Tutorial:
Probabilistic Model Checking

Christel Baier
Technische Universitat Dresden

1/373

Probability elsewhere

2/373

Probability elsewhere

randomized algorithms

symmetry breaking, fingerprint techniques,
random choice of waiting times or IP addresses, ...

o stochastic control theory
operations research

« performance modeling
o biological systems
o resilient systems

3/373

Probability elsewhere

o randomized algorithms

symmetry breaking, fingerprint techniques,
random choice of waiting times or IP addresses, ...

« stochastic control theory
operations research

o performance modeling
o biological systems
o resilient systems

discrete or continuous-time Markovian models

memoryless property: future system behavior depends
only on the current state, but not on the past

4/373

Probabilistic models

5/373

Probabilistic models

purely probabilistic and
probabilistic nondeterministic
discrete
time
continuous

time

6/373

Probabilistic

models

purely
probabilistic

probabilistic and
nondeterministic

discrete-time

dis_crete Markov chain Markov decision
time (DTMC) process (MDP)
continuous

time

7/373

Probabilistic

models

purely
probabilistic

probabilistic and
nondeterministic

discrete
time

discrete-time
Markov chain
(DTMC)

Markov decision
process (MDP)

continuous
time

continuous-time
Markov chain

(CTMC)

continuous-time MDP

interactive Markov
chains

probabilistic timed
automata

stochastic automata

8/373

Probabilistic

models

purely
probabilistic

probabilistic and
nondeterministic

discrete
time

discrete-time

Markov chain
(DTMC)

Markov decision
process (MDP)

9/373

Model checking

reactive functional

system requirements
operational specification ¢
model M e.g., temporal formula

~N

model checker:
does M |= ® hold ?

/N

no + counterexample yes + witness

10/373

Probabilistic model checking

reactive quantitative
system requirements
probabilistic specification ¢
model M e.g., temporal formula

~N

probabilistic model checker:
does M |= ® hold ?

/N

no + counterexample yes + witness

11/373

Probabilistic model checking

reactive quantitative
system requirements
probabilistic specification ¢
model M e.g., temporal formula

~N

probabilistic model checker:

quantitative analysis of M against ®

probability for “bad behaviors” is < 1070
probability for “good behaviors” is 1
expected costs for

12/373

Probabilistic model checking

« termination of probabilistic programs
[HART/SHARIR/PNUELI'83]

o qualitative linear time properties [VARDI/WOLPER’86]
for discrete-time Markov models [COURCOUBETIS/ YANNAK. 88|

13/373

Probabilistic model checking

« termination of probabilistic programs
[HART/SHARIR/PNUELI'83]

o qualitative linear time properties [VARDI/WOLPER’86]
for discrete-time Markov models [COURCOUBETIS/ YANNAK. 88|

o probabilistic computation tree logic [Hansson/Jonsson'94]

for discrete-time Markov models [BIANCO/DE ALFARO’95]
« continuous stochastic logic [Az1Z ET AL'96]
for continuous-time Markov chains [BAIER ET AL'99)]
o probabilistic timed automata [JENSEN'96]

[KWIATKOWSKA ET AL'00]

tools: PRISM, MRMC, STORM, IscasMC, PASS,
ProbDiVinE, MARCIE, YMER, ...

14/373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

15/373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

* basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

16/373

Markov chains

transition systems with probabilistic distributions
for the successor states

17/373

Markov chains

transition systems with probabilistic distributions
for the successor states

O=
N =

transition system Markov chain

nondeterministic branching probabilistic branching

18/373

Discrete-time Markov chain (DTMC)

M = (S,P,..)

19/373

Discrete-time Markov chain (DTMC)

M = (S,P,..)

o countable state space S

20/373

Discrete-time Markov chain (DTMC)

M = (S,P,..)

o countable state space S +— here: finite

21/373

Discrete-time Markov chain (DTMC)

M = (S,P,..)
o countable state space S

« transition probability function P: S x S — [0,1]
st. Y, P(s,s') =1

s'eS

22/373

Discrete-time Markov chain (DTMC)

M = (S,P,..)
o countable state space S

« transition probability function P: S x S — [0,1]
st. Y, P(s,s') =1

s'eS

discrete-time or time-abstract:

probability for the step s — s’

23 /373

Discrete-time Markov chain (DTMC)

M = (5P,AP,L,...)
o countable state space S

« transition probability function P: S x S — [0,1]
st. Y, P(s,s') =1

s'eS
o AP set of atomic propositions

« labeling function L: § — 24P

24/373

Discrete-time Markov chain (DTMC)

M = (5,P,AP,L,...)

o countable state space S

transition probability function P: S x S — [0, 1]
st. Y, P(s,s') =1

s'eS

AP set of atomic propositions
2AP

labeling function L : § —

i .S — [0,1] initial distribution

wgt : S — Z where wgt(s) is the reward (or weight)
earned per visit of state s

25/373

Example: DTMC for communication protocol

M = (5,P,AP,L,...)
o countable state space S

« transition probability function P: S x S — [0,1]

st. Y, P(s,s') =1
message
lost

s'eS

start >

delivered

26/373

Example: DTMC for communication protocol

M = (5,P,AP,L,...)
o countable state space S

« transition probability function P: S x S — [0,1]
st. Y, P(s,s') =1

s'eS

delivered

27/373

Example: DTMC for communication protocol

M = (5,P,AP,L,...)
o countable state space S

« transition probability function P: S x S — [0,1]

st. Y, P(s,s') =1
s'eS 17}

e.g., AP = {try, del} message
lost

delivered

28/373

Example: DTMC for communication protocol

M = (5,P,AP,L,...)
o countable state space S

« transition probability function P: S x S — [0,1]

st. Y, P(s,s') =1
s'eS 0

message
lost

rewards for counting the number of trials

start =g

delivered

29/373

Probability measure of a Markov chain

30/373

Probability measure of a Markov chain

M = (5,P,AP,L, 1) where p:S —[0,1]

initial distribution

31/373

Probability measure of a Markov chain

M = (5,P,AP,L, 1) where p:S —[0,1]

probability measure for measurable sets of paths:

32/373

Probability measure of a Markov chain

M = (5,P,AP,L, 1) where p:S —[0,1]

probability measure for measurable sets of paths:

consider the o-algebra generated by cylinder sets

A(spsy...sp) = set of infinite paths
S0S1---5nSn+15n+25n43 - - -

33/373

Probability measure of a Markov chain

M = (5,P,AP,L, 1) where p:S —[0,1]

probability measure for measurable sets of paths:

consider the o-algebra generated by cylinder sets

A(spsy...s,) = set of infinite paths ...

o-algebra on universe U: set V C 2 sit.

1. UeV
2. if Te€VthenU\T eV

3. if T;eVforieNthen |JT; €V
ieN

34/373

Probability measure of a Markov chain

M = (5,P,AP,L, 1) where p:S —[0,1]

probability measure for measurable sets of paths:

consider the o-algebra generated by cylinder sets

A(spsy...s,) = set of infinite paths ...

here: U = set of infinite paths C S¥

V = smallest subset of 2 that contains
all cylinder sets and is closed under
complement and countable unions

35/373

Probability measure of a Markov chain

= (S,P,AP,L, 1) where p:S —10,1]

probability measure for measurable sets of paths:

consider the o-algebra generated by cylinder sets

A(spsy...sp) = set of infinite paths
S0S1---5nSn+15n+25n43 - - -

probability measure is given by:

PrM(A(sosi---sn)) = p(so) - I1 P(si-1,s)

1<i<n

36/373

Example: Markov chain

probability for delivering the message within 5 steps:

37/373

Example: Markov chain

probability for delivering the message within 5 steps:

= PrM(start try del) + PrM(start try lost try del)

38/373

Example: Markov chain

probability for delivering the message within 5 steps:
= PrM(start try del) + PrM(start try lost try del)
= 0.98 + 0.02-0.98 = 0.9996

39/373

Example: Markov chain

probability for eventually delivering the message:

40/373

Example: Markov chain

probability for eventually delivering the message:

= Y PrM(start try (lost try)" del)

n=0

41/373

Example: Markov chain

probability for eventually delivering the message:

= Y PrM(start try (lost try)" del)

n=0

00
= 30027098 = 1
n=0

42/373

Measurability of classical properties

43 /373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

44 /373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. fTieVforieNthen |y T;€eV

ieN
The elements of V are called events.

