land \Phi_2 \mid \neg \Phi \mid \mathbb{P}_{\mathbf{I}}(\varphi)$$
 path formulas:
$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Diamond \Phi \mid \Box \Phi$$

$$\mathbb{P}_{\mathbf{I}}(\Diamond \Phi) \stackrel{\text{def}}{=} \mathbb{P}_{\mathbf{I}}(\textit{true} \ \mathsf{U} \ \Phi)$$

$$\text{e.g., } \mathbb{P}_{<\mathbf{0.4}}(\Box \Phi) \stackrel{\text{def}}{=} \mathbb{P}_{>\mathbf{0.6}}(\Diamond \neg \Phi)$$

$$\text{note: } \Pr^{\mathcal{M}}(s, \Box \Phi) = 1 - \Pr^{\mathcal{M}}(s, \Diamond \neg \Phi)$$

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL state formula •

task: check whether $s_0 \models \Phi$

```
given: Markov chain \mathcal{M} = (5, P, AP, L, s_0)
```

PCTL state formula **Φ**

task: check whether $s_0 \models \Phi$

recursive computation of
$$Sat(\Psi) = \{s \in S : s \models \Psi\}$$
 for all state subformulas Ψ of Φ

in bottom-up manner, i.e., inner subformulas first

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL state formula •

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

treatment of propositional logic fragment:

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL state formula •

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

treatment of propositional logic fragment: √

$$Sat(true) = S$$

$$Sat(a) = \{s \in S : a \in L(s)\}$$

$$Sat(\neg \Psi) = S \setminus Sat(\Psi)$$

$$Sat(\Psi_1 \wedge \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$$

```
given: Markov chain \mathcal{M} = (S, P, AP, L, s_0)
```

PCTL state formula •

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL state formula •

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

compute
$$\Pr_s^{\mathcal{M}}(\varphi)$$
 for all states s and return
$$Sat(\mathbb{P}_I(\varphi)) = \left\{ s \in S : \Pr_s^{\mathcal{M}}(\varphi) \in I \right\}$$

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL state formula **Φ**

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

graph algorithms + matrix/vector operations

next: matrix/vector multiplication until: linear equation system

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL state formula **Φ**

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$ graph algorithms + matrix/vector operations

time complexity: $\mathcal{O}(\operatorname{poly}(\mathcal{M}) \cdot |\Phi|)$

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL* path formula $\varphi \leadsto \mathsf{LTL}$ formula φ' path formula without
probability operator

given: Markov chain $\mathcal{M} = (5, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

recursive computation of $Sat(\Psi) = \{s \in S : s \models \Psi\}$ for all state subformulas Ψ of Φ

- treatment of propositional logic fragment: $\sqrt{}$
- treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL* path formula $\varphi \leadsto \text{LTL}$ formula φ'

... automata-based approach for φ' ...

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL* path formula $\varphi \leadsto \text{LTL}$ formula φ' by replacing each maximal state subformula with a fresh atomic proposition

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL* path formula $\varphi \longleftrightarrow LTL$ formula φ' by replacing each maximal state subformula with a fresh atomic proposition

$$\lozenge(a \cup \mathbb{P}_{\geqslant 0.7}(\Box \lozenge b) \land \Box \mathbb{P}_{<0.3}(\bigcirc \Box c))$$

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

PCTL* state formula **Φ**

task: check whether $s_0 \models \Phi$

treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

PCTL* path formula $\varphi \longleftrightarrow$ LTL formula φ' by replacing each maximal state subformula with a fresh atomic proposition

$$\Diamond (a \cup \mathbb{P}_{\geqslant 0.7}(\Box \Diamond b) \land \Box \mathbb{P}_{<0.3}(\bigcirc \Box c))$$

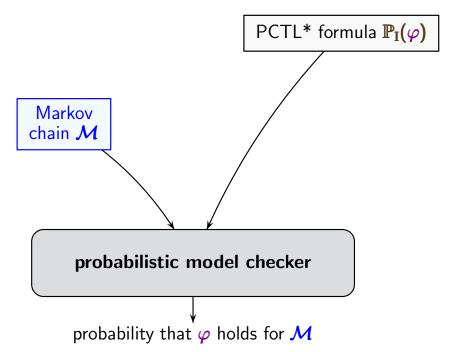
given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

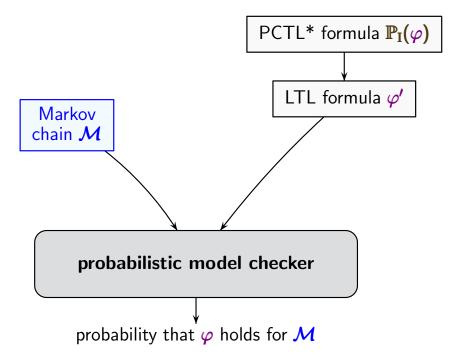
PCTL* state formula **Φ**

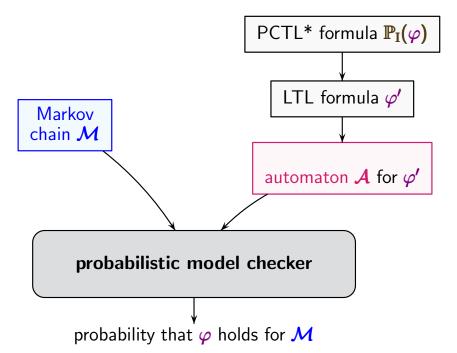
task: check whether $s_0 \models \Phi$

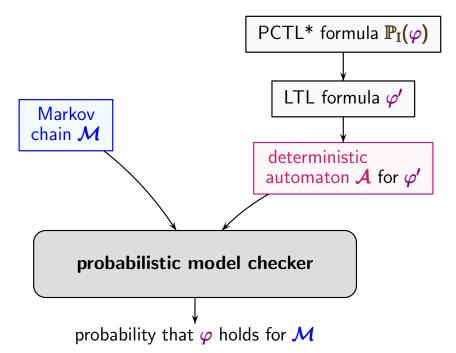
treatment of the probability operator $\mathbb{P}_{\mathrm{I}}(\varphi)$

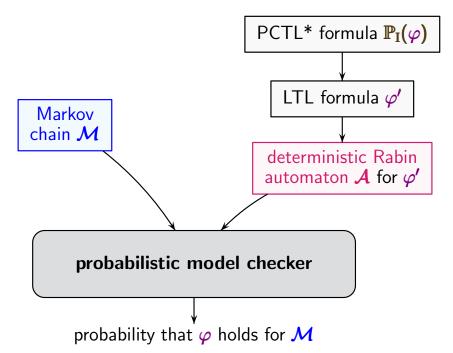
PCTL* path formula $\varphi \longleftrightarrow$ LTL formula φ' by replacing each maximal state subformula with a fresh atomic proposition











A DRA is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function

A DRA is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function
- acceptance condition Acc is a set of pairs (L, U) with $L, U \subseteq Q$

A DRA is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

- Q finite state space
- $q_0 \in Q$ initial state
- Σ alphabet
- $\delta: Q \times \Sigma \longrightarrow Q$ deterministic transition function
- acceptance condition Acc is a set of pairs (L, U) with $L, U \subseteq Q$, say $Acc = \{(L_1, U_1), ..., (L_k, U_k)\}$

semantics of the acceptance condition:

$$\bigvee_{1 \leq i \leq k} (\Diamond \Box \neg \underline{L}_i \wedge \Box \Diamond \underline{U}_i)$$

Accepted language of a DRA

A DRA is a tuple
$$\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$$
 where
$$Acc = \{(L_1, U_1), \dots, (L_k, U_k)\}$$
 $L_i, U_i \subseteq Q$

accepted language:

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \text{ the run for } \sigma \text{ in } \mathcal{A} \text{ fulfills } Acc \right\}$$

Accepted language of a DRA

A DRA is a tuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, Acc)$ where

$$Acc = \{(L_1, U_1), \dots, (L_k, U_k)\} \qquad L_i, U_i \subseteq Q$$

accepted language:

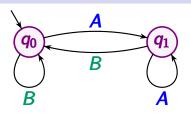
$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \text{ the run for } \sigma \text{ in } \mathcal{A} \text{ fulfills } Acc \right\}$$

Let $\rho = q_0 q_1 q_2 \dots$ be the run for some infinite word σ .

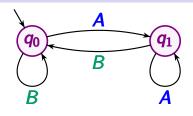
$$\rho$$
 fulfills Acc iff

$$\exists i \in \{1, \ldots, k\}. \ \inf(\rho) \cap L_i = \emptyset \ \land \ \inf(\rho) \cap \bigcup_i \neq \emptyset$$

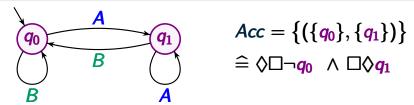
where
$$\inf(
ho) = \left\{q \in Q : \stackrel{\infty}{\exists} \ell \in \mathbb{N}. \ q = q_{\ell}\right\}$$



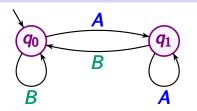
$$Acc = \big\{ \big(\{q_0\}, \{q_1\} \big) \big\}$$



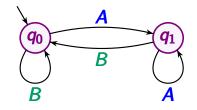
♦□ "eventually forever"□♦ "infinitely often"



accepted language: $(A + B)^*A^{\omega}$

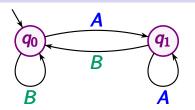


accepted language: $(A + B)^*A^\omega$



$$Acc = \{(\varnothing, \{q_1\})\}$$

 $\widehat{=} \Box \Diamond q_1$



accepted language: $(A + B)^*A^{\omega}$

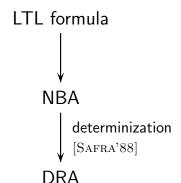
$$q_0$$
 B
 q_1
 A

$$Acc = \{(\varnothing, \{q_1\})\}$$
$$\widehat{=} \Box \Diamond q_1$$

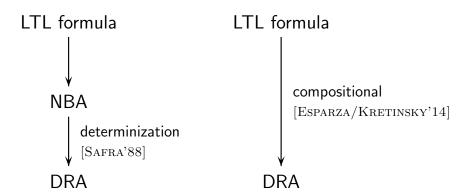
accepted language: $(B^*A)^{\omega}$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

$$\mathcal{L}_{\omega}(\mathcal{A}) = \{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \}$$



$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \mathbf{\Sigma}^{\omega} : \sigma \models \varphi \right\}$$



For each LTL formula φ over AP there exists a DRA \mathcal{A} with the alphabet $\Sigma = 2^{AP}$ s.t.

