
Introduction to
Permission-Based Program Logics

Part II – Concurrent Programs

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.: AAAAAAAAAA

Thomas Wies
New York University

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 7 8 9

Example: Lock-Coupling List

• There is one lock per node; threads acquire locks in a
hand over hand fashion.

• If a node is locked, we can insert a node just after it.

• If two adjacent nodes are locked, we can remove the
second.

2 3 5 8 9

Extensions of Separation Logic for
Concurrent Programs

Extensions of Separation Logic for
Concurrent Programs

Extensions of Separation Logic for
Concurrent Programs

RGSep Primer
[courtesy of Viktor Vafeiadis]

Program and Environment

• Program: the current thread being verified.

• Environment: all other threads of the system
that execute in parallel with the thread being
verified.

• Interference: The program interferes with the
environment by modifying the shared state.

Conversely, the environment interferes with
the program by modifying the shared state.

Local & Shared State

• The total state is logically divided into two components:
– Shared: accessible by all threads via synchronization
– Local: accessible only by one thread, its owner

State of the lock-coupling list just before inserting a new
node.
The node to be added is local because other threads cannot
yet access it.

2 3 5 7 8 9

6 local

shared

Program Specifications

• The specification of a program consists of two
assertions (precondition & postcondition), and
two sets of actions:

• Rely: Describes the interference that the program
can tolerate from the environment; i.e. specifies
how the environment can change the shared
state.

• Guarantee: Describes the interference that the
program imposes on its environment; i.e.
specifies how the program can change the shared
state.

Rely/Guarantee Actions

Lock node

Unlock node

Actions describe minimal atomic changes to the
shared state.

An action allows any part of the shared state that
satisfies the LHS to be changed to a part satisfying
the RHS, but the rest of the shared state must not
be changed.

Rely/Guarantee Actions

Actions can adjust the boundary between local state
and stared state.
This is also known as transfer of ownership.

Add node

Delete node

Rely/Guarantee Actions

Actions can adjust the boundary between local state
and stared state.
This is also known as transfer of ownership.

Add node

Delete node

this node becomes shared

this node becomes local

2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

Add node

6

5 7

2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

Add node

6

5 7

2 3 8 9 shared

Rely/Guarantee Actions:
Lock Coupling List

Add node

6

5 7

local

2 3 8 9 shared

Rely/Guarantee Actions:
Lock Coupling List

Add node

6

5 7

local

7 2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

5

6

Lock node

7 2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

5

6

Lock node

7 2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

5

6

Lock node

7 2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

5

6

Lock node

2 3 8 9 shared

Rely/Guarantee Actions:
Lock Coupling List

6

5 7

local

Delete node

2 3 8 9 shared

Rely/Guarantee Actions:
Lock Coupling List

6

5 7

local

Delete node

2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

6

5 7

Delete node

2 3 8 9

local

shared

Rely/Guarantee Actions:
Lock Coupling List

6

5 7

Delete node

Assertion Syntax

• Separation Logic

 P, Q ::= e = e | e  e | e  (f: e) | P * Q | …

• Extended Logic

 p, q ::= P | P | p * q | …

local shared

Assertion Semantics

• l, s ² P , l ²SL P

• l, s ² P , s ²SL P and l = {}

• l, s ² p * q , exists l1, l2 :
 l = l1 ² l2 and l1, s ² p and l2, s ² q

Assertion Semantics

• l, s ² P , l ²SL P

• l, s ² P , s ²SL P and l = {}

• l, s ² p * q , exists l1, l2 :
 l = l1 ² l2 and l1, s ² p and l2, s ² q

split local state

Assertion Semantics

• l, s ² P , l ²SL P

• l, s ² P , s ²SL P and l = {}

• l, s ² p * q , exists l1, l2 :
 l = l1 ² l2 and l1, s ² p and l2, s ² q

share global state

Assertions: Lock Coupling List

v y

x
x  (0, v, y)

v y

x
x  (T, v, y)