DTMCs: U = set of infinite paths

__ | o-algebra generated by the
cylinder sets

A(sos s) = set of infinite paths m of the form
0SL-c-5a) = S0S1---5nSn+1Sn+25n+3 - - -

45/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

step-bounded reachability: ‘“visit G within n steps”

OSnG — U U A(sosl...s;_ls,-)

0<i<n %,...,Si

where s; € G

46 /373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

step-bounded reachability: ‘“visit G within n steps”

OSnG — U U A(sosl...s;_ls,-)

0<i<n %,...,Si

where 5; € G and s, ...,5-1¢ G

47/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24

such that: 1. Uey

2. if TE€VthenU\T eV

3. if T;eVforieNthen |JT;€V

ieN

The elements of V are called events.

step-bounded reachability:

0<i<n %,...,Si

0<i<n %0,---Si

“visit G within n steps”

OSnG = U U A(Sosl---si—lsi)

PM(0<"G) = ¥ Y PM(sos1...si15)

48 /373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

unbounded reachability: ‘“visit G eventually”

<>G = U U A(sosl...s;_ls,-)

iEN sp,...,i

where 5; € G and s, ...,5-1¢ G

49/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

unbounded reachability: ‘“visit G eventually”

<>G = U U A(sosl...s;_ls,-)

iEN sp,...,i

PM(0OG) = ¥ ¥ PM(ss...5115)

ieN sp,...,S;

50 /373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. Uey
2. if TE€VthenU\T eV

3. if T;eVforieNthen |JT;€V

ieN

The elements of V are called events.

repeated reachability:

006G = N

neN

where s; € G

“visit G infinitely often”

U U A(sosl...s;_ls;)

iZn So,....Si

51/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. Uey
2. if TE€VthenU\T eV

3. if T;eVforieNthen |JT;€V

ieN

The elements of V are called events.

repeated reachability:

006G = N

neN

“visit G infinitely often”

U U A(sosl...s;_ls;)

iZn So,....Si

where s; € G, but possibly s;j € G for some j < i

52/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

persistence: “from some moment on always G"

OOG = Paths™\ OO -G

53/373

Measurability of classical properties

A o-algebra is a pair (i, V) where I is a set and V C 24
such that: 1. UeV

2. if TE€VthenU\T eV

3. f T;€Vfori€eNthen Y T, eV

ieN
The elements of V are called events.

persistence: “from some moment on always G"
OOG = Paths™\ OO -G

PM(0O0G) = 1-PM(O0-G)

54 /373

Stochastic process of a Markov chain

55 /373

Stochastic process of a Markov chain

general definition of a stochastic process:

family (Xt) of random variables X; : U4 —+ S

te Time

56 /373

Stochastic process of a Markov chain

general definition of a stochastic process:
family (Xt)

« Time is a time domain, e.g., N or Ryg

re Time of random variables X; : U4 — S

e Sisaset

« U is a sample space

57 /373

Stochastic process of a Markov chain
DTMC M =(S,P,...)
family (Xt)

e Time is a time domain <— Time=N

re Time of random variables X; : U4 — S

o« Sisaset +— state space

« U is a sample space +— set of infinite paths

58 /373

Stochastic process of a Markov chain
DTMC M =(S,P,...)
family (Xt)

e Time is a time domain <— Time=N

re Time of random variables X; : U4 — S

o« Sisaset +— state space

« U is a sample space +— set of infinite paths

fteNand T =555S ... St... then Xy(7) = s;.

59 /373

Stochastic process of a Markov chain
DTMC M =(S,P,...)
family (Xt)

e Time is a time domain <— Time=N

re Time of random variables X; : U4 — S

o« Sisaset +— state space
« U is a sample space +— set of infinite paths

IfteNand T =s581...5t—2US;... then Xy(7) = s;.
Markov property:

PM(X,=s|Xe1=u) =

PM(X, =s|Xeci=u, Xea =512, ..., Xo =%)

60 /373

Stochastic process of a Markov chain
DTMC M =(S,P,...)
family (Xt)

e Time is a time domain <— Time=N

re Time of random variables X; : U4 — S

o« Sisaset +— state space
« U is a sample space +— set of infinite paths

IfteNand T =s581...5t—2US;... then Xy(7) = s;.
Markov property:
PM(X;=s|Xe-i=u) = P(u,s) =
PM(X, =s|Xeci=u, Xea =512, ..., Xo =%)

61/373

Stochastic process of a Markov chain
DTMC M =(S,P,...)
family (Xt)

e Time is a time domain <— Time=N

re Time of random variables X; : U4 — S

o« Sisaset +— state space

« U is a sample space +— set of infinite paths

IfteNand T =s581...5t—2US;... then Xy(7) = s;.
Markov property:

PM(X;=s|Xe-i=u) = P(u,s) =

PrM(Xl = s| Xo = u) time-homogeneous

62/373

Transient and long-run distribution

63 /373

Transient and long-run distribution

transient: ... refers to a fixed time point t

long-run: ... when time tends to infinity

64 /373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PI‘M{SoSlSz...EPathSM:St=S}
= PrM(Xt=S)

65 /373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PI‘M{SoSlSz...EPathSM:St=S}
= p-Pt-ids

66 /373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PrM{soslsz...ePathsM:stzs}
= p-Pt-ids

[

t-th power of
transition probability matrix

pt=pt-l.p

67/373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PrM{soslsz...ePathsM:stzs}
= p-Pt-ids

[

column vector (0...0,1,0,...0)

representing Dirac distribution
for state s

68 /373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PI‘M{SoSlSz...EPathSM:St=S}
= pu-Ptoids = ppq-P-ids

69 /373

Transient distribution

Let M =(S,P,p,...)bea DTMC, teNands € S.

transient state probability:

pe(s) = PI‘M{SoSlSz...EPathSM:St=S}
= pu-Ptoids = ppq-P-ids

|

transient state distribution
for time point t—1
Thus: po = p initial distribution
pr=pr1-P fort>1

70/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,

steady-state probability: u(s) = tli)m e (s)
o0

71/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist

72/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist

pot(s) =1 p2t+1(s) =0

73/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)
o limit may not exist or depend on the initial

distribution g

pot(s) =1 p2t+1(s) =0

74 /373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist or depend on the initial
distribution p

\ti:@l If u(s) =1 then: p(s)=1

ou]

75 /373

Long-run distributions
Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist or depend on the initial
distribution p

If u(s) =1 then: p(s)=1
If w(u) =1 then: p(s)=0

1

jos)

76 /373

Long-run distributions
Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist or depend on the initial
distribution p

If u(s) =1 then: p(s)=1

If w(u) =1 then: p(s)=0

If p(s) = p(u) = 3 then:
i(s) =3

1

2
o]

1

2
e

77/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

o limit may not exist or depend on the initial
distribution p

~

o if existing for all states s then ot = - P

I

balance
equation

78/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

long-run fraction of being in state s (Cesaro limit):

79/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,
steady-state probability: u(s) = tli)m e (s)

long-run fraction of being in state s (Cesaro limit):

)
0(s) = fim 75- 2 u(s)

80/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,

steady-state probability: u(s) = tli)m e (s)
(o o]

long-run fraction of being in state s (Cesaro limit):
- 1 T
0s) = Jim 7 3 (o

o Cesaro limit always exists

81/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,

steady-state probability: u(s) = tli)m e (s)
(o o]

long-run fraction of being in state s (Cesaro limit):

)
0(s) = fim 75- 2 u(s)

o Cesaro limit always exists

« if the steady-state probabilities exists: i(s) = 6(s)

82/373

Long-run distributions

Let M =(S,P,p,...) be a DTMC,

steady-state probability: u(s) = tll)To e (s)
long-run fraction of being in state s (Cesaro limit):
. 1 T
0s) = fim 7z 3 ()
o Cesaro limit always exists

« if the steady-state probabilities exists: i(s) = 6(s)

o if M is strongly connected: € is computable via
the balance equation @ = 6 - P where) 0(s) = 1

seS

83/373

Fundamental property of finite Markov chains

84 /373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

85/373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

PrM{ 9515 ... € PathsM
there exists i = 0 and a BSCC C s.t.

Vi>i.s€CAVseCTj. s=5}=1

86 /373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

oI~

87 /373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

2 BSCCs

88 /373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

long-run distribution:

6(s) >0 iff s belongs to some BSCC

89/373

Fundamental property of finite Markov chains

Almost surely, i.e., with probability 1:

A bottom strongly connected component will be
reached and all its states visited infinitely often.

long-run distribution:

« 0(s) >0 iff s belongsto some BSCC
« if s is a state of BSCC B then:
8(s) = PrM(0OB)-65(s)

90/373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

* probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

91/373

Probabilistic computation tree logic

92 /373

Probabilistic computation tree logic

PCTL/PCTL* [HANSSON/JONSSON 1994]

« probabilistic variants of CTL/CTL*

« contains a probabilistic operator P
to specify lower/upper probability bounds

93/373

Probabilistic computation tree logic

PCTL/PCTL* [HANSSON/JONSSON 1994]

« probabilistic variants of CTL/CTL*

« contains a probabilistic operator P
to specify lower/upper probability bounds

« operators for expected costs, long-run averages, ...

will be considered later

94 /373

Syntax of PCTL*

state formulas:
¢ = true | a | P, NPy | - |

path formulas:

p = ...

95 /373

Syntax of PCTL*

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

p = ...

where a € AP is an atomic proposition
I C [0,1] is a probability interval

96 /373

Syntax of PCTL*

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

p = ...

where a € AP is an atomic proposition
I C [0,1] is a probability interval

qualitative properties: Poo(p) or P_y(p)
quantitative properties: e.g., Psgs(®) or Pgo.01()

97 /373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)
path formulas:

p = 4T>|<p1/\<pz|-<p|-~-

state formula

98 /373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

p = 0|1 Ap2| 0| Op] ...