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

Example: $AP = \{a, b\}$

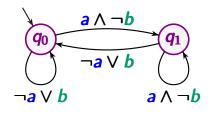
$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

Example:
$$AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

For each LTL formula φ over AP there exists a DRA $\mathcal A$ with the alphabet $\Sigma = 2^{AP}$ s.t.

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \mathbf{\Sigma}^{\omega} : \sigma \models \varphi \right\}$$

Example:
$$AP = \{a, b\} \rightarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$



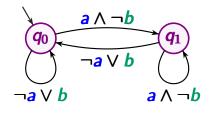
acceptance condition:

$$\Diamond \Box \neg q_0 \land \Box \Diamond q_1$$

For each LTL formula φ over AP there exists a DRA $\mathcal A$ with the alphabet $\Sigma = 2^{AP}$ s.t.

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

Example:
$$AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$



acceptance condition:

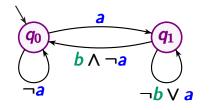
$$\Diamond \Box \neg q_0 \land \Box \Diamond q_1$$

LTL formula $\Diamond \Box (a \land \neg b)$

For each LTL formula φ over AP there exists a DRA \mathcal{A} with the alphabet $\Sigma = 2^{AP}$ s.t.

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \mathbf{\Sigma}^{\omega} : \sigma \models \varphi \right\}$$

Example:
$$AP = \{a, b\} \rightarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$



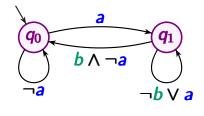
acceptance condition:

$$\Diamond \Box \neg q_1 \wedge \Box \Diamond q_0$$

For each LTL formula φ over AP there exists a DRA \mathcal{A} with the alphabet $\Sigma = 2^{AP}$ s.t.

$$\mathcal{L}_{\omega}(\mathcal{A}) = \left\{ \sigma \in \Sigma^{\omega} : \sigma \models \varphi \right\}$$

Example:
$$AP = \{a, b\} \rightsquigarrow \Sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$



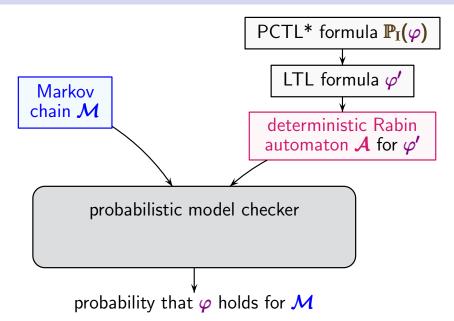
acceptance condition:

$$\Diamond\Box\neg q_1 \wedge \Box\Diamond q_0$$

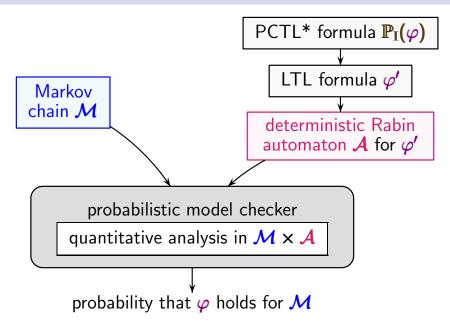
LTL formula $\Box(a \to \Diamond(b \land \neg a)) \land \Diamond\Box \neg a$

PCTL* model checking

PCTL* model checking



PCTL* model checking



given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$

given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

goal: define a Markov chain $\mathcal{M} \times \mathcal{A}$ s.t.

$$\Pr_{s}^{\mathcal{M}}(\mathcal{A}) = \Pr^{\mathcal{M}}\{\pi \in Paths(s) : trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})\}$$

can be derived by a probabilistic reachability analysis in the product-chain $\mathcal{M} \times \mathcal{A}$

$$trace(s_0 s_1 s_2...) = L(s_0) L(s_1) L(s_2)... \in (2^{AP})^{\omega}$$

```
given: Markov chain \mathcal{M} = (S, P, AP, L)

DRA \mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)

idea: define a Markov chain \mathcal{M} \times \mathcal{A} s.t. ...
```

path π in \mathcal{M}

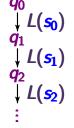
given: Markov chain $\mathcal{M} = (S, P, AP, L)$

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

idea: define a Markov chain $\mathcal{M} \times \mathcal{A}$ s.t. ...

path π in \mathcal{M}

run for $trace(\pi)$ in A



given: Markov chain $\mathcal{M} = (S, P, AP, L)$

path π

DRA $\mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$

idea: define a Markov chain $\mathcal{M} \times \mathcal{A}$ s.t. ...

path in

in \mathcal{M} $\mathcal{M} \times \mathcal{A}$ in \mathcal{A} $\begin{matrix} s_0 & \cdots & q_0 \\ \downarrow & & \downarrow \\ s_1 & \cdots & \langle s_0, q_1 \rangle & \cdots & \langle s_1, q_2 \rangle & \cdots & \langle s_1, q_2 \rangle & \cdots & \langle s_2, q_3 \rangle$

run for $trace(\pi)$

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

For each state s in \mathcal{M} , let $q_s = \delta(q_0, L(s))$.

successor state in \mathcal{A} of the initial DRA-state q_0 for the input symbol $L(s) \in 2^{AP}$

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

For each state s in \mathcal{M} , let $q_s = \delta(q_0, L(s))$.

$$\Pr_{s}^{\mathcal{M}}(\mathcal{A})$$

probability measure of all paths $\pi \in Paths^{\mathcal{M}}(s)$ such that $trace(\pi) \in \mathcal{L}_{\omega}(\mathcal{A})$

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

For each state s in \mathcal{M} , let $q_s = \delta(q_0, L(s))$.

$$\Pr_{s}^{\mathcal{M}}(\mathcal{A})$$

$$= \Pr_{\langle s,q_{s}\rangle}^{\mathcal{M}\times\mathcal{A}} \left(\bigvee_{1\leq i\leq k} (\Diamond \Box \neg L_{i} \wedge \Box \Diamond U_{i}) \right)$$

probability measure of all paths π in the product s.t. $\pi|_{\Lambda}$ satisfies the acceptance condition of A

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

For each state s in \mathcal{M} , let $q_s = \delta(q_0, L(s))$.

$$Pr_{s}^{\mathcal{M}}(\mathcal{A})$$

$$= Pr_{\langle s,q_{s}\rangle}^{\mathcal{M}\times\mathcal{A}} \left(\bigvee_{1\leqslant i\leqslant k} (\Diamond \Box \neg L_{i} \wedge \Box \Diamond U_{i}) \right)$$

$$= Pr_{\langle s,q_{s}\rangle}^{\mathcal{M}\times\mathcal{A}} \left(\Diamond accBSCC \right)$$

given: Markov chain \mathcal{M} and DRA \mathcal{A} where $Acc = \{ (L_1, U_1), (L_2, U_2), \dots, (L_k, U_k) \}$

For each state s in \mathcal{M} , let $q_s = \delta(q_0, L(s))$.

$$\Pr_{s}^{\mathcal{M}}(\mathcal{A})$$

$$= \Pr_{\langle s, q_{s} \rangle}^{\mathcal{M} \times \mathcal{A}}(\lozenge accBSCC)$$

union of accepting BSCCs in $\mathcal{M} \times \mathcal{A}$ i.e., BSCC C s.t.

$$\exists i \in \{1, \ldots, k\}. \ \ C \cap L_i = \emptyset \ \land \ \ C \cap U_i \neq \emptyset$$

Summary: PCTL* model checking

given: Markov chain $\mathcal{M} = (S, P, AP, L, s_0)$

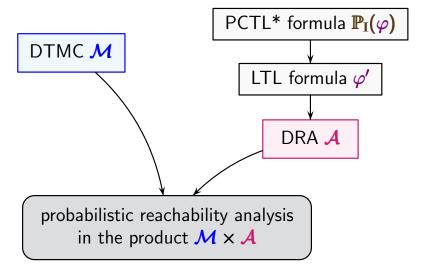
PCTL* state formula ◆

task: check whether $\mathcal{M} \models \Phi$

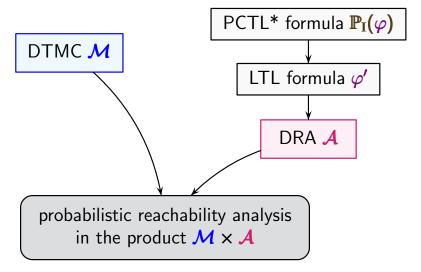
method: bottom-up treatment of state subformulas Ψ to compute

$$Sat(\Psi) = \{ s \in S : s \models \Psi \}$$

- propositional logic fragment: obvious
- probability operator $\mathbb{P}_{\mathbf{I}}(\varphi)$ via
 - $_*$ construction of a DRA ${\cal A}$ for arphi
 - $_*$ probabilistic reachability analysis in ${\cal M} imes {\cal A}$



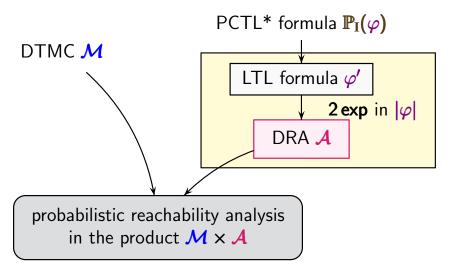
- graph analysis to compute the accepting BSCCs of the product
- linear equation system for the probabilities to reach an accepting BSCC



