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Organization of the course

• Two lectures covering:
• Background on security protocols
• Modeling and reasoning
• Aspects of a state-of-the-art model checker (Tamarin)

• Lectures hopefully interactive: ask questions!

• Main resource: Tamarin website:
https://tamarin-prover.github.io/

• Tool source, ready for download
• 100+ page manual
• Examples, case studies
• Algorithms, theses, papers, . . .

What is described here is a team effort
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Tamarin Contributors
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Contents

module content

1 Introduction to Security Protocols, Protocol Specification
2 Term Rewriting; Protocol Syntax and Semantics
3 Security Properties and Algorithmic Verification
4 Advanced Features [time permitting]
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Tamarin?!

The Tamarin prover is a security protocol verification
tool that supports both falsification and unbounded
verification in the symbolic model.
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Motivation

• Many good cryptographic primitives:
RSA, DSA, ElGamal, AES, SHA3 . . .

• How can we construct secure distributed applications with them?
• E-commerce
• E-banking
• E-voting
• Mobile communication
• Digital contract signing

• Even if cryptography is hard to break, this is not a trivial task.
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Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS,
Signal, PGP, ...

Let’s consider underlying ideas and some example protocols.

9 / 63



Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS,
Signal, PGP, ...

Let’s consider underlying ideas and some example protocols.

9 / 63



Motivation
Example: Securing an e-banking application

A→ B: “Send $10,000 to account X”
B → A: “I’ll transfer it now”

• How does B know the message originated from A?

• How does B know A just said it?

• Confidentiality, integrity, accountability, non-repudiation, ...?

Solutions involve protocols like IPsec, Kerberos, SSH, SSL/TLS,
Signal, PGP, ...

Let’s consider underlying ideas and some example protocols.

9 / 63



What is a protocol?

• A protocol consists of a set of rules (conventions) that
determine the exchange of messages between two or more
principals.
In short, a distributed algorithm with emphasis on
communication.

• Security (or cryptographic) protocols use cryptographic
mechanisms to achieve their security goals.
Examples: Entity or message authentication, message
secrecy, key establishment, integrity, timeliness, fair exchange,
non-repudiation, ...

• Small recipes, but nontrivial to design and understand.
Analogous to programming Satan’s computer.

• “Three-line programs that people still get wrong”
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Building a key establishment protocol

• Let’s try to design a cryptographic protocol from first principles.

• We choose a common scenario:
• A set of users, any 2 of whom may wish to establish a new

session key for subsequent secure communications.
Note: Users are not necessarily honest! (More later)

• There is an honest server.
Note: Often called “trusted server”, but trust 6= honesty!
We assume that an honest server never cheats and never
gives out user secrets.

• We thus design a protocol with three roles:
initiator role A, responder role B, and server role S .

12 / 63



Preliminaries

• In a concrete execution of a protocol, the roles are played by
agents a.k.a. principals: a, b, c , s, i (intruder), . . .

• We use i as the name of an agent whose long-term keys are
known to the adversary. This fact isn’t known by other
(honest) agents in the model.

• Security goals of the protocol:
• Key secrecy: At the end of the protocol, the session key KAB is

known to A and B, and possibly S , but to no other parties.
• Key freshness: A and B know that KAB is freshly generated.

• Formalization questions (that we will consider later):
• How do we formalize the protocol steps and goals?
• How about “knowledge”, “secrecy”, “freshness”?
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First attempt
A 3 message protocol

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1 A contacts S by sending
the identities of the 2
parties who are going to
share the session key.

2 S sends the key KAB to A.

3 A forwards KAB to B.
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Alice&Bob notation

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

Note: sender-receiver pairs “A→ B” in Alice&Bob notation are
not part of the communicated message.
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Protocol specification issues and conventions

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

• KAB contains no information about A and B.
It simply names the bit-string representing the session key.

• What if improperly formatted message or no message is
received?

• Only messages exchanged in a successful protocol run specified.

• No specification of internal actions of principals.
E.g., “create fresh KAB”, “store KAB as a key for A and B”.

• Roles “know” what protocol run received messages are part of.
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Security issues

S

A

1. A,B

E<G

2. KAB

E|�
3. KAB ,A

� ,2 B

1. A→ S : A, B

2. S → A : KAB

3. A→ B : KAB , A

• First problem with this protocol?

Secrecy.
The session key KAB must be transported to A and B, but
readable by no other parties.