(O = next

99 /373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

o =& |piAp| -9 | Op | prUe:

(O = next U= until

100/373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

o =& |piAp| -9 | Op | prUe:

)
state formula @—O—0O—0O—0O—0O—---

101/373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:

o =& |piAp| -9 | Op | prUe:

)
state formula @—O—0O—0O—0O—0O—---

a

next Q2 O—@—0O—0—0—O—---

102/373

Syntax of PCTL* path formulas

state formulas:
® = true | a| DA D, | =0 | Pi(p)

path formulas:
¢ = 0| piAp | 9| Op | p1Ug

state formula @—O—0O—0O—0O—0O—---
next 02 O—@—0O—0—O0—O— -

until aUb @—@—@—@—0O—O— - --

103/373

Derived path operators: eventually, always

104 /373

Derived path operators: eventually, always

syntax of path formulas:

p =& |piAp| 9| Op | p1Ugp;

until aU b o—0—0—0— 0 O—-0O—---

eventually

Ob%¥ trueU b O—»O—»O—».—»O—»O—»

105 /373

Derived path operators: eventually, always

syntax of path formulas:

p =& |piAp| 9| Op | p1Ugp;

until aU b o—0—0—0— 0 O—-0O—---

eventually

b
ob¥ truevp O—O—0O0—@—0O—0O—---

always a a a a a a

Oa d=ef_l<>_la ._)._)._>._)._>._)“'

106 /373

Semantics of PCTL*

107 /373

Semantics of PCTL*

Let M = (S, P, AP, L) be a Markov chain.

Define by structural induction:

. a satisfaction relation |= for
states s € S and PCTL* state formulas

. a satisfaction relation |= for infinite
paths ™ in M and PCTL* path formulas

108 /373

Semantics of PCTL*

s [true
skEa
sfE
sEPIAD,

s = Pi(y)

iff aeL(s)

iff spo

iff sf®; andsf ®,
iff PrM(p) el

109 /373

Semantics of PCTL*

s [true
skEa iff ae L(s)
sfE iff s

$|=¢1/\¢2 iff s|=¢1ands|=¢2
sEP(y) iff PrM(y) €l
/r

probability measure of the set of
paths m with 7 |= ¢

when s is viewed as the unique starting state

110/373

Semantics of PCTL* path formulas

let m = 5951 5 53... be an infinite path in M

111/373

Semantics of PCTL* path formulas

let m = 5951 5 53... be an infinite path in M

T = ®
T g

T = o1 A @2
T = Oy
T = p1U)

iff sp =@

iff £

iff TlE@1 and 7| 2

iff ssss3...FE¢@

iff there exists £ > 0 such that

StSe+1S642--- = @2
SiSit1Si42--- @1 for0<

i<t

112/373

Examples for PCTL*-specifications

113/373

Examples for PCTL*-specifications

communication protocol:

P_i(O(try_to_send — Psqo(QOdelivered)))

P_;(O(try_to_send — —startU delivered))

start try_to_send

delivered

114 /373

Examples for PCTL*-specifications
communication protocol:

P_i(O(try_to_send — Psqo(QOdelivered)))

P_;(O(try_to_send — —startU delivered))

leader election protocol for n processes:

P_1(O leader_elected)

Pso.0(V O'leader_elected)

i<n

115/373

PCTL* model checking for DTMC

116 /373

PCTL* model checking for DTMC

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢

task: check whether 5o = ®

117 /373

PCTL* model checking for DTMC

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢

task: check whether 5o = ®
main procedure as for CTL*:

recursively compute the satisfaction sets
Sat(W) = {seS:sEV}

for all state subformulas W of ®

118/373

Recursive computation of the satisfaction sets

119/373

Recursive computation of the satisfaction sets

Sat(true)
Sat(a)
Sat(®1 A)
Sat(—P)

S state space of M
{seS:ael(s)}
Sat(®1) N Sat(P,)
S\ Sat(®)

120/373

Recursive computation of the satisfaction sets

Sat(true) = S state space of M
Sat(a) = {seS:ael(s)}
Sat(®1 A D) = Sat(P1) N Sat(P,)
Sat(—®) = S\ Sat(®)

Sat(Pi(p)) = {se€S: Prﬁ\"(cp)el}

121/373

Recursive computation of the satisfaction sets

Sat(true) = S state space of M
Sat(a) = {seS:ael(s)}
Sat(®1 A D) = Sat(P1) N Sat(P,)
Sat(—) = S\ Sat(®)

Sat(Pi(p)) = {s€S:PrM(p)el}

special case: ¢ = Q&

122/373

Recursive computation of the satisfaction sets

Sat(true) = S state space of M
Sat(a) = {seS:ael(s)}
Sat(®1 A D) = Sat(P1) N Sat(P,)
Sat(—®) = S\ Sat(®)

Sat(Pi(y)) {seS:PMy)el}

special case: ¢ = Q&
1. compute recursively Sat(®P)

2. compute xs = PrM(0®) by solving a
linear equation system

123/373

Simulating a dice by a coin [KNUTH]

N =

N|=

124 /373

Simulating a dice by a coin [KNUTH]

N =
N|=

probability for the outcome six

PM(¢ six) = ?

125/373

Simulating a dice by a coin [KNUTH]

N|=

outcome six unreachable

Simulating a dice by a coin [KNUTH]

N|=

outcome six unreachable,
e, xs=0

Simulating a dice by a coin [KNUTH]

N|=

Xsix = 1

outcome six unreachable,
e, xs=0

Simulating a dice by a coin [KNUTH]

outcome six unreachable,
e, xs=0

129/373

Simulating a dice by a coin [KNUTH]

outcome six unreachable,
e, xs=0

130/373

Simulating a dice by a coin [KNUTH]

outcome six unreachable,
e, xs=0

131/373

Simulating a dice by a coin [KNUTH]

outcome six unreachable,
e, xs=0

132/373

Simulating a dice by a coin [KNUTH]

NI O O

133/373

Simulating a dice by a coin [KNUTH]

1 1
X1=§X2:6
1 1
X2=§X3=§
_1 1 _ 2
=30 t3=3
Xsix = 1

: 1-1 o P% 0
Pr(0 flx) 0 i —% x; =10
== 6 0 —% 1 X3 %

134 /373

Computing reachability probabilities

135/373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

136 /373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
S ={seS:x =0}
S'!={seS:x=1}

137/373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
S ={seS:x =0}
S'!={seS:x=1}

2

C S
state space S

138/373

Computing reachability probabilities
given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S
1. compute S° and S?
S ={seS:x =0}
S'!={seS:x=1}

"“ state space S

xs=1

139/373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
SO={seS:x=0}={s:sEI0T}
S'!={seS:x=1}

"“ state space S

xs=1

140 /373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
SO={seS:x=0}={s:sEI0T}
S'!={seS:x=1} ={s:sEI(-T)US}

"“ state space S

xs=1

141/373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S? +—| graph algorithms
SO={seS:x=0}={s:sEI0T}
S'!={seS:x=1} ={s:sEI(-T)US}

"“ state space S

xs=1

142 /373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
SO={seS:x=0}={s:sEI0T}
S'!={seS:x=1} ={s:sEI(-T)US}

2. compute x; for s € S7=5\ (S°U SY)

"“ state space S
9
xs=1

S
143 /373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
SO={seS:x=0}={s:sEI0T}
S'!={seS:x=1} ={s:sEI(-T)US}

2. compute xs fors € S = {s:0 < x; < 1}

"“ state space S
9
xs=1

S
144 /373

Computing reachability probabilities

given: DTMCM =(S5,P,...)and TC S
task: compute x; = PrM(OT) foralls € S

1. compute S° and S?
SO={seS:x=0}={s:sEIOT}
S'!={seS:x=1} ={s:sEI(-T)US}

2. compute xs fors € S = {s:0 < x; < 1}

|

by solving a linear equation system

145 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y. P(s,s")-x¢ + P(s,S?)
s'eS?

146 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y P(s,8)-xs + P(s,5Y)

s'e§?

probability for paths of the form

Sthi...uut withte T

1
UjES

147 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y P(s,8)-xs + P(s,5Y)

s'e§?

probability for paths of the form

$5%...Sy h...uyu t withte T

\ . 7 \

sseSs? uj € St m>1

148 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y. P(s,s")-x¢ + P(s,S?)
s'eS?

x=A-x+b

149 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y. P(s,s")-x¢ + P(s,S?)
s'eS?

matrix A = (P(s, s'))s’s,es?

x=A-x+0b
vectors x = (Xs)ses?

b = (P(s,S")

seS?