T

lseg(x, y) y

x

Unlocked node x holding value v and pointing to y

Node x holding value v and pointing to y, locked by thread T

List segment from x to y of possibly locked nodes

Rely/Guarantee Actions:
Lock Coupling List

x  (0, v, y)  x  (T, v, y)

x  (T, v, y)  x  (0, v, y)

 x  (T, v, z)
x  (T, v, y)  *
 z  (0, w, y)

x  (T, v, z)
 *  x  (T, v, y)
z  (T, w, y)

Programs: Syntax

• Basic commands c:

– noop: skip

– guard: assume(b)

– heap write: [x] := y

– heap read: x := [y]

– allocation: x := new()

– deallocation: free(x)

– …

• Commands C 2 Com:

– basic commands: c

– seq. composition: C1; C2

– nondet. choice: C1 + C2

– looping: C*

– atomic com.: atomic C

– par. composition: C1 | C2

Rely/Guarantee Judgements

 ` C sat (p, R, G, q)

 (precondition, rely, guarantee, postcondition)

Parallel Composition Rule

` C1 sat (p1, R [G2, G1, q1)

` C2 sat (p2, R [G1, G2, q2)

` (C1 | C2) sat (p1 * p2, R, G1 [G2, q1 * q2)

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Lock
B

2 3 8 9

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Lock
B

2 3 8 9
B

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Lock
B

2 3 8 9
B

not stable!

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Lock

Unlock B

B

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Add
B B

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Delete
B

B

B

Stability

• An assertion is stable iff it is preserved under
interference by other threads.

• Example:

5 7
A A

Delete
B

B

B

stable!

Stability (Formally)

S stable under P  Q

iff

(P -* S) * Q ² S

where P -* S := : (: P -* : S)

Atomic Commands

` { P } C { Q }

` (atomic C) sat (P, ;, ;, Q)

p, q stable under R

` (atomic C) sat (p, ;, G, q)

` (atomic C) sat (p, R, G, q)

Atomic Commands

` { P } C { Q }

` (atomic C) sat (P, ;, ;, Q)

p, q stable under R

` (atomic C) sat (p, ;, G, q)

` (atomic C) sat (p, R, G, q)

reduction to
sequential SL

only local state

Atomic Commands

` { P } C { Q }

` (atomic C) sat (P, ;, ;, Q)

p, q stable under R

` (atomic C) sat (p, ;, G, q)

` (atomic C) sat (p, R, G, q)

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

Add node

6

5 7

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

Add node

6

5 7

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

 P2

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

 F F

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

 P1

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

Q2

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

 F F

Atomic Commands

P2, Q2 precise P2  Q2 2 G

` (atomic C) sat (P1 * P2, ;, ;, Q1 * Q2)

` (atomic C) sat (P1 * P2 * F , ;, G, Q1 * Q2 * F)

2 3 8 9

local

shared

6

5 7

 P2 Q2

Q1 = emp

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1 head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1 head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1 head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1 head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1 head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1

Z Z

head

8

Challenge: Harris' Non-blocking List

3 6 8 1 -1

1 2 7 free

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

Z Z

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

head

8

Challenge: Harris' Non-blocking List

3 6

8

1 -1

1 2 7 free

head

Flow Interfaces

joint work with Siddharth Krishna and Dennis Shasha

Goal

• Data structure abstractions that
– can handle unbounded sharing and overlays

– treat structural and data constraints uniformly

– do not encode specific traversal strategies

– provide data-structure-agnostic composition and
decomposition rules

– remain within general theory of separation logic

) Flow Interfaces

High-Level Idea

• Express all data structure invariants in terms of a
local condition, satisfied by each node.
– Local condition may depend on a quantity of the

graph that is calculated inductively over the entire
graph (the flow).

• Introduce a notion of graph composition that
preserves local invariants of global flows.

• Introduce a generic good graph predicate that
abstracts a heap region satisfying the local flow
condition (the flow interface).

Local Data Structure Invariants with Flows

l r l r

l
r

l

r

r

l

root

Can we express the property that root points to a tree as a
local condition of each node in the graph?