• A realistic assumption in typical communication systems such
as the Internet and corporate networks:

Assumption (Threat Assumption 1)

The adversary is able to eavesdrop on all sent messages.

⇒ Use cryptography.
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Second Attempt
Use cryptography

• Assume that S initially shares a secret key
k(U, S) with each user U of the system:

• k(A,S) with A,
• k(B,S) with B,

and encrypt message 2.

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Problems with protocol?
• Eavesdropping? – No.

Assumption (Perfect Cryptography)

Encrypted messages may be read only by recipients who have the
required decryption key.

Assuming that cryptography is perfect allows us to abstract away
from the details of cryptographic algorithms.
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Second Attempt
Security Issues

• Problem: information about who else has KAB is unprotected,
i.e. the principal’s names are not bound to KAB .

S

A

1. A,B

E<G

2. {|KAB |}k(A,S), {|KAB |}k(B,S)

E|�
3. {|KAB |}k(B,S),A

� ,2 B

• Adversary may not only eavesdrop on sent messages, but also
capture and modify them.
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Second Attempt
Security Issues

Assumption (Threat Assumption 2)

The adversary is able to intercept messages on the network and
send to anybody (under any sender name) modified or new
messages based on any information available.

• In other words: the adversary has complete control of the
network channel(s) over which protocol messages flow.
The adversary has complete control over the network.

• In contrast to ordinary communication protocols, we assume
the worst-case network adversary.

• Although there may be only a few messages involved in a
legitimate protocol session, there are infinitely many variations
where the adversary can participate.

• These variations involve an unbounded number of messages
and each must satisfy the protocol’s security requirements.
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Binding Attack

There are several binding attacks on the second protocol attempt,
e.g.:

i
1′. a,i � ,2

2′. {|kai |}k(a,s), {|kai |}k(i,s)
�lr s

a

1. a, b

@:E

2. {|kai |}k(a,s), {|kai |}k(i,s)

@z�
3. {|kai |}k(i,s), a

� ,2 i

• Modify message from a to s so that s generates a key kai for
a and i and encrypts it with key k(i , s) known by adversary.

• Since a cannot distinguish between encrypted messages meant
for other agents, she will not detect this.

• a will believe the protocol was successfully completed with b.
However, the adversary knows kai and can masquerade as b
and also learn all information that a sends intended for b.
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Binding Attack

i
1′. a,i � ,2

2′. {|kai |}k(a,s), {|kai |}k(i,s)
�lr s

a

1. a, b

@:E

2. {|kai |}k(a,s), {|kai |}k(i,s)

@z�
3. {|kai |}k(i,s), a

� ,2 i

• Note: This attack will only succeed if i is a legitimate system
user known to s, which is a realistic assumption:

Assumption (Threat Assumption 3)

The adversary may be a legitimate protocol participant (an insider),
or an external party (an outsider), or a combination of both.
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Third Attempt

• To overcome the last attack, the names of the principals who
should share KAB must be bound cryptographically to the key.

S

A

1. A,B

?:D

2. {|KAB ,B|}k(A,S), {|KAB ,A|}k(B,S)

?z�
3. {|KAB ,A|}k(B,S)

� ,2 B

• Improvement: An adversary cannot attack the protocol by
eavesdropping or modifying the messages sent between honest
parties (so now the previous two attacks fail).

• However, the protocol still does not provide security in normal
operating conditions.
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Third Attempt
Security Issues

• A whole class of attacks becomes possible when old keys (or
other security-relevant data) can be replayed in subsequent
sessions. (Replay is possible by Threat Assumptions 1 & 2.)

• Additional problem: difference in quality between long-term
keys and keys KAB generated for each protocol session.

Assumption (Threat Assumption 4)

The adversary is able to obtain the value of the session key KAB

used in any “sufficiently old” previous run of the protocol.

• Reasons for using session keys (as opposed to long-term keys):
• Key distribution problem: O(n2) keys needed for n principals.
• Encrypted messages are vulnerable to attack (by cryptanalysis).
• Communications in different sessions should be separated. In

particular, it should not be possible to replay messages from
previous sessions.
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Replay Attack and Session Key Compromise

i

a

1. a, b

; 8C

2. {|kab′, b|}k(a,s), {|kab′, a|}k(b,s)

;x�
3. {|kab′, a|}k(b,s)

� ,2 b

• i masquerades as s and replays kab′, an old key used by a and
b in a previous session.