150 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y P(s,8)-xs + P(s,5Y)

s'eS?
x=A-x+b matrix A = (P(S, SI))S,S’ES?
ifF vectors x = (Xs)se .
M= Aljo=E b = (P(s, Sl))ses?

identity matrix I

151/373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y. P(s,s")-x¢ + P(s,S?)
s'eS?

x=A-x+b linear equation system with
£ non-singular matrix I — A

(I-A)-x=b

152 /373

Computing reachability probabilities

task: compute x; = PrM(OT) for all s € §7
by solving the equation system:

xs = Y. P(s,s")-x¢ + P(s,S?)
s'eS?

x=A-x+b linear equation system with
£ non-singular matrix I — A

(I-A)-x=0b U

unique solution

153 /373

PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

154 /373

PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:
b = true | a | $, A D) | ¢ | Pi(¢)

path formulas:

e == Q¢ | P U,

155 /373

PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:
b = true | a | $, A D) | ¢ | Pi(¢)

path formulas:

e u= Q¢ | oV, | O |O0

Pi(0®) & Pi(trueU)

156 /373

PCTL

sublogic of PCTL* where only path formulas of the
form OQ® and ®; U ®, are allowed

state formulas:

b = true | a | $, A D) | ¢ | Pi(¢)
path formulas:
e u= Q¢ | oV, | O |O0

Pi(0®) & Pi(trueU)

eg., Peooa(d0) & Prge(0-0)

157 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

158 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

159 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

. treatment of propositional logic fragment:

160 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

. treatment of propositional logic fragment: 4/

Sat(true) = S
Sat(a) = {seS:ael(s)}
Sat(—~W) = S\ Sat(V)

Sat(\lll A W2) = Sat(llll) N Sat(‘lb)

161/373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

. treatment of propositional logic fragment: 4/

. treatment of the probability operator Pi(y)

162 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

. treatment of propositional logic fragment: 4/

. treatment of the probability operator Pi(y)

compute PrM(y) for all states s and return
Sat(Pi(¢)) = {seS:Prll(p)el}

163 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether sp = ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

« treatment of propositional logic fragment: 4/
. treatment of the probability operator Pi(y)

graph algorithms 4+ matrix/vector operations

I

next: matrix/vector multiplication

until: linear equation system

164 /373

PCTL model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

« treatment of propositional logic fragment: 4/
. treatment of the probability operator Pi(y)

graph algorithms 4+ matrix/vector operations

time complexity: O(poly(M) - |®|)

165 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

« treatment of propositional logic fragment: 4/

. treatment of the probability operator Pi(y)

PCTL* path formula ¢ ~» LTL formula ¢’

path formula without
probability operator

166 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s |= ®

recursive computation of Sat(V) = {s € S : s = W}
for all state subformulas W of ¢

« treatment of propositional logic fragment: 4/

. treatment of the probability operator Pi(y)

PCTL* path formula ¢ ~» LTL formula ¢’

.. automata-based approach for ¢’ ...

167 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s = ®

treatment of the probability operator Pr(¢)

PCTL* path formula ¢ ~* LTL formula ¢’

by replacing each maximal state subformula
with a fresh atomic proposition

168 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s = ®

treatment of the probability operator Pr(¢)

PCTL* path formula ¢ ~ LTL formula ¢’

by replacing each maximal state subformula
with a fresh atomic proposition

O(aU]}D;o](DOb) A O]P<0_3(O|:|C))

169 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s = ®

treatment of the probability operator Pr(¢)

PCTL* path formula ¢ ~ LTL formula ¢’

by replacing each maximal state subformula
with a fresh atomic proposition

0(3UP>0_7(D<>b) A O]P<o_3(O|:|C))

170 /373

PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ¢
task: check whether s = ®

treatment of the probability operator Pr(¢)

PCTL* path formula ¢ ~ LTL formula ¢’

by replacing each maximal state subformula
with a fresh atomic proposition

0(3UP>0_7(D<>b) A O]P<o_3(O|:|C))

l

O(aUd A Oe)

171/373

PCTL* formula Py(¢p)

Markov
chain M

[probabilistic model checker J

probability that ¢ holds for M

172 /373

PCTL* formula Py(¢p)

LTL formula ¢’

Markov
chain M

[probabilistic model checker }

probability that ¢ holds for M

173 /373

Markov
chain M

PCTL* formula Py(¢p)

LTL for

mula ¢’

automaton A for ¢’

y

[probabilistic model checker J

probability that ¢ holds for M

174 /373

Markov
chain M

PCTL* formula Py(¢p)

LTL for

mula ¢’

deterministic
automaton A for ¢’

y

[probabilistic model checker J

probability that ¢ holds for M

175 /373

Markov
chain M

PCTL* formula Py(¢p)

LTL for

mula ¢’

deterministic Rabin
automaton A for ¢’

y

[probabilistic model checker J

probability that ¢ holds for M

176 /373

Deterministic Rabin automata (DRA)

177 /373

Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, ¥, 4, o, Acc) where
« Q@ finite state space
« Qo € Q initial state

o X alphabet
e 0:Q XY — Q deterministic transition function

178/373

Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, ¥, 4, o, Acc) where
« Q@ finite state space
qo € Q initial state
2 alphabet
e 0:Q XY — Q deterministic transition function

acceptance condition Acc is a set of pairs (L, U)
with L, U C Q

179/373

Deterministic Rabin automata (DRA)

A DRA is a tuple A = (Q, ¥, 4, o, Acc) where
« Q@ finite state space
qo € Q initial state
2 alphabet
e 0:Q XY — Q deterministic transition function

acceptance condition Acc is a set of pairs (L, U)

with L, U C Q, say Acc = {(, Uh), -y (L Uk)}

semantics of the acceptance condition:

V (0O-L: A OOU;)

1<i<k

180 /373

Accepted language of a DRA
A DRA is a tuple A = (Q, ¥, 4, o, Acc) where
Acc = {(, U, .. (,Uk)}

accepted language:

L.,(A) = { o € X¥: the run for o in A fulfills Acc }

181/373

Accepted language of a DRA
A DRA is a tuple A = (Q, ¥, 4, o, Acc) where
Acc = {(, U, .. (,Uk)}

accepted language:

L.,(A) = { o € X¥: the run for o in A fulfills Acc }

Let p=q0q1 q> ... be the run for some infinite word o.
p fulfills Acc iff
die{l,....k}.inf(p)NL,=a Ainf(p)NU; # 2

182 /373

Example: DRA

(@)

O O

B A

Acc = {({q0}, {a})}

Example: DRA
A

(00— ()

' B

B

A

Acc = {({q0}, {a})}
= 00-q0 A OOqy

Example: DRA

@@ Acc = {({qo}. {m:})}

' B ' = O0-qo A OOq

B A
accepted language: (A+ B)*A“

185 /373

Example: DRA

@ Acc = {({qo}, {a:})}
B ' = O0-q0 A O0q
B A

accepted language: (A+ B)*A“

i

@@ Acc = {(Q, {Ch})}
' B ' = 00q

B A

Example: DRA

@ Acc = {({qo}. {m:})}
' B ' = 00-q0 A O0q
A

B
accepted language: (A+ B)*A“

1

@@ Acc = {(2,{a:})}
' B ' = 00q
B A

accepted language: (B*A)“

Fundamental result: LTL-2-DRA

188 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

189/373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}
LTL formula

{

NBA

determinization
f [SAFRA’88]

DRA

190/373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}
LTL formula LTL formula

{

NBA

determinization
f [SAFRA’88]

DRA DRA

compositional
[EsPARZA /KRETINSKY’14]

191/373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a, b}

192 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a,b} ~ X = {Q, {a}, {b},{a, b}}

193 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a,b} ~» ¥ = {Q, {a}, {b},{a, b}}

acceptance condition:
O0-qo A O0qu

194 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a,b} ~» ¥ = {Q, {a}, {b},{a, b}}

acceptance condition:
O0-qo A O0qu

LTL formula ¢O(a A —b)

195 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a,b} ~» ¥ = {Q, {a}, {b},{a, b}}

a

@-@ acceptance condition:

‘ b A —a ‘ O0-q1 A OOqo

—a -bV a

196 /373

Fundamental result: LTL-2-DRA

For each LTL formula ¢ over AP there exists a
DRA A with the alphabet ¥ = 24P s t.

L,(A) = {c€X¥: 0}

Example: AP = {a,b} ~» ¥ = {Q, {a}, {b},{a, b}}

a

@-@ acceptance condition:

‘ b A —a ‘ O0-q1 A OOqo

-a -bva LTL formula
O(a— ¢(bA—-a)) A O0O-a

197 /373

PCTL* model checking

198 /373

PCTL* model checking

PCTL* formula Py(¢p)
v

/
Markoy LTL for{(mula %)
ha
el % deterministic Rabin

automaton A for ¢’

pad

probabilistic model checker

probability that ¢ holds for M

199/373

PCTL* model checking

PCTL* formula Py(¢p)
v

/
Markoy LTL for{(mula %)
ha
el % deterministic Rabin

automaton A for ¢’

pad

probabilistic model checker

quantitative analysis in M x A

probability that ¢ holds for M

200 /373

Product of a Markov chain and a DRA

201/373

Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal: define a Markov chain M x A

202 /373

Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
goal: define a Markov chain M x A s.t.

PrM(A) = PrM{r € Paths(s) : trace(n) € L,(A)}

can be derived by a probabilistic reachability analysis
in the product-chain M x A

203 /373

Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
idea: define a Markov chain M x A s.t. ...

path m
in M

SUPEC PR

204 /373

Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
idea: define a Markov chain M x A s.t. ...

path 7 run for trace(m)
in M in A
S0 qo0
J | L(s0)
S1 q1
| | L(s1)
52 q2
| I L(s)

205 /373

Product of a Markov chain and a DRA

given: Markov chain M = (S, P, AP, L)
DRA A = (Q, 24P, 4, qo, Acc)
idea: define a Markov chain M x A s.t. ...

path 7 path in run for trace(m)
in M Mx A in A
S0 qo0
S1 l q1
| (s1, q2) | L(s1)
52 q2
| (2, a3) I L(s2)

206 /373

Fundamental property of the product

207 /373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

208 /373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

For each state s in M, let gs = J(qo, L(s)).

209 /373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

For each state s in M, let gs = J(qo, L(s)).

Prf!(A)

210/373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

For each state s in M, let gs = J(qo, L(s)).