1. graph analysis to compute the accepting BSCCs of the product

2. linear equation system

time complexity: polynomial in the sizes of M and A



- 1. graph analysis to compute the accepting BSCCs of the product
- 2. linear equation system

time complexity: polynomial in the sizes of M and A

Exponential-time algorithms for DTMC and LTL

Exponential-time algorithms for DTMC and LTL

given: Markov chain \mathcal{M} , LTL formula φ

task: compute $Pr^{\mathcal{M}}(\varphi)$

single exponential-time algorithms:

iterative, automata-less approach

[Courcoubetis/Yannakakis'88]

using weak alternating automata

[Bustan/Rubin/Vardi'04]

using separated Büchi automata

[Couvreur/Saheb/Sutre'03]

using unambiguous Büchi automata

[BAIER/KIEFER/KLEIN/KLÜPPELHOLZ/MÜLLER/WORRELL'16]

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- rewards, cost-utility ratios, weights
- conditional probabilities

Markov decision processes (MDP)

- basic definitions
- PCTL/PCTL* model checking
- * fairness
- conditional probabilities
- rewards, quantiles
- mean-payoff
- * expected accumulated weights

Markov reward model (MRM)

Markov reward model (MRM)

Markov chain $\mathcal{M} = (S, P, AP, L, rew)$ with a reward function for the states:

rew :
$$S \rightarrow \mathbb{N}$$

idea: reward rew(s) will be earned when leaving s

Markov reward model (MRM)

Markov chain $\mathcal{M} = (S, P, AP, L, rew)$ with a reward function for the states:

rew :
$$S \rightarrow \mathbb{N}$$

idea: reward rew(s) will be earned when leaving s

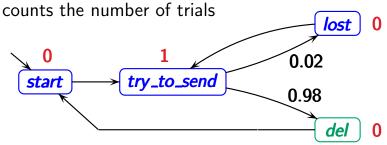
formalization by accumulated rewards of finite paths

$$rew(s_0 s_1 \dots s_n) = \sum_{0 \leqslant i < n} rew(s_i)$$

analogously: rewards for edges $rew : S \times S \rightarrow \mathbb{N}$

Example: Markov reward model

communication protocol with reward function that

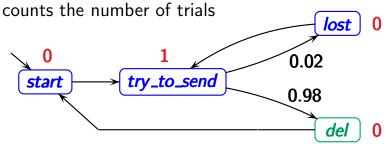


accumulated reward of finite paths, e.g.,

$$rew(start try lost try del) = 2$$

Example: Markov reward model

communication protocol with reward function that

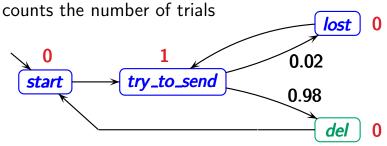


measures of interest, e.g.,

$$\Pr^{\mathcal{M}}(\lozenge^{\leqslant 3} del)$$
 probability to deliver a message within at most three trials reachability with reward bound $\leqslant 3$

Example: Markov reward model

communication protocol with reward function that



measures of interest, e.g.,

$$\Pr^{\mathcal{M}}(\lozenge^{\leqslant 3} del)$$
 probability to deliver a message within at most three trials $\mathbb{E}(\diamondsuit del)$ expected number of trials until delivered

probability operator for reward-bounded path formulas:

 $\mathbb{P}_{\mathbf{I}}(\Phi_1 \mathsf{U}^{\leqslant r} \Phi_2)$ until with upper reward bound

probability operator for reward-bounded path formulas:

$$\mathbb{P}_{\mathbf{I}}(\Phi_1 \mathsf{U}^{\leqslant r} \Phi_2)$$
 until with upper reward bound

expected accumulated reward operator: $\mathbb{E}_{\leq r}(\Phi \Phi)$

$$s \models \mathbb{E}_{\leq r}(\Phi \Phi)$$
 iff $\begin{cases} \text{expected accumulated reward on} \\ \text{paths from } s \text{ to a } \Phi \text{-state is } \leqslant r \end{cases}$

probability operator for reward-bounded path formulas:

$$\mathbb{P}_{I}(\Phi_{1} \mathsf{U}^{\leqslant r} \Phi_{2})$$
 until with upper reward bound

expected accumulated reward operator: $\mathbb{E}_{\leqslant r}(\diamondsuit \Phi)$

$$s \models \mathbb{E}_{\leq r}(\Phi \Phi)$$
 iff $\begin{cases} \text{expected accumulated reward on } \\ \text{paths from } s \text{ to a } \Phi \text{-state is } \leqslant r \end{cases}$

example: communication protocol

$$\mathbb{P}_{\geqslant 0.9}(\lozenge^{\leqslant 3} del)$$

 $\mathbb{E}_{\leq 5}(\bigoplus del)$

probability for delivering the message within at most three trials is at least 0.9

á

average number of trials is less or equal 5

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_{\mathbf{s}}^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r Let \mathbf{x}_{\mathbf{s},i} = \Pr_{\mathbf{s}}^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2). Then:
```

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

Let
$$\mathbf{x}_{s,i} = \Pr_{s}^{\mathcal{M}}(\Phi_1 \mathbf{U}^{\leqslant i} \Phi_2)$$
. Then:

if
$$s \models \exists (\Phi_1 \cup \Phi_2) \land \neg \Phi_2 \text{ and } i \geqslant rew(s)$$
 then
$$x_{s,i} = \sum_{s' \in S} P(s, s') \cdot x_{s',i-rew(s)}$$

234 / 373

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

Let
$$\mathbf{x}_{s,i} = \Pr_{s}^{\mathcal{M}}(\Phi_1 \mathbf{U}^{\leqslant i} \Phi_2)$$
. Then:

if
$$s \models \exists (\Phi_1 \cup \Phi_2) \land \neg \Phi_2 \text{ and } i \geqslant rew(s)$$
 then
$$x_{s,i} = \sum_{s' \in S} P(s, s') \cdot x_{s',i-rew(s)}$$

if $s \models \Phi_2$ then: $x_{s,i} = 1$

in all other cases: $x_{s,i} = 0$

```
treatment of \mathbb{P}_{\mathbb{I}}(\Phi_1 \cup \mathbb{V}^{\leq r} \Phi_2) where r \in \mathbb{N}
          compute \Pr_{\bullet}^{\mathcal{M}}(\Phi_1 \cup \nabla^{\bullet} \Phi_2) iteratively
          for increasing reward bound i = 0, 1, 2, \dots, r
treatment of the \mathbb{E}_{\leq r}(\Phi \Phi)
          compute the expected accumulated rewards
          by solving the linear equation system
```

treatment of
$$\mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2)$$
 where $r \in \mathbb{N}$ compute $\Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2)$ iteratively for increasing reward bound $i = 0, 1, 2, \ldots, r$

treatment of the
$$\mathbb{E}_{\leqslant r}(\diamondsuit \Phi)$$
, assuming $\Pr^{\mathcal{M}}(\lozenge \Phi) = 1$

compute the expected accumulated rewards by solving the linear equation system

$$x_s = rew(s) + \sum_{s' \in S} P(s, s') \cdot x_{s'}$$
 if $s \not\models \Phi$
 $x_s = 0$ if $s \models \Phi$

treatment of
$$\mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2)$$
 where $r \in \mathbb{N}$ compute $\Pr_{\mathbf{s}}^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2)$ iteratively for increasing reward bound $i = 0, 1, 2, \ldots, r$ treatment of the $\mathbb{E}_{\leqslant r}(\Phi)$, assuming $\Pr^{\mathcal{M}}(\Diamond \Phi) = 1$ compute the expected accumulated rewards by solving the linear equation system

$$x_s = rew(s) + \sum_{s' \in S} P(s, s') \cdot x_{s'}$$
 if $s \not\models \Phi$

also applicable for rational-valued weight fct.

treatment of $\mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2)$ where $r \in \mathbb{N}$ compute $\Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2)$ iteratively for increasing reward bound $i = 0, 1, 2, \ldots, r$ treatment of the $\mathbb{E}_{\leqslant r}(\Phi \, \Phi)$, assuming $\Pr^{\mathcal{M}}(\Diamond \Phi) = 1$

compute the expected accumulated rewards by solving the linear equation system

time complexity:

reward-bounded until:

expected rewards: polynomial in size(M)

polynomial in $size(\mathcal{M})$ and r

treatment of
$$\mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2)$$
 where $r \in \mathbb{N}$ compute $\Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2)$ iteratively for increasing reward bound $i = 0, 1, 2, \ldots, r$

treatment of the
$$\mathbb{E}_{\leq r}(\Phi \Phi)$$
, assuming $\Pr^{\mathcal{M}}(\Diamond \Phi) = 1$

compute the expected accumulated rewards by solving the linear equation system

time complexity:

pseudo-polynomial

reward-bounded until: polynomial in $\mathit{size}(\mathcal{M})$ and r

Complexity: reward-bounded until

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

unit rewards: polynomial in $size(\mathcal{M})$ and $\log r$

repeated squaring

general case: polynomial in $size(\mathcal{M})$ and r

"pseudo-polynomial"

Complexity: reward-bounded until

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

```
unit rewards: polynomial in size(\mathcal{M}) and log r repeated squaring
```

general case: polynomial in $size(\mathcal{M})$ and r

decision problem "does $\Pr_s^{\mathcal{M}}(\Phi_1 \mathsf{U}^{\leqslant r} \Phi_2) > q$ hold ?"

NP-hard [Laroussinie/Sproston'05]

PosSLP-hard, in PSPACE [HAASE/KIEFER'15]

Complexity: reward-bounded until