• By Threat Assumptions 1 & 2, the adversary can be expected
to know and replay the encrypted messages in which kab′ was
transported to a and b.

• After protocol run, adversary can decrypt, modify, or insert
messages encrypted with kab′ (no confidentiality or integrity).

• By Threat Assumption 4, the adversary can be expected to
know kab′.
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Thwarting the Replay Attack

• The replay attack can still be regarded as successful even if
the adversary has not obtained the value of kab′:

• Adversary gets a and b to accept an old session key!
• The intruder i can therefore replay messages protected by kab′

sent in the previous session.

• Of course: provided that a and b don’t check the key!
• But “Principals don’t think”, they just follow the protocol.

• Various techniques may be used to guard against replay of
session key, such as incorporating challenge-response

Definition
A nonce (“a number used only once”) is a random value
generated by one principal and returned to that principal to show
that a message is newly generated.
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Fourth Attempt

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• A sends her nonce NA to S with the request for a new key.

• Note: NA just names a number;
nothing in NA identifies who created it.

• If this same value is received with the session key, then A can
deduce that the key has not been replayed.
This reasoning is valid if session key and nonce are bound
together cryptographically so that only S can form such a
message.
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Fourth Attempt

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• If the encrypted key for B is included in the encrypted part of
A’s message, then A gains assurance that it is fresh.

• It is tempting to believe that A may pass this assurance on to
B in an extra handshake:

• B generates nonce NB and sends it to A protected by
KAB .

• A uses KAB to send a reply to B, transformed (−1) to
avoid replay of message 4.
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The NSCK Protocol

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• This is a well-known security protocol:
Needham Schroeder with Conventional Keys

• Published by Needham and Schroeder in 1978,

• Basis for a whole class of related protocols.

Looks pretty good! Right?
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The NSCK Protocol
Security Issue

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

• Unfortunately, this protocol is vulnerable to a (now)
well-known attack due to Denning and Sacco.

• Problem: assumption that only A can form correct reply
to message 4 from B.

• Since the adversary can be expected to know the value of old
session keys, this assumption is unrealistic.
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Attack on NSCK

S

A

1. A,B,NA

2 5=

2. {|KAB ,B,NA, {|KAB ,A|}k(B,S)|}k(A,S)

2u}
3. {|KAB ,A|}k(B,S)

� ,2

4. {|NB |}KAB

�lr

5. {|NB−1 |}KAB

� ,2

B

Adversary masquerades as a and convinces b to use old key: kab′:

i
3. {|kab′, a|}k(b,s)

� ,2

4. {|nb|}kab′
�lr

5. {|nb−1 |}kab′
� ,2

b
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Fifth and Final Attempt

Different approach: remove the assumption that it is
inconvenient for both B and A to send their challenges to S .

S

A

2. A,B,NA,NB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB |}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB |}k(B,S)

� ,2
B

• The protocol is now initiated by B who sends his nonce NB

first to A.

• A adds her nonce NA and sends both to S , who now sends
KAB in separate messages for A and B, which can be verified
as fresh by the respective recipients.
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Fifth and Final Attempt

S

A

2. A,B,NA,NB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB |}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB |}k(B,S)

� ,2
B

• It may seem that we have achieved more than the previous
protocol using fewer messages, but in fact...

• In NSCK, A could verify that B has actually received the key.
This key confirmation property was achieved due to B’s use
of the key in message 4, assuming that {|NB |}KAB

cannot be
formed without knowledge of KAB .

• In above protocol, neither A nor B can deduce at the end of a
successful run that its partner actually received KAB .
(Is this a problem?)

33 / 63



So is our Protocol Secure?

S

A

2. A,B,NANB

; 8C

3. {|KAB ,B,NA|}k(A,S), {|KAB ,A,NB|}k(B,S)

;x� 1. A,B,NB�lr

4. {|KAB ,A,NB|}k(B,S)

� ,2
B

• This protocol avoids all the attacks shown so far.
Under assumption that cryptographic algorithms used work
correctly and the server S acts correctly.

• So is it correct?

It would be rash to make such a claim before giving a precise
meaning to all of this.

• The security of a protocol must always be considered relative
to its goals and assumptions.