Local Data Structure Invariants with Flows

l r l r

l
r

l

r

r

l

root

Can we express the property that root points to a tree as a
local condition of each node in the graph?

Path counting!

Local Data Structure Invariants with Flows

1

1 1

1 1

0

0

0

l r l r

l
r

l

r

r

l

root

Can we express the property that root points to a tree as a
local condition of each node in the graph?

8 n 2 N. pc(root, n) · 1

"G contains a tree rooted at root"

Flows
Step 1: Defining the Flow Graph

1 1 1 1

1
1

1

1

1

1

root

Label each edge in the graph with an element from some
flow domain (D, v, +, ¢, 0, 1)

Flows
Step 1: Defining the Flow Graph

1 1 1 1

1
1

1

1

1

1

root

Label each edge in the graph with an element from some
flow domain (D, v, +, ¢, 0, 1)

Requirements of flow domain:
• (D, +, ¢, 0, 1) is a semiring
• (D, v) is !-cpo with

smallest element 0
• + and ¢ are continuous

Path counting flow domain:
(ℕ [{1}, ·, +, ¢, 0, 1)

Flows
Step 1: Defining the Flow Graph

1 1 1 1

1
1

1

1

1

1

root

Label each edge in the graph with an element from some
flow domain (D, v, +, ¢, 0, 1)

Flow graph G = (N, e)
• N finite set of nodes
• e: N £ N  D

Flows
Step 1: Defining the Flow Graph

1 1 1 1

1
1

1

1

1

1

root

Label each edge in the graph with an element from some
flow domain (D, v, +, ¢, 0, 1)

Flow graph G = (N, e)
• N finite set of nodes
• e: N £ N  D

0

0

0

0

0

0

0 0

1

Flows
Step 2: Define the Inflow

1 1 1 1

1
1

1

1

1

1

root

Label each node using an inflow in: N  D

inroot(n) =
1, n = root
0, n ≠ root

0

0

0

0

0

0 0

1

Flows
Step 3: Calculate the flow

1

1 1

1 1

0

0

0

1 1 1 1

1
1

1

1

1

1

root

flow 𝑖𝑛, 𝐺 ∶ 𝑁 → 𝐷

flow(𝑖𝑛, 𝐺) = lfp 𝜆𝐶. 𝜆𝑛 ∈ 𝑁. 𝑖𝑛 𝑛 + 𝐶 𝑛′ ⋅ 𝑒 𝑛′, 𝑛
𝑛′∈𝑁

Flow graph G = (N, e)

0

1

0

0

0

0 0

0

Flows
Step 3: Calculate the flow

0

1 0

1 1

1

1

0

1 1 1 1

1
1

1

1

1

1

flow 𝑖𝑛, 𝐺 ∶ 𝑁 → 𝐷

flow(𝑖𝑛, 𝐺) = lfp 𝜆𝐶. 𝜆𝑛 ∈ 𝑁. 𝑖𝑛 𝑛 + 𝐶 𝑛′ ⋅ 𝑒 𝑛′, 𝑛
𝑛′∈𝑁

Flow graph G = (N, e)

root

0

0

0

0

0

0 0

1

Flows
Step 3: Calculate the flow

1

1 1

1 1

0

0

0

1 1 1 1

1
1

1

1

1

1

root

flow 𝑖𝑛, 𝐺 ∶ 𝑁 → 𝐷

flow(𝑖𝑛, 𝐺) = lfp 𝜆𝐶. 𝜆𝑛 ∈ 𝑁. 𝑖𝑛 𝑛 + 𝐶 𝑛′ ⋅ 𝑒 𝑛′, 𝑛
𝑛′∈𝑁

Flow graph G = (N, e)

8 n 2 N. flow(inroot, G)(n) · 1

"G contains a tree rooted at root"

Data Constraints
predicate tree(t: Node, C: Set<Int>) {
 t == null Æ emp Æ C = ; Ç