Pr;(A)
= Pr'(V (00-L ADOU;))

S,
QS) 1<i<k

211/373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

For each state s in M, let gs = 6(q0, L(s)).
Pry’(A)
= PoA(V (0O-L A OOU;))

S,
(qs) 1<i<k

= Pr?s’fc”‘s;"(O accBSCC)

212/373

Fundamental property of the product

given: Markov chain M and DRA A where
Acc = { (L1, U1), (L2, Us), -, (Li, Uk) }

For each state s in M, let gs = 6(q0, L(s)).

Prf!(A)

= PrMXA(O accBSCC)

(s,qs)
I

union of accepting BSCCs in M x A i.e.,, BSCC C s.t.
die{l,....,k}. CNL,=2 AN CNU,#2

213 /373

Summary: PCTL* model checking

given: Markov chain M = (S, P, AP, L, s)
PCTL* state formula ®
task: check whether M | ®

method: bottom-up treatment of state subformulas W
to compute

Sat(V) = {seS:sEV}
« propositional logic fragment: obvious
« probability operator Py(¢p) via
« construction of a DRA A for ¢
« probabilistic reachability analysis in M x A

214 /373

PCTL* formula Py(¢)

DTMC M

LTL formula ¢’

/

probabilistic reachability analysis
in the product M x A

DRA A

1. graph analysis to compute the
accepting BSCCs of the product

2. linear equation system for the probabilities
to reach an accepting BSCC

215 /373

DTMC M

PCTL* formula Py(¢)

LTL formula ¢’

/

DRA A

probabilistic reachability analysis
in the product M x A

time complexity:
polynomial in the

sizes of M and A

216 /373

DTMC M

PCTL* formula Py(¢)

LTL formula ¢’

2exp in |¢|
DRA A

.

[

probabilistic reachability analysis
in the product M x A

time complexity:
polynomial in the

sizes of M and A

217 /373

Exponential-time algorithms for DTMC and LTL

218 /373

Exponential-time algorithms for DTMC and LTL

given: Markov chain M, LTL formula ¢
task: compute PrM(yp)

single exponential-time algorithms:

« iterative, automata-less approach

[COURCOUBETIS/ YANNAKAKIS’88|

« using weak alternating automata

[BUSTAN/RUBIN/VARDI’04]

e using separated Buchi automata

[COUVREUR/SAHEB/SUTRE’03]

e using unambiguous Buchi automata

[BAIER/KIEFER/KLEIN/KLUPPELHOLZ/MULLER/ WORRELL’16]

219/373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
* rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

220 /373

Markov reward model (MRM)

221/373

Markov reward model (MRM)

Markov chain M = (S, P, AP, L, rew) with a
reward function for the states:

rew:S - N

idea: reward rew(s) will be earned when leaving s

222 /373

Markov reward model (MRM)

Markov chain M = (S, P, AP, L, rew) with a
reward function for the states:

rew:S - N

idea: reward rew(s) will be earned when leaving s
formalization by accumulated rewards of finite paths

rew(spsi...s,) = Y, rew(s;)
0<i<n

223 /373

Example: Markov reward model

communication protocol with reward function that
counts the number of trials

0 1
start try_to_send

accumulated reward of finite paths, e.g.,

rew(start try lost try del) = 2

224 /373

Example: Markov reward model

communication protocol with reward function that
counts the number of trials

0 1
start try_to_send

measures of interest, e.g.,

PrM(()@del) pr.ob.ablllty to deliver a message
within at most three trials

225 /373

Example: Markov reward model

communication protocol with reward function that

counts the number of trials

0 1
start try_to_send

measures of interest, e.g.,

PrM(()@del) pr.ob.ablllty to deliver a message
within at most three trials

E(@ del) expected number of trials until delivered

226 /373

Reward-based extension of PCTL

227 /373

Reward-based extension of PCTL

probability operator for reward-bounded path formulas:

Py ®, us’ ®5) until with upper reward bound

228 /373

Reward-based extension of PCTL

probability operator for reward-bounded path formulas:

Py ®, us’ ®5) until with upper reward bound

expected accumulated reward operator: E¢,($ ®)

expected accumulated reward on
paths from s to a ®-state is < r

s EE.,($9) iff {

229 /373

Reward-based extension of PCTL

probability operator for reward-bounded path formulas:

Py ®, us’ ®5) until with upper reward bound

expected accumulated reward operator: E¢,($ ®)

expected accumulated reward on
paths from s to a ®-state is < r

s EE (&) iff {
example: communication protocol

<3 probability for delivering the message within
PZO‘Q(O del) at most three trials is at least 0.9

]E<5($ del) average number of trials is less or equal 5

230/373

Model checking reward-based properties

231/373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

232/373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

Let x5,; = Pr;w (¢1 us! <D2). Then:

233 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

Let x5,; = Pr;"’ (¢1 us! <I>2). Then:
if s |=3(®1Udy) APy and i > rew(s) then
= Z P(57 Sl) * Xs! i—rew(s)

s'eS

234 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

Let x5,; = Pr;"’ (¢1 us! <I>2). Then:
if s |=3(®1Udy) APy and i > rew(s) then
= Z P(57 Sl) * Xs! i—rew(s)

s'eS
if s |= ®, then: Xs,i = 1

in all other cases: xs; =0

235 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

treatment of the E¢,($ ®)

compute the expected accumulated rewards
by solving the linear equation system

236 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

treatment of the E¢,(®), assuming PrM(OCD) =1

compute the expected accumulated rewards
by solving the linear equation system

xs = rew(s)+ > P(s,s') -xs ifspE®

s'eS

xs =0 if s=®

237 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' ,) iteratively
for increasing reward bound i =0,1,2,...,r

treatment of the E¢,(®), assuming PrM(OCD) =1

compute the expected accumulated rewards
by solving the linear equation system

xs = rew(s)+ > P(s,s') -xs ifspE®

s'eS

also applicable for rational-valued weight fct.

238 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' &,) iteratively
for increasing reward bound i =0,1,2,...,r

treatment of the E¢,(®), assuming PrM(()CD) =1

compute the expected accumulated rewards
by solving the linear equation system

time complexity:
expected rewards: polynomial in size(M)

reward-bounded until: polynomial in size(M) and r

239 /373

Model checking reward-based properties

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' &,) iteratively
for increasing reward bound i =0,1,2,...,r

treatment of the E¢,(®), assuming PrM(()CD) =1

time complexity: _
pseudo-polynomial

o\
7)

reward-bounded until: polynomial in size(M) and r

240 /373

Complexity: reward-bounded until

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' &,) iteratively
for increasing reward bound i =0,1,2,...,r

unit rewards: polynomial in size(M) and log r

repeated squaring

general case: polynomial in size(M) and r

“pseudo-polynomial”

241/373

Complexity: reward-bounded until

treatment of Py(®, us’ ®,) wherer e N

compute PrM(®; US' &,) iteratively
for increasing reward bound i =0,1,2,...,r

unit rewards: polynomial in size(M) and log r

repeated squaring

general case: polynomial in size(M) and r

decision problem “does PrM(d; US" ®,) > g hold ?”
NP-hard [LAROUSSINIE/SPROSTON’05]
PosSLP-hard, in PSPACE [HAASE/KIEFER’15)]

242 /373

Complexity: reward-bounded until

treatment of Py(®, us" ®,) wherer e N

compute PrM(®; US' &,) iteratively
for increasing reward bound i =0,1,2,...,r

unit rewards: polynomial in size(M) and log r

repeated squaring

general case: polynomial in size(M) and r

decision problem “does PrM(d; US" @) > g hold ?”

NP-hard [LAROUSSINIE/SPROSTON’05]

243 /373

NP-hardness [LAROUSSINIE/SPROSTON’05]

244 /373

NP-hardness [LAROUSSINIE/SPROSTON’05]

The threshold problem for Markov chains is NP-hard:

given: Markov chain M = (S, P, sjit, rew),
GCS reNandqe]0,1[NQ

task: check whether Pr,,,(0S'G) > q

245 /373

NP-hardness [LAROUSSINIE/SPROSTON’05]

The threshold problem for Markov chains is NP-hard:

given: Markov chain M = (S, P, sjit, rew),
GCS reNandqe]0,1[NQ

task: check whether Pr,,,(0S'G) > q

Polynomial reduction from counting variant of SUBSUM:
given: x1,...,X,, v,k €N

task: check whether there are at least k subsets N
of {1,...,n}st. Y <y
ieN

246 /373

Polynomial reduction [LAROUSSINIE/SPROSTON’05]

247 /373

Polynomial reduction [LAROUSSINIE/SPROSTON’05]
counting variant of SUBSUM:
given: xi,...,X,, Y,k €N

task: check whether there are at least k subsets N

of {1,...,n}st. D <y
ieN

Markov chain: 2n+1 states

248 /373

Polynomial reduction [LAROUSSINIE/SPROSTON’05]
counting variant of SUBSUM:
given: xi,...,X,, Y,k €N

task: check whether there are at least k subsets N

of {1,...,n}st. D <y
ieN

Markov chain: 2n+1 states and rewards for the states

X1 Xo X3 Xn
0 0 0 0 0

249 /373

Polynomial reduction [LAROUSSINIE/SPROSTON’05]
counting variant of SUBSUM:
given: xi,...,X,, Y,k €N

task: check whether there are at least k subsets N

of {1,...,n}st. D <y
ieN

Markov chain: 2n+1 states and rewards for the states

X1 X2 X3 Xn
sinit.A &A \\)‘A > = o S‘G

250 /373

Polynomial reduction [LAROUSSINIE/SPROSTON’05]

counting variant of SUBSUM:
given: xi,...,X,, Y,k €N

task: check whether there are at least k subsets N

of {1,...,n}st. D <y
ieN
Pr,, (OSYG) > 55 iff there are at least k subsets ...