We must formalize (and prove) protocol security!
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Exercise

Can you improve on these protocols using Diffie-Hellman?
In what sense is it an improvement?
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Summary: adversary, attacks, and defenses

The adversary must be expected to

(TA 1) eavesdrop on messages, but cannot break
cryptography,

(TA 2) completely control the network, i.e.,
• immediately intercept, modify, and fake

messages,
• compose/decompose messages with the

available keys,
(TA 3) participate in the protocol (as insider or outsider),

and
(TA 4) be able to obtain old session keys.

TA 1-3: worst-case assumption of network adversary (after
Dolev-Yao)

Attacks and defenses:
• Eavesdropping: encrypt session keys using long-term keys
• Binding attack: cryptographically bind names to session keys
• Replay attack: use challenge-response based on nonces
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An authentication protocol

The Needham-Schroeder Public Key protocol (NSPK, 1978):

1. A→ B : {NA,A}pk(B)

2. B → A : {NA,NB}pk(A)
3. A→ B : {NB}pk(B)

Security goal: mutual authentication of A and B.
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How the protocol is executed
1. A→B : {NA,A}pk(B)
2. B→ A : {NA,NB}pk(A)
3. A→B : {NB}pk(B)

Role A:
1 Construct and send message 1.

• Generate nonce NA, concatenate it with name A, and encrypt
with pk(B).

• Send {NA,A}pk(B) to B.

2 Receive a message M and check that it is message 2.
Q: how to do this when running multiple sessions (or
protocols) in parallel?

• Decrypt M with sk(A), call it M ′. If decryption fails, reject M.
Q: how to detect wrong decryption?
Q: what to do about rejected messages?

• Split the message into two nonces NA′ and NB. If not
possible, reject M.
Q: how to check this?

• Check that NA′ = NA; if not, reject M.

3 Construct and send message 3.
• Encrypt NB with pk(B)
• Send {NB}pk(B) to B.
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Informal correctness

1. A→ B : {NA,A}pk(B) “This is Alice and I have chosen a
nonce NA.”

2. B → A : {NA,NB}pk(A) “Here is your nonce NA. Since I could
read it, I must be Bob. I also have a
challenge NB for you.”

3. A→ B : {NB}pk(B) “You sent me NB. Since only Alice
can read this and I sent it back, I must
be Alice.”
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How not to lose against a grandmaster in chess
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Man-in-the-middle attack

NSPK (1978):
1. A→ B : {NA,A}pk(B)

2. B → A : {NA,NB}pk(A)
3. A→ B : {NB}pk(B)

Attack (Lowe 1996):

1. a→ i : {na, a}pk(i)
1.′ i(a)→ b : {na, a}pk(b)
2.′ b → i(a) : {na, nb}pk(a)

2. i → a : {na, nb}pk(a)
3. a→ i : {nb}pk(i)

3.′ i(a)→ b : {nb}pk(b)
Property that “b authenticates a” is violated:
b believes to be talking to a, where he is in fact talking to i .
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What went wrong?

• Problem in step 2.

B → A : {NA,NB}pk(A)

This message does not say where it comes from!
(A cannot check her assumption on partner)

• Agent B should also give his name: {NA,NB,B}pk(A).
Known as Lowe’s Fix.

• Is the improved version now correct?
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Types of protocol attacks

• Man-in-the-middle attack: a↔ i ↔ b.

• Replay (or freshness) attack: reuse parts of previous
messages.

• Masquerading attack: pretend to be another principal.

• Reflection attack: send transmitted information back to
originator

• Oracle attack: take advantage of normal protocol responses
as encryption and decryption “services”.

• Binding attack: using messages in a different context/for a
different purpose than originally intended.

• Type flaw attack: substitute a different type of message
field.

Note that these attack types are not formally defined and there
may be overlaps between them.
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Diffie-Hellman: man-in-the-middle attack

• Textbook Diffie-Hellman can be attacked:

1. a→ i(b) : exp(g , x)
1.′ i(a)→ b : exp(g , z)
2.′ b → i(a) : exp(g , y)

2. i(b)→ a : exp(g , z)

• a believes to share key exp(exp(g , z), x) with b.

• b believes to share key exp(exp(g , z), y) with a.