```
treatment of \mathbb{P}_{\mathbf{I}}(\Phi_1 \, \mathsf{U}^{\leqslant r} \, \Phi_2) where r \in \mathbb{N} compute \Pr_s^{\mathcal{M}}(\Phi_1 \, \mathsf{U}^{\leqslant i} \, \Phi_2) iteratively for increasing reward bound i = 0, 1, 2, \ldots, r
```

unit rewards: polynomial in $size(\mathcal{M})$ and $\log r$

repeated squaring

general case: polynomial in $size(\mathcal{M})$ and r

decision problem "does $\Pr_s^{\mathcal{M}}(\Phi_1 \mathsf{U}^{\leqslant r} \Phi_2) > q$ hold ?"

NP-hard

[Laroussinie/Sproston'05]

PosSLP-hard, in PSPACE [HAASE/KIEFER'15]

The threshold problem for Markov chains is NP-hard:

given: Markov chain $\mathcal{M} = (S, P, s_{init}, rew)$,

 $G \subseteq S$, $r \in \mathbb{N}$ and $q \in]0,1[\cap \mathbb{Q}]$

task: check whether $\Pr_{s_{init}}(\lozenge^{\leqslant r}G)\geqslant q$

The threshold problem for Markov chains is NP-hard:

given: Markov chain
$$\mathcal{M} = (S, P, s_{init}, rew)$$
,

$$G \subseteq S$$
, $r \in \mathbb{N}$ and $q \in]0,1[\cap \mathbb{Q}]$

task: check whether $\Pr_{s_{init}}(\lozenge^{\leqslant r}G)\geqslant q$

Polynomial reduction from counting variant of SUBSUM:

given:
$$x_1, \ldots, x_n, y, k \in \mathbb{N}$$

task: check whether there are at least k subsets N

of
$$\{1,\ldots,n\}$$
 s.t. $\sum_{i\in N} x_i \leqslant y$

Polynomial reduction

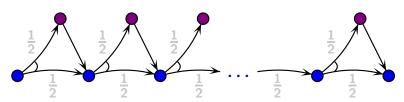
 $[{\rm Laroussinie/Sproston'}05]$

given: $x_1, \ldots, x_n, y, k \in \mathbb{N}$

task: check whether there are at least k subsets N

of $\{1, \ldots, n\}$ s.t. $\sum_{i \in N} x_i \leqslant y$

Markov chain: 2n+1 states

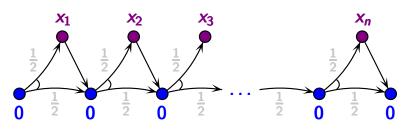


given: $x_1, \ldots, x_n, y, k \in \mathbb{N}$

task: check whether there are at least k subsets N

of $\{1, \ldots, n\}$ s.t. $\sum_{i \in N} x_i \leqslant y$

Markov chain: 2n+1 states and rewards for the states

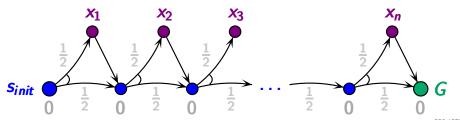


given: $x_1, \ldots, x_n, y, k \in \mathbb{N}$

task: check whether there are at least k subsets N

of $\{1, \ldots, n\}$ s.t. $\sum_{i \in N} x_i \leqslant y$

Markov chain: 2n+1 states and rewards for the states

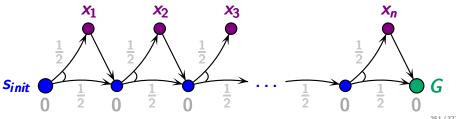


given: $x_1, \ldots, x_n, y, k \in \mathbb{N}$

task: check whether there are at least k subsets N

of $\{1,\ldots,n\}$ s.t. $\sum x_i \leqslant y$

 $\Pr_{Sinit}(\lozenge^{\leq y}G) \geqslant \frac{k}{2n}$ iff there are at least k subsets



Mean-payoff (a.k.a. long-rung average)

Mean-payoff (a.k.a. long-rung average)

given: a weighted graph without trap states

mean-payoff functions
$$\overline{MP}$$
, \underline{MP} : InfPaths $\to \mathbb{R}$:
$$\overline{MP}(s_0 s_1 s_2 \dots) = \limsup_{n \to \infty} \frac{1}{n+1} \cdot \sum_{i=0}^n wgt(s_i)$$

$$\underline{MP}(s_0 s_1 s_2 \dots) = \liminf_{n \to \infty} \frac{1}{n+1} \cdot \sum_{i=0}^n wgt(s_i)$$

Mean-payoff (a.k.a. long-rung average)

given: a weighted graph without trap states

mean-payoff functions
$$\overline{MP}$$
, \underline{MP} : InfPaths $\rightarrow \mathbb{R}$:
$$\overline{MP}(s_0 s_1 s_2 ...) = \limsup_{n \to \infty} \frac{1}{n+1} \cdot \sum_{i=0}^{n} wgt(s_i)$$

$$\underline{MP}(s_0 s_1 s_2 ...) = \liminf_{n \to \infty} \frac{1}{n+1} \cdot \sum_{i=0}^{n} wgt(s_i)$$

if
$$wgt(s) = +1$$
, $wgt(t) = -1$ then there exists n_1, n_2, \ldots and $k_1, k_2, \ldots \in \mathbb{N}$ s.t. for $\pi = s^{n_1} t^{k_1} s^{n_2} t^{k_2} \ldots$

$$\underline{\mathrm{MP}}(\pi) < 0 < \overline{\mathrm{MP}}(\pi)$$

Expected mean-payoff in finite MC

fundamental results:

in finite MC: $\mathbb{E}_s(\underline{MP}) = \mathbb{E}_s(\overline{MP})$

notation: $\mathbb{E}_s(MP)$ rather than $\mathbb{E}_s(MP)$ resp. $\mathbb{E}_s(MP)$

Expected mean-payoff in finite MC

fundamental results:

in finite MC: $\mathbb{E}_s(\underline{MP}) = \mathbb{E}_s(\overline{MP})$

notation: $\mathbb{E}_s(MP)$ rather than $\mathbb{E}_s(MP)$ resp. $\mathbb{E}_s(\overline{MP})$

Almost all paths eventually enter a BSCC and visit all its states infinitely often.

BSCC: bottom strongly connected component

Expected mean-payoff in finite MC

fundamental results:

in finite MC: $\mathbb{E}_s(\underline{MP}) = \mathbb{E}_s(\overline{MP})$

notation: $\mathbb{E}_s(MP)$ rather than $\mathbb{E}_s(MP)$ resp. $\mathbb{E}_s(MP)$

Almost all paths eventually enter a BSCC and visit all its states infinitely often ...

... with the same long-run frequencies ...

BSCC: bottom strongly connected component

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

$$\bigcirc^{i}s$$
 $\hat{=}$ "after *i* steps in state *s*"

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

computable by a linear equation system:

$$\theta^B(s) = \sum_{t \in B} \theta^B(t) \cdot P(t, s)$$
"balance equations"

$$\bigcirc^{i}s$$
 $\hat{=}$ "after *i* steps in state *s*"

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

computable by a linear equation system:

$$\theta^{B}(s) = \sum_{t \in B} \theta^{B}(t) \cdot P(t, s)$$

$$\sum_{s \in B} \theta^{B}(s) = 1$$

$$\bigcirc^i s \triangleq$$
 "after *i* steps in state *s*"

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

computable by a linear equation system:

$$\theta^{B}(s) = \sum_{t \in B} \theta^{B}(t) \cdot P(t, s)$$

$$\sum_{s \in B} \theta^{B}(s) = 1$$

unique solution of the linear equation system

$$x = x \cdot P|_{B}$$
$$\sum_{s \in B} x_{s} = 1$$

 $\bigcirc^i s \triangleq$ "after *i* steps in state *s*"

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_{0} s_{1} \dots s_{n})$$

long-run frequency of state s in path π

... limit exists for almost all paths ...

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_0 s_1 \dots s_n)$$

long-run frequency of state s in path π

$$freq(s, s_0 s_1 ... s_n) = \begin{cases} \text{number of occurrences of } s \\ \text{in the sequence } s_0 s_1 ... s_n \end{cases}$$

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_0 s_1 \dots s_n)$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$MP(\pi) = \sum_{s \in B} \theta^B(s) \cdot wgt(s)$$

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_0 s_1 \dots s_n)$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$MP(\pi) = \sum_{s \in B} \theta^{B}(s) \cdot wgt(s)$$
only depends on B

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_0 s_1 \dots s_n)$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$MP(\pi) = \sum_{s \in B} \theta^{B}(s) \cdot wgt(s) \stackrel{\text{def}}{=} MP(B)$$

only depends on B

steady-state probabilities in BSCC **B** of a finite MC:

$$\theta^{B}(s) = \lim_{n \to \infty} \frac{1}{n} \cdot \sum_{i=1}^{n} \Pr_{t}(\bigcirc^{i} s)$$
 for each $t \in B$

for almost all paths $\pi = s_0 s_1 s_2 \dots$ with $\pi \models \lozenge B$:

$$\theta^B(s) = \lim_{n \to \infty} \frac{1}{n+1} \cdot freq(s, s_0 s_1 \dots s_n)$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$MP(\pi) = \sum_{s \in B} \theta^{B}(s) \cdot wgt(s) \stackrel{\text{\tiny def}}{=} MP(B)$$

expected mean-payoff:
$$\sum_{B} \Pr_{s_0}(\lozenge B) \cdot MP(B)$$

MC with two reward functions *cost*, *util* : $S \rightarrow \mathbb{N}$

Examples:

- energy-utility ratio
- number of SLA violations per day
- recovery time per failure

MC with two reward functions *cost*, *util* : $S \rightarrow \mathbb{N}$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

Examples:

- energy-utility ratio
- number of SLA violations per day
- recovery time per failure

MC with two reward functions *cost*, *util* : $S \rightarrow \mathbb{N}$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

does the limit exist for almost all paths?

- energy-utility ratio
- number of SLA violations per day
- recovery time per failure

MC with two reward functions cost, util: $S \rightarrow N$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$
$$= \lim_{n \to \infty} \frac{\frac{1}{n+1} \cdot \sum_{i=0}^{n} cost(s_i)}{\frac{1}{n+1} \cdot \sum_{i=0}^{n} util(s_i)}$$

MC with two reward functions cost, util: $S \rightarrow \mathbb{N}$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

$$= \lim_{n \to \infty} \frac{\frac{1}{n+1} \cdot \sum_{i=0}^{n} cost(s_i)}{\frac{1}{n+1} \cdot \sum_{i=0}^{n} util(s_i)}$$

$$= \frac{MP[cost](s_0 s_1 s_2 ...)}{MP[util](s_0 s_1 s_2 ...)}$$

MC with two reward functions cost, util: $S \rightarrow N$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

$$= \lim_{n\to\infty} \frac{\frac{1}{n+1}\cdot\sum_{i=0}^{n}cost(s_{i})}{\frac{1}{n+1}\cdot\sum_{i=0}^{n}util(s_{i})}$$

in particular: limit exists for almost all paths

$$= \frac{\mathrm{MP}[cost](s_0 s_1 s_2 \ldots)}{\mathrm{MP}[util](s_0 s_1 s_2 \ldots)}$$

MC with two reward functions *cost*, *util* : $S \rightarrow \mathbb{N}$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

if $\pi \models \lozenge B$ where B is a BSCC then almost surely

$$Irrat(\pi) = \frac{MP[cost](B)}{MP[util](B)}$$

$$MP[wgt](B) = \sum_{s \in B} \theta^B(s) \cdot wgt(s)$$
 mean-payoff for weight function

MC with two reward functions cost, util: $S \rightarrow N$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$Irrat(\pi) = \frac{MP[cost](B)}{MP[util](B)} \stackrel{\text{def}}{=} Irrat(B)$$

only depends on B

MC with two reward functions cost, util: $S \rightarrow \mathbb{N}$

long-run cost-utility ratio $Irrat : InfPaths \rightarrow \mathbb{R}$

$$Irrat(s_0 s_1 s_2 ...) = \lim_{n \to \infty} \frac{cost(s_0 s_1 ... s_n)}{util(s_0 s_1 ... s_n)}$$

if $\pi \models \Diamond B$ where B is a BSCC then almost surely

$$Irrat(\pi) = \frac{MP[cost](B)}{MP[util](B)} \stackrel{\text{\tiny def}}{=} Irrat(B)$$

expected long-run ratio: $\sum_{B} \Pr^{\mathcal{M}}(\lozenge B) \cdot Irrat(B)$

given: MC with reward functions $cost, util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

random variable for the long-run cost-utility ratio (as before)

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

$$r_{opt} = \inf \left\{ r \in \mathbb{R} : \Pr^{\mathcal{M}} \left(\Box \Diamond \left(\frac{cost}{util} \leqslant r \right) \right) > p \right\}$$

if $\pi = s_0 s_1 s_2 \dots$ is an infinite path then

$$\pi \models \Box \Diamond (\frac{cost}{util} \leqslant r)$$
 iff $\stackrel{\infty}{\exists} n$ s.t. $\frac{cost(s_0 s_1...s_n)}{util(s_0 s_1...s_n)} \leqslant r$

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

$$\begin{array}{ll} r_{opt} & = & \inf \big\{ r \in \mathbb{R} \, : \, \Pr^{\mathcal{M}} \big(\, \Box \big\langle \big(\frac{cost}{util} \leqslant r \big) \, \big) > p \, \big\} \\ \\ & = & \inf \big\{ r \in \mathbb{R} \, : \, \Pr^{\mathcal{M}} \big(\, \big\langle \Box \big(\frac{cost}{util} \leqslant r \big) \, \big) > p \, \big\} \end{array}$$

$$\pi \models \Box \Diamond (\frac{cost}{util} \leqslant r)$$
 iff $\stackrel{\infty}{\exists} n$ s.t. $\frac{cost(s_0 s_1...s_n)}{util(s_0 s_1...s_n)} \leqslant r$

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute $r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$

$$\begin{array}{ll} r_{opt} &=& \inf \big\{ r \in \mathbb{R} \, : \, \Pr^{\mathcal{M}} \big(\, \Box \Diamond \big(\frac{cost}{util} \leqslant r \big) \big) > \rho \big\} \\ \\ &=& \inf \big\{ r \in \mathbb{R} \, : \, \Pr^{\mathcal{M}} \big(\Diamond \Box \big(\frac{cost}{util} \leqslant r \big) \big) > \rho \big\} \\ \\ &=& \min \big\{ r \in \mathbb{Q} \, : \, \Pr^{\mathcal{M}} \big(\Diamond C_r \big) > \rho \big\} \end{array}$$

where C_r = union of all BSCCs B with $Irrat(B) \leq r$