 9 v, x, y, Cx, Cy ::
 t  (d:v, r:x, l:y) * tree(x, Cx) * tree(y, Cy) Æ

 C = {v} [Cx [Cy Æ v > Cx Æ v < Cy
}

t

tree(x,Cx) tree(y,Cy)

l r

v
d

Data Invariants
predicate tree(t: Node, C: Set<Int>) {
 t == null Æ emp Æ C = ; Ç

 9 v, x, y, Cx, Cy ::
 t  (d:v, r:x, l:y) * tree(x, Cx) * tree(y, Cy) Æ

 C = {v} [Cx [Cy Æ v > Cx Æ v < Cy
}

t

tree(x,Cx) tree(y, Cy)

l r

v
d implies Cx Å Cy = ;

Data Invariants
predicate tree(t: Node, C: Set<Int>) {
 t == null Æ emp Æ C = ; Ç

 9 v, x, y, Cx, Cy ::
 t  (d:v, r:x, l:y) * tree(x, Cx) * tree(y, Cy) Æ

 C = {v} [Cx [Cy Æ v > Cx Æ v < Cy
}

t

tree(x,Cx) tree(y, Cy)

l r

v
d implies Cx Å Cy = ;

Data invariant piggybacks on inductive definition of the tree.
) hard to entangle data invariants from data structure specifics.

Inset Flows

Label each edge with the set of keys that follow that edge in a search
(edgeset).

KS: the set of all search keys
e.g. KS = ℤ

Inset flow domain:
(2KS, µ, [, \, ;, KS)

6

3 8

1 4

l r

r l

root

9

l

Inset Flows

Label each edge with the set of keys that follow that edge in a search
(edgeset).

KS: the set of all search keys
e.g. KS = ℤ

Inset flow domain:
(2KS, µ, [, \, ;, KS)

6

3 8

1 4

{k | k < 6}

root

9

{k | k > 6}

{k | k < 3} {k | k > 3} {k| k > 8}

; ; ;

; ;

KS

Inset Flows

Set inflow in of root to KS and to ; for all other nodes.

KS: the set of all search keys
e.g. KS = ℤ

Inset flow domain:
(2KS, µ, [, \, ;, KS)

{k | k < 6}

root

{k | k > 6}

{k | k < 3} {k | k > 3} {k | k > 8}

; ; ;

; ;

KS

Inset Flows

flow(in, G)(n) is the inset of node n, i.e., the set of keys k such that a
search for k will traverse node n.

I1 = {k | 3 < k}

I2 = {k | 3 < k < 6}

I3 = {k | 8 < k}

I1 I2

{k | k < 6}

root

I3

{k | k > 6}

{k | k < 3} {k | k > 3} {k | k > 8}

From Insets to Keysets

𝑜𝑢𝑡𝑠𝑒𝑡(𝐺) 𝑛 =

 𝑒(𝑛, 𝑛′)

𝑛∈𝑁

𝑘𝑒𝑦𝑠𝑒𝑡(𝑖𝑛, 𝐺) 𝑛 =
𝑖𝑛𝑠𝑒𝑡(𝑖𝑛, 𝐺) 𝑛 ∖ 𝑜𝑢𝑡𝑠𝑒𝑡(𝐺)(𝑛)

keyset(in, G)(n) is the set of keys
that could be in n

5

1 7

3

{5}

{𝑘. 𝑘 > 5}

{𝑘. 𝑘 < 5 ∧ 𝑘 > 1}

{𝑘. 𝑘 < 5 ∧
 𝑘 ≤ 1}

Verifying Concurrent Search Data Structures

• Local data structure invariants

– edgesets are disjoint for each n:
{e(n,n')}n' 2 N are disjoint

– keyset of each n covers n's contents:
C(G)(n) µ keyset(in, G)(n)

• Observation: disjoint inflows imply disjoint keysets

– If {in(n)}n 2 N are disjoint (e.g. G has a single root)

– then {keyset(in,G)(n)} n 2 N are disjoint

) Can be used to prove linearizability of concurrent search
 data structures in a data-structure-agnostic fashion

 [Shasha and Goodman, 1988]

Compositional Reasoning

Can we reason compositionally about flows and
flow graphs à la SL?