X1 X2 X3 Xn

Sinit e G

251/373

Mean-payoff (a.k.a. long-rung average)

252 /373

Mean-payoff (a.k.a. long-rung average)

given: a weighted graph without trap states

mean-payoff functions MP, MP : InfPaths — R:

n

MP(sps1%...) = I|msup] Z%wgt(s,—)
MP(sps15...) = liminf + ngt(s,)

n—00 i=0

253 /373

Mean-payoff (a.k.a. long-rung average)

given: a weighted graph without trap states

mean-payoff functions MP, MP : InfPaths — R:

n

MP(s515...) = limsup ;15 - > wgt(s))
n—o00 =0
- - 1 n
MP(sps18...) = |I;ll):2f —= - Z%wgt(s,-)

if wgt(s) =+1, wgt(t) = —1 then there exists m, my, ...

and ki, kp,... € Ns.it. form=smthismih .

MP(n) < 0 < MP(n)

254 /373

Expected mean-payoff in finite MC

fundamental results:

in finite MC: Eg(MP) = E¢(MP)

255 /373

Expected mean-payoff in finite MC

fundamental results:

in finite MC: Eg(MP) = E¢(MP)

Almost all paths eventually enter a BSCC and
visit all its states infinitely often.

256 /373

Expected mean-payoff in finite MC

fundamental results:

in finite MC: Eg(MP) = E¢(MP)

Almost all paths eventually enter a BSCC and
visit all its states infinitely often ...

.. with the same long-run frequencies ...

257 /373

Long-run frequencies in finite MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L'L‘o % : ;PI‘:(O’S) foreach t € B

258 /373

Long-run frequencies in finite MC

steady-state probabilities in BSCC B of a finite MC:

n
B — lim 1 i
0°(s) = n'l)fgo a ;Prt(O’s) for each t € B
computable by a linear equation system:

05(s) = X 6°(t)- P(t,s)
teB

“balance equations”

259 /373

Long-run frequencies in finite MC
steady-state probabilities in BSCC B of a finite MC:
n
B — im 1. i
0°(s) = nll)rgo - izzlPrt(Os) for each t € B

computable by a linear equation system:

05(s) = X 6°(t)- P(t,s)
teB

Y 08(s) = 1

seB

260 /373

Long-run frequencies in finite MC

steady-state probabilities in BSCC B of a finite MC:

n N
0°(s) = ,,'L'L‘o % : ;Prt(OlS) foreach t € B

computable by a linear equation system:

unique solution of the

03(5) = > 0B(t) - P(t,s) linear equation system
teB X = X - PlB

> 05%(s) = 1 Sx=1

seB B

261 /373

Long-run frequencies in finite MC
steady-state probabilities in BSCC B of a finite MC:

n N
0°(s) = ,,'L'L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1

262 /373

Long-run frequencies in finite MC

steady-state probabilities in BSCC B of a finite MC:

n N
0°(s) = ,,'L'L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1

number of occurrences of s

f ...5) = 1 .
req(s, sos1 - - - Sn) { in the sequence 5p8;...5,

263 /373

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(m) = 3 6%(s) - wat(s)

seB

264 /373

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(m) = 3 6%(s) - wat(s)

seB

265 /373

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(r) = 3 0°(s)- wgt(s) = MP(B)

seB

266 /373

Mean-payoff in finite weighted MC

steady-state probabilities in BSCC B of a finite MC:

n N
05(s) = ,,'L’L‘o % : ;Prt(OlS) foreach t € B

for almost all paths Tt = 5581 5, ... with w |= OB:

05(s) = lim -1 . freq(s,sps1-..5n)

n—oo M1
if 7 |= OB where B is a BSCC then almost surely
MP(r) = 3 0°(s)- wgt(s) = MP(B)

seB

expected mean-payoff: Y Prg (OB) - MP(B)
B

267 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

268 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)

269 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(So 51%..) - ,,'l,'L‘o uti/(so S1... Sn)

does the limit exist for almost all paths ?

270 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)
ﬁ'g}, cost(s;)

im —5—

271/373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)
ﬁ'g}, cost(s;)

im —5—

MP|cost](sos1 5 - - -)
MP]utill(so 5152 - -)

272/373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)
ﬁ'f;‘, cost(s;)

im —5—

in particular:

limit exists for =
almost all paths

MP|cost](sos1 5 - - -)
MP]utill(so 5152 - -)

273 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sgSy...Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)

if 1 |= OB where B is a BSCC then almost surely

MP]cost](B)
MP|util](B)

Irrat(m) =

274 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sySy-..Sp)
Irrat(so 51 52...) = ,,IL,TO util(so sy - - - Sn)

if 1 |= OB where B is a BSCC then almost surely

MPJ[cost](B)
MP|util|(B) —

Irrat(m) = Irrat(B)

275 /373

Long-run ratios in finite MC

MC with two reward functions cost, util : S =+ N

long-run cost-utility ratio Irrat : InfPaths — R

. cost(sySy-..Sp)
et) = 0 Cilsos - o)
if 1 |= OB where B is a BSCC then almost surely

MPJ[cost](B)
MP|util|(B) —

Irrat(m) = Irrat(B)

expected long-run ratio: 3 PrM(OB) - Irrat(B)
B

276 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute roy = inf{reR :PM(lrrat<r)>p}

277 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute roy = inf{reR :PM(lrrat<r)>p}

e = inf{reR: PM(O0(%2L <r))>p}

util

278 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute roy = inf{reR :PM(lrrat<r)>p}

e = inf{reR: PM(O0(%2L <r))>p}

util ==

= inf{reR: PAM(OO(ZL <r))>p}

util

279 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute roy = inf{reR :PM(lrrat<r)>p}

rope = inf{reR: PM(O0(%2L <r))>p}

util

= inf{reR: PrM(OO(<t < r))>p}

util

= min{reQ : PrM(0C)>p}

where C, = union of all BSCCs B with Irrat(B) < r

280/373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute rppr = inf{reR :PrM(lrrat<r)>p}
= min{reQ: PPM(0C)>p}
where C, = union of all BSCCs B with Irrat(B) < r

281/373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute rppr = inf{reR :PrM(lrrat<r)>p}
= min{reQ: PPM(0C)>p}
where C, = union of all BSCCs B with Irrat(B) < r

1. compute the BSCCs By, ..., B and r; = Irrat(B;)

282 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute ropr = inf { reR: PrM(Irrat < r) > p}
= min{reQ: PPM(0C)>p}
where C, = union of all BSCCs B with Irrat(B) < r

1. compute the BSCCs By, ..., B and r; = Irrat(B;)

W.|.0.g. n<n<<...<r

283 /373

Best threshold for long-run ratios

given: MC with reward functions cost, util : S —+ N
rational probability bound p

compute rppr = inf{reR :PrM(lrrat<r)>p}
= min{reQ: PPM(0C)>p}
where C, = union of all BSCCs B with Irrat(B) < r

1. compute the BSCCs By, ..., B and r; = Irrat(B;)
W.|.0.g. n<n<<...<r

2. determine the minimal i € {1,..., k} such that
PrM(0B;) + ...+ PrM(0B;) > p and return r;

284 /373

Cost-utility ratios: invariances

Given an MC with two positive reward functions
cost, util : S — N, consider their ratio:

cotslt FinPaths — Q

cost ()

= () for all finite paths 7

decision problems: given an w-regular property ¢ and
probability bound q € [0, 1], ratio threshold r € Q:

. does PrM(O(<r)A@)>qhold ?
. does PrM(O(<r)Ayp)=1hold?

285 /373

Cost-utility ratio via weight functions

Given an MC with two positive reward functions
cost, util : S — N, consider their ratio:

= cotslt FinPaths — Q

replace ratio by weight constraints:

I:I(g) = I:I(wgtSO)

286 /373

Cost-utility ratio via weight functions

Given an MC with two positive reward functions
cost, util : S — N, consider their ratio:

= cotslt FinPaths — Q

< iff wgt<0

where wgt = cost — r - util

I:I(g) = I:I(wgtSO)

287 /373

Cost-utility ratio via weight functions

Given an MC with two positive reward functions
cost, util : S — N, consider their ratio:

= cotslt FinPaths — Q

< iff wgt<0
where wgt = cost —r - util € Q

I:I(g) = I:I(wgtSO)

288 /373

Cost-utility ratio via weight functions

Given an MC with two positive reward functions
cost, util : S — N, consider their ratio:

= cotslt FinPaths — Q

<r iff wgt>0
where wgt = (cost — r - util) - const € Z

integer-valued
weight function

I:I(g) = I:I(wgt>0)

289 /373

Weight invariances for MC

Given an MC with a weight function wgt : S — Z.

290 /373

Weight invariances for MC
Given an MC with a weight function wgt : S — Z.
almost-sure problem:
does Pr}!(O(wgt > 0)Ap) =1 hold ?
positive problem:
does Pri!(O(wgt > 0)Ap) > 0 hold ?

quantitative problems, e.g.:

does Prfo"(EI(wgt> 0)A) > 3 hold ?