```
given: MC with reward functions cost, util: S \rightarrow \mathbb{N} rational probability bound p
```

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

= $\min \{ r \in \mathbb{Q} : \Pr^{\mathcal{M}}(\lozenge C_r) > p \}$

where C_r = union of all BSCCs B with $Irrat(B) \leq r$

```
expected long-run ratio of B
```

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

= $\min \{ r \in \mathbb{Q} : \Pr^{\mathcal{M}}(\lozenge C_r) > p \}$

where C_r = union of all BSCCs B with $Irrat(B) \leq r$

1. compute the BSCCs B_1, \ldots, B_k and $r_i = Irrat(B_i)$

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

= $\min \{ r \in \mathbb{Q} : \Pr^{\mathcal{M}}(\lozenge C_r) > p \}$

where C_r = union of all BSCCs B with $Irrat(B) \leq r$

1. compute the BSCCs B_1, \ldots, B_k and $r_i = Irrat(B_i)$ w.l.o.g. $r_1 < r_2 < \ldots < r_k$

given: MC with reward functions cost, $util: S \rightarrow \mathbb{N}$ rational probability bound p

compute
$$r_{opt} = \inf \{ r \in \mathbb{R} : \Pr^{\mathcal{M}}(Irrat \leqslant r) > p \}$$

= $\min \{ r \in \mathbb{Q} : \Pr^{\mathcal{M}}(\lozenge C_r) > p \}$

where C_r = union of all BSCCs B with $Irrat(B) \leq r$

- 1. compute the BSCCs B_1, \ldots, B_k and $r_i = Irrat(B_i)$ w.l.o.g. $r_1 < r_2 < \ldots < r_k$
- 2. determine the minimal $i \in \{1, ..., k\}$ such that $\Pr^{\mathcal{M}}(\lozenge B_1) + ... + \Pr^{\mathcal{M}}(\lozenge B_i) > p$ and return r_i

Cost-utility ratios: invariances

Given an MC with two positive reward functions cost, $util: S \rightarrow \mathbb{N}$, consider their ratio:

$$\begin{array}{ll} \textit{ratio} &=& \frac{\textit{cost}}{\textit{util}} : \textit{FinPaths} \rightarrow \mathbb{Q} \\ \\ \textit{ratio}(\pi) &=& \frac{\textit{cost}(\pi)}{\textit{util}(\pi)} \quad \text{for all finite paths } \pi \end{array}$$

decision problems: given an ω -regular property φ and probability bound $q \in [0,1[$, ratio threshold $r \in \mathbb{Q}$:

- does $\Pr^{\mathcal{M}}(\Box(ratio \leqslant r) \land \varphi) > q \text{ hold } ?$
- does $\Pr^{\mathcal{M}}(\Box(ratio \leqslant r) \land \varphi) = 1 \text{ hold } ?$

Cost-utility ratio via weight functions

Given an MC with two positive reward functions cost, $util: S \rightarrow \mathbb{N}$, consider their ratio:

$$ratio = \frac{cost}{util}$$
: $FinPaths o \mathbb{Q}$
 $ratio(\pi) = \frac{cost(\pi)}{util(\pi)}$ for all finite paths π

replace ratio by weight constraints:

$$\Box (ratio \leqslant r) \equiv \Box (wgt \leqslant 0)$$

Cost-utility ratio via weight functions

Given an MC with two positive reward functions cost, $util: S \rightarrow \mathbb{N}$, consider their ratio:

$$ratio = \frac{cost}{util} : FinPaths \rightarrow \mathbb{Q}$$

$$ratio \leqslant r$$
 iff $wgt \leqslant 0$ where $wgt = cost - r \cdot util$

$$\Box (ratio \leqslant r) \equiv \Box (wgt \leqslant 0)$$

Cost-utility ratio via weight functions

Given an MC with two positive reward functions cost, $util: S \rightarrow \mathbb{N}$, consider their ratio:

$$ratio = \frac{cost}{util} : FinPaths \rightarrow \mathbb{Q}$$

$$ratio \leqslant r$$
 iff $wgt \leqslant 0$ where $wgt = cost - r \cdot util \in \mathbb{Q}$

$$\Box (ratio \leqslant r) \equiv \Box (wgt \leqslant 0)$$

Cost-utility ratio via weight functions

Given an MC with two positive reward functions cost, $util: S \rightarrow \mathbb{N}$, consider their ratio:

$$ratio = \frac{cost}{util} : FinPaths \rightarrow \mathbb{Q}$$

$$ratio \leqslant r$$
 iff $wgt > 0$

where $wgt = (cost - r \cdot util) \cdot const \in \mathbb{Z}$

integer-valued weight function

$$\Box (ratio \leqslant r) \equiv \Box (wgt > 0)$$

Given an MC with a weight function $wgt : S \to \mathbb{Z}$.

Given an MC with a weight function $wgt : S \to \mathbb{Z}$.

almost-sure problem:

does
$$\Pr_{s_0}^{\mathcal{M}}(\square(wgt > 0) \land \varphi) = 1 \text{ hold } ?$$

positive problem:

does
$$\Pr_{s_0}^{\mathcal{M}}(\Box(wgt>0) \land \varphi) > 0$$
 hold ?

quantitative problems, e.g.:

does
$$\Pr_{s_0}^{\mathcal{M}}(\Box(wgt>0) \land \varphi) > \frac{1}{2} \text{ hold } ?$$

Given an MC with a weight function $wgt: S \to \mathbb{Z}$.

almost-sure problem:
$$\operatorname{does} \Pr\left(\square(\mathit{wgt}>0) \land \varphi\right) = 1 \text{ hold ?}$$

positive problem:
$$\operatorname{does} \operatorname{Pr}^{\mathcal{M}}_{s_0} \big(\square (\operatorname{wgt} > 0) \wedge \varphi \big) > 0 \text{ hold ?}$$
 quantitative problems, e.g.:
$$\operatorname{does} \operatorname{Fr}^{\mathcal{M}}_{s_0} \big(\square (\operatorname{wgt} > 0) \wedge \varphi \big) > \frac{1}{2} \text{ hold ?}$$

$$\Pr_{s}^{\mathcal{M}}(\Box(\textit{wgt}>0)\land\varphi)=1$$

$$\Pr_s^{\mathcal{M}}igl(\Box(\textit{wgt}>0)\landarphiigr)=1$$
 iff $\Pr_s^{\mathcal{M}}igl(\Box(\textit{wgt}>0)igr)=1$ and $\Pr_s^{\mathcal{M}}igl(arphiigr)=1$

$$\Pr_s^{\mathcal{M}} igl(\Box (\textit{wgt} > 0) \land arphi igr) = 1$$
 iff $\Pr_s^{\mathcal{M}} igl(\Box (\textit{wgt} > 0) igr) = 1$ and $\Pr_s^{\mathcal{M}} igl(arphi igr) = 1$ iff $s \not\models \exists \Diamond (\textit{wgt} \leqslant 0)$ and $\Pr_s^{\mathcal{M}} igl(arphi igr) = 1$

$$\Pr_s^{\mathcal{M}} \left(\Box (\textit{wgt} > 0) \land \varphi \right) = 1$$
 iff $\Pr_s^{\mathcal{M}} \left(\Box (\textit{wgt} > 0) \right) = 1$ and $\Pr_s^{\mathcal{M}} (\varphi) = 1$ iff $s \not\models \exists \lozenge (\textit{wgt} \leqslant 0)$ and $\Pr_s^{\mathcal{M}} (\varphi) = 1$ solvable by standard shortest-path algorithms

$$\Pr_s^{\mathcal{M}} igl(\Box (\textit{wgt} > 0) \land \varphi igr) = 1$$
 iff $\Pr_s^{\mathcal{M}} igl(\Box (\textit{wgt} > 0) igr) = 1$ and $\Pr_s^{\mathcal{M}} igl(\varphi igr) = 1$ iff $s \not\models \exists \Diamond (\textit{wgt} \leqslant 0)$ and $\Pr_s^{\mathcal{M}} igl(\varphi igr) = 1$ standard methods for ω -regular path properties polynomially time-bounded for reachability or Büchi properties

$$\Pr_s^{\mathcal{M}}igl(\Box(\textit{wgt}>0)\landarphiigr)=1$$
 iff $\Pr_s^{\mathcal{M}}igl(\Box(\textit{wgt}>0)igr)=1$ and $\Pr_s^{\mathcal{M}}igl(arphiigr)=1$ iff $s
ot\models \exists \Diamond(\textit{wgt}\leqslant 0)$ and $\Pr_s^{\mathcal{M}}igl(arphiigr)=1$

Best threshold computable by shortest-path algorithms:

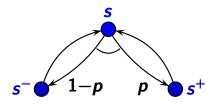
$$\sup \big\{ \ {\color{red} r} \in \mathbb{Z} \ : \ \Pr^{\mathcal{M}}_{s}(\ \square(\textit{wgt} > {\color{red} r}) \ \land \ \varphi \) = 1 \ \big\}$$

1+ length of a shortest path starting in state ${m s}$, provided that φ holds almost surely and there are no negative cycles 298/

Given an MC with a weight function $wgt: S \to \mathbb{Z}$.

almost-sure problem:
$$\operatorname{does} \Pr\left(\Box (\mathit{wgt} > 0) \land \varphi \right) = 1 \text{ hold ?}$$

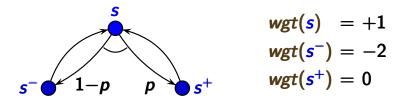
positive problem:
$$\operatorname{does} \operatorname{Pr}^{\mathcal{M}}_{s_0} \big(\square (\operatorname{wgt} > 0) \wedge \varphi \big) > 0 \text{ hold ?}$$
 quantitative problems, e.g.:
$$\operatorname{does} \operatorname{Fr}^{\mathcal{M}}_{s_0} \big(\square (\operatorname{wgt} > 0) \wedge \varphi \big) > \frac{1}{2} \text{ hold ?}$$



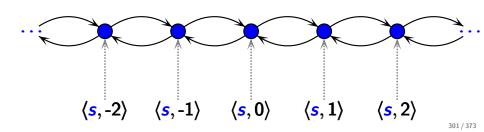
$$wgt(s) = +1$$