Flow Graph Composition

• Standard SL Composition (disjoint union) is too weak:

x

1

root

1

y y

x

1

* = x

1

root

1

y

1

a tree a tree not a tree

Flow Interface Graph

(in, G) is a flow interface graph iff

• G = (N, No, ¸, e) is a partial graph with

• N the set of internal nodes of the graph

• No the set of external nodes of the graph

• ¸: N  A a node labeling function

• e: N x (N [No)  D is an edge function

• in: N  D is an inflow

Inflow in specifies rely of G on its context.

0 0

0 0 0

1

Flow Interface Graph Composition

1

1 2

1 1

root

2

0
0

(in, G)

0 0

0 0 0

1

Flow Interface Graph Composition

(in, G) = (in1, G1) ² (in2, G2)

in1 = ?, in2 = ?
1

1 2

1 1

root

2

0
0

G1
G2

1

2 1 1

1 1

0

0 0

0 0 0

1

Flow Interface Graph Composition

(in, G) = (in1, G1) ² (in2, G2)

in1 = ?, in2 = ?
1

1 2

1 1

root

2

0
0

G1
G2

1

2 1 1

1 1

0

Flow Interface Graph Composition

(in, G) = (in1, G1) ² (in2, G2)

in1 = ?, in2 = ?
1

1 2

1 1

root

2

0
G1

G2

1

2 1 1

1 1

0

0 0

0 0 0

1

Flow Interface Graph Composition

(in, G) = (in1, G1) ² (in2, G2)

in1 = ?, in2 = ?
1

1 2

1 1

root

2

0
0

G1
G2

Flow Interface Graph Composition

• H1 ² H2 is

– commutative: H1 ² H2 = H2 ² H1

– associative : (H1 ² H2) ² H3 = H1 ² (H2 ² H3)

– cancelative: H ² H1 = H ² H2) H1 = H2

) Flow interface graphs form a separation algebra.

) We can use them to give semantics to SL assertions.

• How do we abstract flow interface graphs?

Flow Map of a Flow Interface Graph

n
no

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G}

flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G}

G

Flow Map of a Flow Interface Graph

n
no in

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G}

flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G}

G

Flow Map of a Flow Interface Graph

n
no in

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G}

flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G}

G

p

Flow Map of a Flow Interface Graph

n
no in

fm(G)(n, no) = ∑ { pathproduct(p) | p path from n to no in G}

flow(in, G)(no) = ∑ { in(n) ¢ fm(G)(n, no) | n 2 G}

fm(G) (n, no)

G

p

Flow Map: Example

1 1 1 1

1
1

1

1

1
1

1

1 1

Flow Map: Example

1 1

1
1

1

1

1

1

1

Flow map abstracts from internal structure of the graph

1 1

Flow Map: Example

1 1

1
1

1

1

1
1

1 1

Flow map abstracts from internal structure of the graph

1

1 1

Flow Map: Example

1 1

1
1

1

1

1 0 0

Flow map abstracts from internal structure of the graph

Flow Interfaces

• I = (in, f) is a flow interface if

– in: N  D is an inflow

– f: N £ No  D is a flow map

• (in, f) good denotes all flow interface graphs (in, G) s.t.

– fm(G) = f

– for all n 2 N good(in(n), G|n) holds

• where good is some good node condition

– e.g. good(i, _) = i · 1

Flow Interfaces with Node Abstraction

• I = (in, ®, f) is a flow interface if

– in: N  D is an inflow

– f: N £ No  D is a flow map

– ® 2 A is a node label
• (in, ®, f) good denotes all flow interface graphs (in, G) s.t.