291/373

Weight invariances for MC

Given an MC with a weight function wgt : S — Z.

almost-sure prd\%m:

does P (wgt > 0)A @) =1 hold ?
S

positive problem:

does PrM D@t> 0)A¢) > 0 hold ?

quantitati ;Q’&')Iems e.g.

does (O(wgt >0)Ap) > 3 hold ?

292 /373

Almost-sure weight invariances

PrM(O(wet > 0)Ap) =1

293 /373

Almost-sure weight invariances

PrM(O(wet > 0)Ap) =1

iff PrM(O(wgt>0)) =1 and PrM(¢)=1

294 /373

Almost-sure weight invariances

PrM(O(wet > 0)Ap) =1
iff PrM(O(wgt>0)) =1 and PrM(¢)=1

iff spEIO(wgt<0) and PrM(yp)=1

295 /373

Almost-sure weight invariances

PrM(O(wet > 0)Ap) =1
iff PrM(O(wgt>0)) =1 and PrM(¢)=1

iff | spEIO(wet<0) and PrM(yp)=1

|

solvable by standard
shortest-path algorithms

296 /373

Almost-sure weight invariances

PrM(O(wet > 0)Ap) =1
iff PrM(O(wgt>0)) =1 and PrM(¢)=1

iff spEIO(wgt<0) and PrM(¢)=1

,

standard methods for
w-regular path properties

polynomially time-bounded for
reachability or Buichi properties

297 /373

Almost-sure weight invariances
PrM(O(wet > 0)Ap) =1
iff PrM(O(wgt>0)) =1 and PrM(¢p) =1

iff spEIO(wgt<0) and PrM(yp)=1

Best threshold computable by shortest-path algorithms:

sup{r€ezZ : PrM(Owgt>r)Ap)=1}

298 /373

Weight invariances for MC

Given an MC with a weight function wgt : S — Z.

almost-sure prgkfém:
does P«@f (wgt > 0)A @) =1 hold ?
5\

positive problem:

does PrM D@t> 0)A¢) > 0 hold ?

quantitati ;Q?&')Iems e.g.

does (O(wgt >0)Ap) > 3 hold ?

299 /373

Markov chain with weight function

wgt(s) +1
- wgt(s™) = —2
s@ 1-p p@st wgt(s*) = 0

300/373

Markov chain with weight function

. wgt(s) = +1
- wgt(s™) = —2
- 1-p p ot wgt(st) = 0

random walk:

(s, -2) (s, —1) (s,E 0) (s,E 1) (s,E 2)

301/373

Markov chain with weight function

wgt(s) = +1
wgt(s™) = —2

weight —1 for the
random walk: cycless™ s

302/373

Markov chain with weight function

wgt(s) = +1

wgt(st) = 0

weight +1 for the
random walk: cycle s st s

303/373

Markov chain with weight function

. wgt(s) = +1
- wgt(s™) = —2
- 1-p p ot wgt(st) = 0

Pry(O(wgt >0)) >0 iff p>3

304 /373

Weight invariance problem: positive case

The problem “does Prg(O(wgt > r) A¢) > 0 hold ?"

« depends on the concrete transition probabilities

305/373

Weight invariance problem: positive case

The problem “does Prg(O(wgt > r) A¢) > 0 hold ?"

« depends on the concrete transition probabilities

« is solvable in polynomial time

BSCC-analysis and variants of shortest-paths algorithms,
assuming ¢ is a Rabin or Streett or reachability condition

[BRAZDIL/KIEFER/KUCERA /NOVOTNY/KATOEN"14]
[KRAHMANN/SCHUBERT/BAIER /DUBSLAFF’15]

306 /373

Weight invariance problem: positive case

The problem “does Prg(O(wgt > r) A¢) > 0 hold ?"

« depends on the concrete transition probabilities

« is solvable in polynomial time
BSCC-analysis and variants of shortest-paths algorithms,

assuming ¢ is a Rabin or Streett condition
check whether there exists a good BSCC B s.t.
1. MP(B) > 0 or MP(B) = 0 & no negative cycle in B

2. there is a path 7 from s to B s.t. 7w and its
prefixes have sufficiently high weight

307 /373

Weight invariance problem: quantitative case

The problem “does Prg(O(wgt > r) A¢) > 0 hold ?"

« depends on the concrete transition probabilities

« is solvable in polynomial time

BSCC-analysis and variants of shortest-paths algorithms,
assuming ¢ is a Rabin or Streett condition

The problem “does Prg(O(wgt > 0) A) > q hold 7"

o is reducible to the threshold problem for
probabilistic pushdown automata (exponential blowup)

308 /373

Weight invariance problem: quantitative case

The problem “does Prg(O(wgt > r) A¢) > 0 hold ?"

« depends on the concrete transition probabilities

« is solvable in polynomial time

BSCC-analysis and variants of shortest-paths algorithms,
assuming ¢ is a Rabin or Streett condition

The problem “does Prg(O(wgt > 0) A) > q hold 7"

o is reducible to the threshold problem for
probabilistic pushdown automata (exponential blowup)

e is PosSLP-hard, even for unit weights and ¢ = true

[ETESSAMI/YANNAK.’09], [BRAzDIL/BROZEK/ETES./KUCERA/WO0JT. 10]

309/373

Weight invariance problem: almost-sure case

The problem “does Prg(O(wgt > r) A¢) =1 hold ?"

« independent from the concrete transition probabilities

« is solvable in polynomial time

310/373

Weight invariance problem: almost-sure case

The problem “does Prg(O(wgt > r) A¢) =1 hold ?"

« independent from the concrete transition probabilities

« is solvable in polynomial time
Pry(O(wgt >r)Ap)=1

iff Prs(O(wgt>r))=1 and Pry(y)=1

311/373

Weight invariance problem: almost-sure case

The problem “does Prg(O(wgt > r) A¢) =1 hold ?"

« independent from the concrete transition probabilities

« is solvable in polynomial time
Pry(O(wgt >r)Ap)=1

iff Prs(O(wgt>r))=1 and Pry(y)=1

T

standard algorithm
polynomial-time for
reachability, Rabin or Streett

312/373

Weight invariance problem: almost-sure case

The problem “does Prg(O(wgt > r) A¢) =1 hold ?"

« independent from the concrete transition probabilities

« is solvable in polynomial time
Pry(O(wgt >r)Ap)=1

iff Prs(O(wgt>r))=1 and Pry(y)=1

T

shortest-path algorithm

check chether the weight of a shortest
path from s is at least r+1

313/373

Weight-bounded reachability in MC

314 /373

Weight-bounded reachability in MC

given: weighted MC M, weight bound r € Z
and a distinguished states s, goal

decision problems:

positive prob: does Prs(Q<"goal) > 0 hold ?

almost-sure: does Prs(Q<"goal) =1 hold ?

quantitative: does Prg(0<"goal) > % hold ?

315/373

Weight-bounded reachability in MC

given: weighted MC M, weight bound r € Z
and a distinguished states s, goal

decision problems:
positive prob: does Prs(Q<"goal) > 0 hold ?
solvable in poly-time using shortest-path algorithms

almost-sure: does Prs(0<"goal) =1 hold ?

solvable in poly-time using shortest-path algorithms;
a bit tricky if goal is not a trap

quantitative: does Prg(0<"goal) > % hold ?
solvable in poly-space using algorithms for prob PDA

316 /373

Weight-bounded reachability in MC

given: weighted MC M, weight bound r € Z
and a distinguished states s, goal

decision problems:
positive prob: does Prs(Q<"goal) > 0 hold ?
solvable in poly-time using shortest-path algorithms

almost-sure: does Prs(0<"goal) =1 hold ?

solvable in poly-time using shortest-path algorithms;
a bit tricky if goal is not a trap

quantitative: does Prg(0<"goal) > % hold ?
solvable in poly-space using algorithms for prob PDA

s there an algorithm to compute Prs(Q<"goal) ?

317 /373

Weight-bounded reachability in MC [krer17]

s+

wgt(s) =0
wgt(s™) = -1
wgt(st) = +1

318/373

Weight-bounded reachability in MC [krer17]

wgt(s) =0
wgt(s™) = -1
ot wgt(st) = +1

1-p—q
(goal)

Pry(0="goal) = (1-p—q)- 2(2:) -p"-q"

319/373

Weight-bounded reachability in MC [krer17]

wgt(s) =0
wgt(s™) = -1
ot wgt(st) = +1

1-p—q
(goal)

Pry(0=0goal) = (l—p—q)-§ (2">-p"-q"

320/373

Best threshold for ratio invariances
Given a Markov chain M with two reward functions
rewy, rews : S — N with rew, > 0, consider their ratio

rewy ()

ratio : FinPaths — Q, ratio(w) = rews(r)

321/373

Best threshold for ratio invariances

Given a Markov chain M with two reward functions
rewy, rews : S — N with rew, > 0, consider their ratio:

rew; ()

ratio : FinPaths — Q, ratio(w) = rews(r)

Pr (O(ratio > r))

322/373

Best threshold for ratio invariances

Given a Markov chain M with two reward functions
rewy, rews : S — N with rew, > 0, consider their ratio:

rew; ()

ratio : FinPaths — Q, ratio(w) = rews(r)

best threshold for qualitative ratio invariances:
sup { r € Q: Pr,(O(ratio>r)) > 0 }
sup { re Q: Pr,(O(ratio>r)) =1 }

323/373

Best threshold for ratio invariances

Given a Markov chain M with two reward functions
rewy, rews : S — N with rew, > 0, consider their ratio:

rew; ()

ratio : FinPaths — Q, ratio(w) = rews(r)

best threshold for qualitative ratio invariances:
sup { re Q: Pr(O(ratio>r)) >0 }
sup { re Q: Pr,(O(ratio>r)) =1 }

. are computable in polynomial time ...