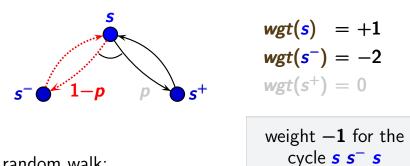
 $wgt(s^{-}) = -2$
 $wgt(s^{+}) = 0$

probability parameter
$$0$$

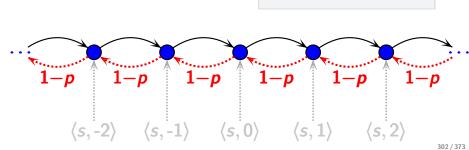


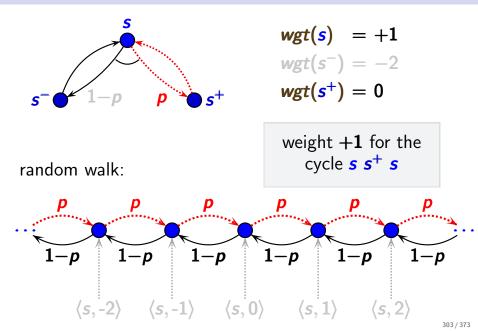
random walk:

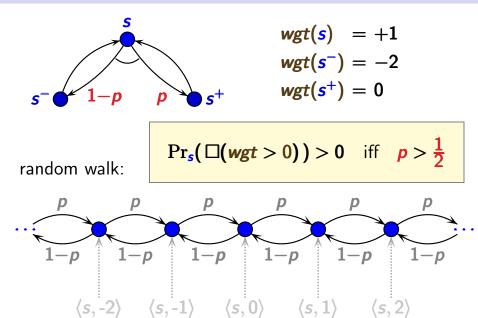




random walk:







304 / 373

Weight invariance problem: positive case

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) > 0$ hold?"

depends on the concrete transition probabilities

where φ is a ω -regular property and $0 \leqslant q < 1$

Weight invariance problem: positive case

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) > 0$ hold?"

- depends on the concrete transition probabilities
- is solvable in polynomial time
 BSCC-analysis and variants of shortest-paths algorithms, assuming φ is a Rabin or Streett or reachability condition

[Brázdil/Kiefer/Kučera/Novotný/Katoen'14] [Krähmann/Schubert/Baier/Dubslaff'15]

where φ is a ω -regular property and $0 \leqslant q < 1$

Weight invariance problem: positive case

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) > 0$ hold?"

- depends on the concrete transition probabilities
- is solvable in polynomial time BSCC-analysis and variants of shortest-paths algorithms, assuming φ is a Rabin or Streett condition

check whether there exists a good BSCC B s.t.

- 1. MP(B) > 0 or MP(B) = 0 & no negative cycle in B
- 2. there is a path π from s to B s.t. π and its prefixes have sufficiently high weight

Weight invariance problem: quantitative case

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) > 0$ hold?"

- depends on the concrete transition probabilities
- is solvable in polynomial time BSCC-analysis and variants of shortest-paths algorithms, assuming φ is a Rabin or Streett condition

The problem "does $\Pr_s(\square(wgt > 0) \land \varphi) > q$ hold?"

 is reducible to the threshold problem for probabilistic pushdown automata (exponential blowup)

Weight invariance problem: quantitative case

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) > 0$ hold?"

- depends on the concrete transition probabilities
- is solvable in polynomial time BSCC-analysis and variants of shortest-paths algorithms, assuming φ is a Rabin or Streett condition

The problem "does $\Pr_s(\square(wgt > 0) \land \varphi) > q$ hold?"

- is reducible to the threshold problem for probabilistic pushdown automata (exponential blowup)
- is PosSLP-hard, even for unit weights and $\varphi = true$ [Etessami/Yannak.'09], [Brázdil/Brozek/Etes./Kučera/Wojt.'10]

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) = 1 \text{ hold ?"}$

- independent from the concrete transition probabilities
- is solvable in polynomial time

The problem "does $\Pr_s(\Box(wgt > r) \land \varphi) = 1 \text{ hold ?"}$

- independent from the concrete transition probabilities
- is solvable in polynomial time

$$\Pr_{\mathbf{s}}(\square(\mathbf{wgt} > \mathbf{r}) \wedge \varphi) = 1$$

iff
$$\Pr_{s}(\square(wgt > r)) = 1$$
 and $\Pr_{s}(\varphi) = 1$

The problem "does $\Pr_{s}(\Box(wgt > r) \land \varphi) = 1 \text{ hold ?"}$

- independent from the concrete transition probabilities
- is solvable in polynomial time

$$\Pr_s(\Box(\textit{wgt} > r) \land \varphi) = 1$$
 iff $\Pr_s(\Box(\textit{wgt} > r)) = 1$ and $\Pr_s(\varphi) = 1$ standard algorithm polynomial-time for reachability, Rabin or Streett

The problem "does $\Pr_{s}(\square(wgt > r) \land \varphi) = 1 \text{ hold ?"}$

- independent from the concrete transition probabilities
- is solvable in polynomial time

$$\Pr_{s}(\square(\textit{wgt} > \textit{r}) \land \varphi) = 1$$
 iff
$$\Pr_{s}(\square(\textit{wgt} > \textit{r})) = 1 \quad \text{and} \quad \Pr_{s}(\varphi) = 1$$
 shortest-path algorithm check chether the weight of a shortest

path from s is at least r+1

given: weighted MC \mathcal{M} , weight bound $r \in \mathbb{Z}$ and a distinguished states s, goal

decision problems:

positive prob: does $\Pr_s(\lozenge^{\leqslant r}goal) > 0$ hold ?

almost-sure: does $\Pr_s(\lozenge^{\leqslant r}goal) = 1$ hold?

quantitative: does $\Pr_s(\lozenge^{\leq r}goal) > \frac{1}{2}$ hold ?

given: weighted MC \mathcal{M} , weight bound $r \in \mathbb{Z}$ and a distinguished states s, goal

decision problems:

positive prob: does $\Pr_s(\lozenge^{\leqslant r}goal) > 0$ hold ? solvable in poly-time using shortest-path algorithms

almost-sure: does $\Pr_s(\lozenge^{\leqslant r}goal) = 1$ hold? solvable in poly-time using shortest-path algorithms; a bit tricky if goal is not a trap

quantitative: does $\Pr_s(\lozenge^{\leq r}goal) > \frac{1}{2}$ hold? solvable in poly-space using algorithms for prob PDA

given: weighted MC \mathcal{M} , weight bound $r \in \mathbb{Z}$ and a distinguished states s, goal

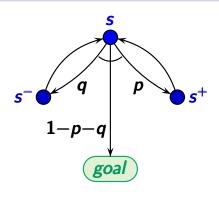
decision problems:

positive prob: does $\Pr_s(\lozenge^{\leqslant r}goal) > 0$ hold ? solvable in poly-time using shortest-path algorithms

almost-sure: does $\Pr_s(\lozenge^{\leqslant r}goal) = 1$ hold? solvable in poly-time using shortest-path algorithms; a bit tricky if goal is not a trap

quantitative: does $\Pr_s(\lozenge^{\leqslant r}goal) > \frac{1}{2}$ hold? solvable in poly-space using algorithms for prob PDA

Is there an algorithm to compute $\Pr_s(\lozenge^{\leqslant r}goal)$?

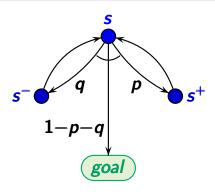


$$wgt(s) = 0$$

$$wgt(s^{-}) = -1$$

$$wgt(s^{+}) = +1$$

probability parameters p and q with 0 < p, q < 1 and p + q < 1



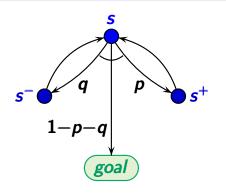
$$wgt(s) = 0$$

$$wgt(s^{-}) = -1$$

$$wgt(s^{+}) = +1$$

$$\Pr_{s}(\lozenge^{=0}goal) = (1-p-q)\cdot\sum_{n=0}^{\infty}\binom{2n}{n}\cdot p^{n}\cdot q^{n}$$

[Kiefer'17]



$$wgt(s) = 0$$

$$wgt(s^{-}) = -1$$

$$wgt(s^{+}) = +1$$

$$\Pr_{s}(\lozenge^{=0}goal) = (1-p-q) \cdot \sum_{n=0}^{\infty} {2n \choose n} \cdot p^{n} \cdot q^{n}$$
$$= \frac{1-p-q}{\sqrt{1-4 \cdot p \cdot q}} \quad ... \text{ irrational}$$

Given a Markov chain \mathcal{M} with two reward functions $rew_1, rew_2 : S \to \mathbb{N}$ with $rew_2 > 0$, consider their ratio

ratio : FinPaths
$$\rightarrow \mathbb{Q}$$
, ratio $(\pi) = \frac{rew_1(\pi)}{rew_2(\pi)}$

examples:

- energy-utility ratio
- cost of repair mechanisms per failure
- SLA violations per day

Given a Markov chain \mathcal{M} with two reward functions $rew_1, rew_2 : S \to \mathbb{N}$ with $rew_2 > 0$, consider their ratio:

ratio : FinPaths
$$\rightarrow \mathbb{Q}$$
, ratio $(\pi) = \frac{rew_1(\pi)}{rew_2(\pi)}$

$$\Pr_{s}(\square(ratio > r))$$

examples:

- energy-utility ratio
- cost of repair mechanisms per failure
- SLA violations per day

Given a Markov chain \mathcal{M} with two reward functions $rew_1, rew_2 : S \to \mathbb{N}$ with $rew_2 > 0$, consider their ratio:

ratio : FinPaths
$$\rightarrow \mathbb{Q}$$
, ratio $(\pi) = \frac{rew_1(\pi)}{rew_2(\pi)}$

best threshold for qualitative ratio invariances:

$$\sup \left\{ \begin{array}{l} r \in \mathbb{Q} : \Pr_s(\square(\textit{ratio} > r)) > 0 \end{array} \right\}$$

$$\sup \left\{ \begin{array}{l} r \in \mathbb{Q} : \Pr_s(\square(\textit{ratio} > r)) = 1 \end{array} \right\}$$

examples:

- energy-utility ratio
- · cost of repair mechanisms per failure
- SLA violations per day