– fm(G) = f

– ® = t { ¸G(n) | n 2 N }

– for all n 2 N good(in(n), G|n) holds

• where good is some good node condition
– e.g. good(i, _) = i · 1

Flow Interface Composition

Composition of flow interface graphs can be lifted to flow
interfaces:

• I 2 I1 © I2 iff 9 H, H1, H2 such that

– H 2 I , H1 2 I1 , and H2 2 I2

– H = H1 ² H2

Some nice properties of ©

• © is associative and commutative

• I1 ² I2 µ I1 © I2

• if I 2 I1 © I2, then for all H1 2 I1 , H2 2 I2 , H1 ² H2 defined

• …

Separation Logic with Flow Interfaces

• Good graph predicate Gr°(I)

– °: SL predicate that defines good node condition and
 abstraction of heap onto nodes of flow graph

– I: flow interface term

• Good node predicate N°(x, I)
– like Gr but denotes a single node

– definable in terms of Gr

• Dirty region predicate [P]°,I

– P: SL predicate

– denotes heap region that is expected to satisfy interface I
but may currently not

Graph Predicate: Linked List

• Abstraction of linked list node

°(x, in, C, f) = 9k, y. x  (data: k, next: y) Æ
 C = {k} Æ k 2 in Æ
 f = ITE(y = null, ², { (x,y)  {k'. k' > k} })

• Invariant

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ²

3 6 8

y x

{k', k' > 3} {k', k' > 6} {k', k' > 8}

next next next
root

Graph Predicate: Binary Search Tree

• Abstraction of BST node

°(x, in, C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ
 C = {k} Æ k 2 in Æ
 f = ITE(y = null, ², { (x,y)  {k'. k' < k} }.
 ITE(z = null, ², { (x,z)  {k'. k' > k} }

• Invariant

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ²

5

1 7

3

{ k'. k' < 5 } { k'. k' > 5 }

{ k'. k' > 1 }

root

left
right

right

Graph Predicate: Binary Search Tree

• Abstraction of BST node

°(x, in, C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ
 C = {k} Æ k 2 in Æ
 f = ITE(y = null, ², { (x,y)  {k'. k' < k} }.
 ITE(z = null, ², { (x,z)  {k'. k' > k} }

• Invariant

9I :: Gr°(I) Æ Iin = {root  KS}.0 Æ If = ²

5

1 7

3

{ k'. k' < 5 } { k'. k' > 5 }

{ k'. k' > 1 }

root

left
right

right

Need tree invariant?

Graph Predicate: Binary Search Tree

• Abstraction of BST node

°(x, (in, pc), C, f) = 9k, y, z. x  (data: k, left: y, right: z) Æ
 C = {k} Æ k 2 in Æ pc = 1 Æ
 f = ITE(y = null, ², { (x,y)  ({k'. k' < k}, 1) }.
 ITE(z = null, ², { (x,z)  ({k'. k' > k}, 1) }

• Invariant

9I :: Gr°(I) Æ Iin = {root  (KS, 1)}.0 Æ If = ²

5

1 7

3

({ k'. k' < 5} , 1) ({ k'. k' > 5 } , 1)

({ k'. k' > 1 }, 1)

root

left
right

right

Need tree invariant?
No problem!

Data-Structure-Agnostic Proof Rules

Decomposition
 Gr(I) Æ x 2 Iin .
 .

N(x, I1) * Gr(I2) Æ I 2 I1 © I2

Abstraction
 Gr(I1) * Gr(I2) Æ I 2 I1 © I2
 .

 Gr(I) Æ I 2 I1 © I2

Replacement
I 2 I1 © I2 Æ I1 ≾ J1
 .

J 2 J1 © I2 Æ I ≾ J

Generic R/G Actions

• Lock node N(x, (in, 0, f))  N(x, (in, T, f))

• Unlock node N(x, (in, T, f))  N(x, (in, 0, f))

• Dirty [true]I Æ I® = t  [true]I

• Sync [true]I Æ I® = t  Gr(I') Æ I ≾ I'

Conclusion

• Radically new approach for building
compositional abstractions of data structures.

• Fits in existing (concurrent) separation logics.

• Enables simple correctness proofs of
concurrent data structure algorithms

• Proofs abstract from the details of the specific
data structure implementation.