324 /373

Best threshold for ratio invariances

Given a Markov chain M with two reward functions
rewy, rews : S — N with rew, > 0, consider their ratio:

rew; ()

ratio : FinPaths — Q, ratio(w) = rews(r)

best threshold for qualitative ratio invariances:

sup { re Q: Pr(O(ratio>r)) >0 }

. are computable in polynomial time ...

325/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

rewy

Tew, - FinPaths — Q where rew, > 0

ratio =

326 /373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

327 /373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

reduction to positive weight invariances:

ratio>r iff rewy —r-rew» >0

328 /373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

reduction to positive weight invariances:

ratio>r iff rewy —r-rew» >0

Vv

weight function

329/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

reduction to positive weight invariances:

ratio>r iff rewy —r-rew» >0

Vv

weight function

If r € Q then pick some ¢ € N such that
(rewy — r - rews) - ¢ is an integer weight function.

330/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

« quantile can be approximated using a binary search

331/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

« quantile can be approximated using a binary search

for all finite paths r:

; max rew;
0 < ratio(m) < —-—lmI e

332/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

« quantile can be approximated using a binary search
and is one of the values

« expected long-run ratio of a BSCC

333/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

« quantile can be approximated using a binary search
and is one of the values

« expected long-run ratio of a BSCC

« ratio(m) for a simple path 7 from s

« ratio(m) for a simple cycle w reachable from s

334 /373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }

« inner decision problem for fixed r is solvable in
polynomial time

« quantile can be approximated using a binary search
and is one of the values

« expected long-run ratio of a BSC@*
« ratio(r) for a simple path ﬂ\ﬂ%{\&fb 06
« ratio(m) for a simple cycle w reac@e from s

335/373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }
« inner decision problem for fixed r is solvable in

polynomial time

« quantile can be approximated using a binary search
and is one of the values ... and therefore rational

« expected long-run ratio of a BSC@Q’
« ratio(r) for a simple path ﬂ\ﬁ% 'b pod
« ratio(r) for a simple cycle w reac@e from s

336 /373

Positive ratio quantiles

sup { re Q: Pr,(O(ratio>r)) >0 }
« inner decision problem for fixed r is solvable in

polynomial time

« quantile can be approximated using a binary search
and is one of the values ... and therefore rational

« expected long-run ratio of a BSCL
« ratio(m) for a simple path 7 from s

« ratio(m) for a simple cycle w reachéble from s

« computation using the continued-fraction method

337/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where ¢, d € N withd >0

« quantile can be approximated using a binary search
and is one of the values ... and therefore rational
« expected long-run ratio of a BSCL
« ratio(m) for a simple path @ from =

« ratio(m) for a simple cycle w reacheble from s

« computation using the continued-fraction method

338/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

« quantile can be approximated using a binary search
and is one of the values ... and therefore rational
« expected long-run ratio cg/dg of BSCC B
« ratio(m) for a simple path 7 from s

« ratio() for a simple cycle w reachable from s

« computation using the continued-fraction method

339/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

[g—pl<e

340/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

The quantile is the best rational approximation of p with
denominator at most D

341/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

The quantile is the best rational approximation of p with
denominator at most D, ie.,if a,be NwithO< b < D

then:
T g-pl<e i 2=5

342/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

343/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

_ 1
p = p+ 1

P2+ i
Pt —1
ps + —

344 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

[GROTSCHEL/LOVASZ/SCHRIJVER'87|

345 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

[GROTSCHEL/LOVASZ/SCHRIJVER'87|

q1 p

346 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

[GROTSCHEL/LOVASZ/SCHRIJVER'87|

q1 p qz

347 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

[GROTSCHEL/LOVASZ/SCHRIJVER'87|

q1 q3 p qz

348 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

[GROTSCHEL/LOVASZ/SCHRIJVER’87|

q q3 p qa q2

349 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

q1 q3 qgs P qa q2

350 /373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

q1 q3 dgs p g4 q2

™M
Q)

351/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

denominator > D --..

q1 q3 dgs p g4 q2

™M
Q)

352/373

Positive ratio quantiles
sup { reQ: Pr(O(ratio>r)) >0 } = 3

where d < D = max{ max dg, |S|- max rew, }

1. compute an approximation p of the quantile
up to precision € = 1/2D?

2. apply the continued-fraction method to p

q1 q3 g P qz

-0

™M
Q)

353/373

Polynomially computable ratio quantiles in MC

qualitative quantiles for ratio invariances:
sup{re€Q : Pry(O(ratio > r)Ap) > 0}
sup{re€Q : Pry(O(ratio > r)Ap) = 1}

where ¢ is a reachability, Rabin or Streett condition

354 /373

Polynomially computable ratio quantiles in MC

qualitative quantiles for ratio invariances:
sup{re€Q : Pry(O(ratio > r)Ap) > 0}
sup{re€Q : Pry(O(ratio > r)Ap) = 1}

A 7
"~

Prs(¢) =1 and s £ AQ(wgt, < 0)

where wgt, = cost — r-util

... binary search for maximal r and shortest-path algorithms ...

355 /373

Polynomially computable ratio quantiles in MC

qualitative quantiles for ratio invariances:
sup{re€Q : Pry(O(ratio > r)Ap) > 0}
sup{re€Q : Pry(O(ratio > r)Ap) = 1}
qualitative and quantitative quantiles for long-run ratios:
sup{r € Q : Pr,(O0(ratio > r)Ap) = 1}
sup{r € Q : Pry(O0(ratio > r)A¢) > q}

356 /373

Polynomially computable ratio quantiles in MC

qualitative quantiles for ratio invariances:
sup{re€Q : Pry(O(ratio > r)Ap) > 0}
sup{re€Q : Pry(O(ratio > r)Ap) = 1}
qualitative and quantitative quantiles for long-run ratios:
sup{r € Q : Pr,(O0(ratio > r)Ap) = 1}
sup{r € Q : Pry(O0(ratio > r)A¢) > q}
= min{reQ : Pr,(0C)>q}
where C, = union of “good” BSCCs B with Irrat(B) > r

357 /373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

x conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

358 /373

Conditional probabilities

359 /373

Conditional probabilities

« useful for various multi-objective properties

e.g. analyze the gained utility for a given energy budget

Prs(Osugoal | O<¢ goal) or
ExpUtil, (¢ goal | O<¢ goal

360 /373

Conditional probabilities

« useful for various multi-objective properties

e.g. analyze the gained utility for a given energy budget

Prs(Osugoal | O<¢ goal) or
ExpUtil, (¢ goal | O<¢ goal

« useful for failure diagnosis

e.g. study the impact of failures and cost of repair mechanisms

Pry(Ogoal | ¢) or
ExpCost, (4 goal | ¢)

in resilient systems

361 /373

Conditional probabilities

for Markov chains:

M
Pi(plv) = o PN

PrM(v)

362 /373

Conditional probabilities

for Markov chains:

Pr(p A7)
Prl(elv) = —
Prs’(v)
e discrete MCs and PCTL [ANDRIES /ROSSUM’08]

[J1/Wu/CHEN’13]
o continuous-time MCs and CSL [Gao/Xu/ZnaN/ZHaNG'13]

363 /373

Conditional probabilities

for Markov chains:

Pr(p A7)
Prl(elv) = —
Prs’(v)
e discrete MCs and PCTL [ANDRIES /ROSSUM’08]

[J1/Wu/CHEN’13]
o continuous-time MCs and CSL [Gao/Xu/ZnaN/ZHaNG'13]

transformation-based approach for LTL conditions

MC M ~~ MC Mq/, [BAIER/KLEIN/KLUPPELHOLZ /M ARCKER' 14]
Pr}(pl¥) = Prs™(¢)

364 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

365 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

MC M

©

366 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

MC M

306 306G

367 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

MC M MC M,

306 306G

368 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

MC M MC M,

©

Py(s,t) = P(s, t)

369 /373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pri(¢]06) = Pi'(¢)

MC M MC M,

©

A

Pr(0G)
Pr{1(0G)

370/373

Py(s,t) = P(s,t) -

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pr(¢]06) = Pi'(¢)

.. can be generalized for other temporal conditions 9

371/373

Transformation-based approach for MC

given: Markov chain M = (S, P) and ¢ =G
define Markov chain My, s.t. for all LTL formulas ¢
Pr(¢]06) = Pi'(¢)

.. can be generalized for other temporal conditions 9

same method applicable for conditional expectations

EM(f|y) = ESY(F)

e.g.. EM(“energy until reaching the goal” | {goal)

372/373

Tutorial: Probabilistic Model Checking

Discrete-time Markov chains (DTMC)

+ basic definitions

x probabilistic computation tree logic PCTL/PCTL*
x rewards, cost-utility ratios, weights

+ conditional probabilities

Markov decision processes (MDP)

* basic definitions

x+ PCTL/PCTL* model checking
x fairness

+ conditional probabilities

x rewards, quantiles

* mean-payoff

* expected accumulated weights

373/373