Given a Markov chain \mathcal{M} with two reward functions $rew_1, rew_2 : S \to \mathbb{N}$ with $rew_2 > 0$, consider their ratio:

ratio : FinPaths
$$\rightarrow \mathbb{Q}$$
, ratio $(\pi) = \frac{rew_1(\pi)}{rew_2(\pi)}$

best threshold for qualitative ratio invariances:

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) = 1 \right\}$$

... are computable in polynomial time ...

Best threshold for ratio invariances

Given a Markov chain \mathcal{M} with two reward functions $rew_1, rew_2 : S \to \mathbb{N}$ with $rew_2 > 0$, consider their ratio:

ratio : FinPaths
$$\rightarrow \mathbb{Q}$$
, ratio $(\pi) = \frac{rew_1(\pi)}{rew_2(\pi)}$

best threshold for qualitative ratio invariances:

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\}$$

 $\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) = 1 \right\}$

... are computable in polynomial time ...

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

$$ratio = \frac{rew_1}{rew_2} : FinPaths \rightarrow \mathbb{Q}$$
 where $rew_2 > 0$

$$\sup \big\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \big\}$$

 inner decision problem for fixed r is solvable in polynomial time

$$ratio = \frac{rew_1}{rew_2} : FinPaths \rightarrow \mathbb{Q}$$
 where $rew_2 > 0$

$$\sup \big\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \big\}$$

 inner decision problem for fixed r is solvable in polynomial time

reduction to positive weight invariances:
$$ratio > r$$
 iff $rew_1 - r \cdot rew_2 > 0$

$$ratio = \frac{rew_1}{rew_2} : FinPaths \rightarrow \mathbb{Q}$$
 where $rew_2 > 0$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

 inner decision problem for fixed r is solvable in polynomial time

$$ratio = \frac{rew_1}{rew_2} : FinPaths \rightarrow \mathbb{Q}$$
 where $rew_2 > 0$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

 inner decision problem for fixed r is solvable in polynomial time

If $r \in \mathbb{Q}$ then pick some $c \in \mathbb{N}$ such that $(rew_1 - r \cdot rew_2) \cdot c$ is an integer weight function.

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search

$$ratio = \frac{rew_1}{rew_2} : FinPaths \rightarrow \mathbb{Q}$$
 where $rew_2 > 0$

$$\sup \{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search

for all finite paths
$$\pi$$
:
$$0 \leqslant ratio(\pi) \leqslant \frac{\max rew_1}{\min rew_2}$$

$$ratio = \frac{rew_1}{rew_2}$$
: $FinPaths o \mathbb{Q}$ where $rew_2 > 0$

$$\sup \{ r \in \mathbb{Q} : \Pr_{s}(\Box(ratio > r)) > 0 \}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search and is one of the values
 - * expected long-run ratio of a BSCC

If B is a BSCC then the expected long-run ratio is:

$$\frac{MP_B[rew_1]}{MP_B[rew_2]} \quad \text{where} \quad MP_B[rew] = \begin{cases} \text{mean-payoff} \\ \text{of } rew \text{ in } B \end{cases}$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search and is one of the values
 - * expected long-run ratio of a BSCC
 - * $ratio(\pi)$ for a simple path π from s
 - * $ratio(\pi)$ for a simple cycle π reachable from s

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search and is one of the values
 - * expected long-run ratio of a BSC
 - * $ratio(\pi)$ for a simple path π from π
 - * $ratio(\pi)$ for a simple cycle π reachable from s

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search and is one of the values ... and therefore rational
 - * expected long-run ratio of a BSC
 - * $ratio(\pi)$ for a simple path π from \mathfrak{p}
 - * $ratio(\pi)$ for a simple cycle π reachable from s

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\}$$

- inner decision problem for fixed r is solvable in polynomial time
- quantile can be approximated using a binary search and is one of the values ... and therefore rational
 - * expected long-run ratio of a BSCC
 - * $ratio(\pi)$ for a simple path π from s
 - * $ratio(\pi)$ for a simple cycle π reachable from s
- computation using the continued-fraction method

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where $c, d \in \mathbb{N}$ with d > 0

- quantile can be approximated using a binary search and is one of the values ... and therefore rational
 - ∗ expected long-run ratio of a BSC€
 - * $ratio(\pi)$ for a simple path π from s
 - * $ratio(\pi)$ for a simple cycle π reachable from s
- computation using the continued-fraction method

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- quantile can be approximated using a binary search and is one of the values ... and therefore rational
 - * expected long-run ratio c_B/d_B of BSCC B
 - * $ratio(\pi)$ for a simple path π from s
 - * $ratio(\pi)$ for a simple cycle π reachable from s
- computation using the continued-fraction method

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$

$$\left|\frac{c}{d}-p\right|<\varepsilon$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$

The quantile is the best rational approximation of p with denominator at most D

$$\left|\frac{c}{d}-p\right|<\varepsilon$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$

The quantile is the best rational approximation of p with denominator at most D, i.e., if $a,b\in\mathbb{N}$ with $0< b\leqslant D$ then: $\left|\frac{a}{h}-p\right|<\varepsilon$ iff $\frac{a}{h}=\frac{c}{d}$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p**

The quantile is the best rational approximation of p with denominator at most D, i.e., if $a, b \in \mathbb{N}$ with $0 < b \leq D$ then:

$$\left|\frac{a}{b}-p\right|<\varepsilon$$
 iff $\frac{a}{b}=\frac{c}{d}$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p**

$$\rho = \rho_1 + \frac{1}{\rho_2 + \frac{1}{\rho_3 + \frac{1}{\rho_4 +$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s}(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leq D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [GRÖTSCHEL/LOVÁSZ/SCHRIJVER'87]

 q_1 q_3 q_5 p q_4 q_2

$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leqslant D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

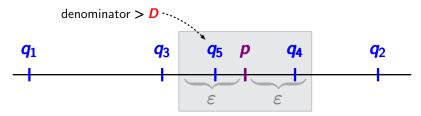
- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p** [Grötschel/Lovász/Schrijver'87]



$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{c}{d}$$

where
$$d \leqslant D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

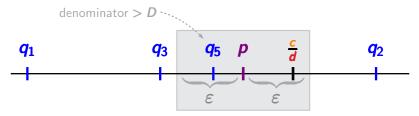
- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p**



$$\sup \left\{ r \in \mathbb{Q} : \Pr_s(\square(ratio > r)) > 0 \right\} = \frac{C}{d}$$

where
$$d \leqslant D = \max \{ \max_{B} d_{B}, |S| \cdot \max_{P} rew_{2} \}$$

- 1. compute an approximation p of the quantile up to precision $\varepsilon = 1/2D^2$
- 2. apply the continued-fraction method to **p**



qualitative quantiles for ratio invariances:

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box (ratio > r) \land \varphi \right) > 0 \right\}$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box (ratio > r) \land \varphi \right) = 1 \right\}$$

where φ is a reachability, Rabin or Streett condition

qualitative quantiles for ratio invariances:

$$\sup \big\{ r \in \mathbb{Q} : \Pr_s \big(\Box (\mathit{ratio} > r) \land \varphi \big) > 0 \big\}$$

$$\sup \big\{ r \in \mathbb{Q} : \Pr_s \big(\Box (\mathit{ratio} > r) \land \varphi \big) = 1 \big\}$$

$$\Pr_s (\varphi) = 1 \text{ and } s \not\models \exists \Diamond (\mathit{wgt}_r \leqslant 0)$$

$$\text{where } \mathit{wgt}_r = \mathit{cost} - r \cdot \mathit{util}$$

 \dots binary search for maximal r and shortest-path algorithms \dots

where φ is a reachability, Rabin or Streett condition

qualitative quantiles for ratio invariances:

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box (ratio > r) \land \varphi \right) > 0 \right\}$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box (ratio > r) \land \varphi \right) = 1 \right\}$$

qualitative and quantitative quantiles for long-run ratios:

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box \Diamond (ratio > r) \land \varphi \right) = 1 \right\}$$

$$\sup \left\{ r \in \mathbb{Q} : \Pr_{s} \left(\Box \Diamond (ratio > r) \land \varphi \right) > q \right\}$$

where φ is a reachability, Rabin or Streett condition

qualitative quantiles for ratio invariances:

$$\sup \big\{ r \in \mathbb{Q} : \Pr_s \big(\Box (ratio > r) \land \varphi \big) > 0 \big\}$$

 $\sup \big\{ r \in \mathbb{Q} : \Pr_s \big(\Box (ratio > r) \land \varphi \big) = 1 \big\}$

qualitative and quantitative quantiles for long-run ratios:

$$\sup \big\{ r \in \mathbb{Q} : \Pr_{s} \big(\Box \Diamond (ratio > r) \land \varphi \big) = 1 \big\}$$

$$\sup \big\{ r \in \mathbb{Q} : \Pr_{s} \big(\Box \Diamond (ratio > r) \land \varphi \big) > q \big\}$$

$$= \min \left\{ r \in \mathbb{Q} : \Pr_{s}(\lozenge C_{r}) > q \right\}$$

where C_r = union of "good" BSCCs B with $Irrat(B) \geqslant r$

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- rewards, cost-utility ratios, weights
- * conditional probabilities

Markov decision processes (MDP)

- basic definitions
- PCTL/PCTL* model checking
- * fairness
- conditional probabilities
- rewards, quantiles
- mean-payoff
- * expected accumulated weights

Conditional probabilities

Conditional probabilities

useful for various multi-objective properties
 e.g. analyze the gained utility for a given energy budget

$$\Pr_s (\lozenge_{\geqslant u} \operatorname{\textit{goal}} | \lozenge^{\leqslant e} \operatorname{\textit{goal}})$$
 or $\operatorname{ExpUtil}_s (\bigoplus \operatorname{\textit{goal}} | \lozenge^{\leqslant e} \operatorname{\textit{goal}})$

 $\diamondsuit_{\geqslant u}$ goal "gained utility for reaching the goal is at least u" $\diamondsuit^{\leqslant e}$ goal "consumed energy until reaching the goal is at most e"

useful for various multi-objective properties
 e.g. analyze the gained utility for a given energy budget

$$\Pr_s(\lozenge_{\geqslant u} goal \mid \lozenge^{\leqslant e} goal)$$
 or $\operatorname{ExpUtil}_s(\diamondsuit goal \mid \lozenge^{\leqslant e} goal)$

useful for failure diagnosis

e.g. study the impact of failures and cost of repair mechanisms in resilient systems

$$\Pr_s(\lozenge goal \mid \lozenge failure)$$
 or $\operatorname{ExpCost}_s(\lozenge goal \mid \lozenge failure)$

for Markov chains:

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi | \psi) = \frac{\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi \wedge \psi)}{\operatorname{Pr}_{s}^{\mathcal{M}}(\psi)}$$

provided
$$\Pr_s^{\mathcal{M}}(\psi) > 0$$

for Markov chains:

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi | \psi) = \frac{\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi \wedge \psi)}{\operatorname{Pr}_{s}^{\mathcal{M}}(\psi)}$$

discrete MCs and PCTL

[Andrés/Rossum'08] [Ji/Wu/Chen'13]

continuous-time MCs and CSL

[Gao/Xu/Zhan/Zhang'13]

PCTL: probabilistic computation tree logic

CSL: continuous stochastic logic

for Markov chains:

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi|\psi) = \frac{\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi \wedge \psi)}{\operatorname{Pr}_{s}^{\mathcal{M}}(\psi)}$$

discrete MCs and PCTL

[Andrés/Rossum'08] [Ji/Wu/Chen'13]

continuous-time MCs and CSL

 $[{
m Gao/Xu/Zhan/Zhang'13}]$

transformation-based approach for LTL conditions

$$MC \mathcal{M} \rightsquigarrow MC \mathcal{M}_{\psi}$$
:

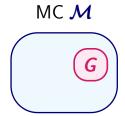
[BAIER/KLEIN/KLÜPPELHOLZ/MÄRCKER'14]

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi|\psi) = \operatorname{Pr}_{s}^{\mathcal{M}_{\psi}}(\varphi)$$

given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$ define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ $\Pr_{s}^{\mathcal{M}}(\varphi \,|\, \lozenge G) = \Pr_{s}^{\mathcal{M}_{\psi}}(\varphi)$

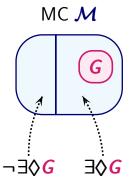
LTL: linear temporal logic

given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$ define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ $\Pr_{s}^{\mathcal{M}}(\varphi \,|\, \lozenge G) = \Pr_{s}^{\mathcal{M}_{\psi}}(\varphi)$



LTL: linear temporal logic

given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$ define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ $\Pr_{s}^{\mathcal{M}}(\varphi \,|\, \lozenge G) = \Pr_{s}^{\mathcal{M}_{\psi}}(\varphi)$

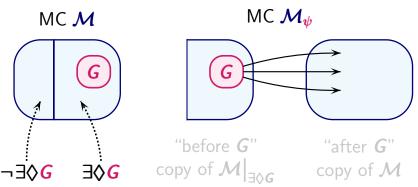


LTL: linear temporal logic

given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$

define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi | \lozenge G) = \operatorname{Pr}_{s}^{\mathcal{M}_{\psi}}(\varphi)$$



given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$

define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ

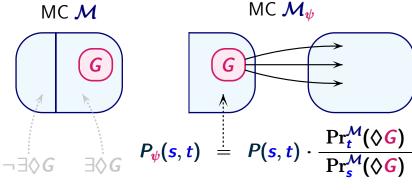
$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi | \lozenge G) = \operatorname{Pr}_{s}^{\mathcal{M}_{\psi}}(\varphi)$$



given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$

define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ

$$\operatorname{Pr}_{s}^{\mathcal{M}}(\varphi | \lozenge G) = \operatorname{Pr}_{s}^{\mathcal{M}_{\psi}}(\varphi)$$



given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$ define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ $\Pr_{s}^{\mathcal{M}}(\varphi \,|\, \lozenge G) = \Pr_{s}^{\mathcal{M}_{\psi}}(\varphi)$

... can be generalized for other temporal conditions $\pmb{\psi}$

either by adapting the definition of \mathcal{M}_{ψ} or by using an ω -automaton for LTL conditions

given: Markov chain $\mathcal{M} = (S, P)$ and $\psi = \lozenge G$ define Markov chain \mathcal{M}_{ψ} s.t. for all LTL formulas φ $\Pr_{s}^{\mathcal{M}}(\varphi \,|\, \lozenge G) = \Pr_{s}^{\mathcal{M}_{\psi}}(\varphi)$

... can be generalized for other temporal conditions $\pmb{\psi}$

same method applicable for conditional expectations

$$\mathbb{E}_{s}^{\mathcal{M}}(f|\psi) = \mathbb{E}_{s}^{\mathcal{M}_{\psi}}(f')$$

e.g.: $\mathbb{E}_s^{\mathcal{M}}$ ("energy until reaching the goal" $| \lozenge goal |$

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

- * basic definitions
- probabilistic computation tree logic PCTL/PCTL*
- rewards, cost-utility ratios, weights
- * conditional probabilities

Markov decision processes (MDP)

- basic definitions
- PCTL/PCTL* model checking
- fairness
- conditional probabilities
- rewards, quantiles
- * mean-payoff
- * expected accumulated weights