• The adversary knows both keys.
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Diffie-Hellman: man-in-the-middle attack

• A “half” man-in-the-middle attack is possible, too:

1. a→ i(b) : exp(g , x)
2. i(b)→ a : exp(g , z)

• Countermeasure: authenticate the half-keys, e.g., with digital
signatures:

1. A→ B : {exp(g ,X )}sk(A)
2. B → A : {exp(g ,Y )}sk(B)

• Many protocols are based on (authenticated) Diffie-Hellman,
which is not a bad idea!
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Example of a reflection attack

This challenge-response authentication protocol

M1. A→ B : {|NA|}k(A,B)

M2. B → A : {|NA + 1|}k(A,B)

admits a reflection attack (with ‘oracle’):

M1.1. a→ i(b) : {|na|}k(a,b)
M2.1. i(b)→ a : {|na|}k(a,b)
M2.2. a→ i(b) : {|na + 1|}k(a,b)

M1.2. i(b)→ a : {|na + 1|}k(a,b)

a works on behalf of the adversary: a acts as an ‘oracle’, since she
provides the correct answer to her own question.
a believes (at least) that b is operational, whereas b may no longer
exist.
Fix: add A’s name to message M1 or use different keys for each
direction (i.e., k(a, b) 6= k(b, a)).
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Example of a reflection attack

Reflection attack (with ‘oracle’):

M1.1. a→ i(b) : {|na|}k(a,b)
M2.1. i(b)→ a : {|na|}k(a,b)
M2.2. a→ i(b) : {|na + 1|}k(a,b)

M1.2. i(b)→ a : {|na + 1|}k(a,b)
This attack requires that a executes several protocol runs in
parallel.

Assumption (Threat Assumption 5)

The adversary may start any number of parallel protocol runs
between any principals including different runs involving the same
principals and with principals taking the same or different protocol
roles.

Hence, our formal protocol model will allow for an unbounded
number of protocol runs of arbitrary roles and with arbitrary
participating principals.
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Type flaw attacks

• A message consists of a sequence of submessages.
Examples: a principal’s name, a nonce, a key, ...

• Real messages are bit strings without type information.

1011 0110 0010 1110 0011 0111 1010 0000

• Type flaw is when A→ B : M and B accepts M as valid but
parses it differently. I.e., B interprets the bits differently than
A.

• Let’s consider a couple examples.
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The Otway-Rees protocol

Server-based protocol providing authenticated key distribution
(with key authentication and key freshness) but without entity
authentication or key confirmation.

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)
M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

where server keys already known and M is a session id (e.g., an
integer).

Why should(n’t) it have the above properties?
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Type flaw attack on the Otway-Rees protocol

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)
M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)
• Suppose |M,A,B| = |KAB |,

e.g., M is 32 bits, A and B are
16 bits, and KAB is 64 bits.

M

Encryption

Decryption

Intended

interpretation

of sender

of receiver

Interpretation

1001101100111100   11011011  00010010

A B

Ciphertext

1001101100111100   11011011  00010010

ABK

• Attack 1 (Reflection/type-flaw): i replays parts of message 1
as message 4 (omitting steps 2 and 3).

M1. a→ i(b) : m, a, b, {|na,m, a, b|}k(a,s)
M4. i(b)→ a : m, {|na, m, a, b︸ ︷︷ ︸

mistaken as kab

|}k(a,s)
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Type flaw attack on the Otway-Rees protocol (cont.)

M1. A→ B : M,A,B, {|NA,M,A,B|}k(A,S)
M2. B → S : M,A,B, {|NA,M,A,B|}k(A,S), {|NB,M,A,B|}k(B,S)

M3. S → B : M, {|NA,KAB |}k(A,S), {|NB,KAB |}k(B,S)

M4. B → A : M, {|NA,KAB |}k(A,S)

Attack 2: The adversary can play the role of S in M2 and M3 by
reflecting the encrypted components of M2 back to B. Namely:

M1. a→ b : m, a, b, {|na,m, a, b|}k(a,s)
M2. b → i(s) : m, a, b, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)
M3. i(s)→ b : m, {|na,m, a, b|}k(a,s), {|nb,m, a, b|}k(b,s)
M4. b → a : m, {|na,m, a, b|}k(a,s)

⇒ a and b accept wrong key and i can decrypt their subsequent
communication! So key authentication (and secrecy) fails!
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Type flaw attack on the Otway-Rees protocol (cont.)
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⇒ a and b accept wrong key and i can decrypt their subsequent
communication! So key authentication (and secrecy) fails!
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Prudent engineering of security protocols

• Principles proposed by Abadi and Needham (1994, 1995):
• Every message should say what it means.
• Specify clear conditions for a message to be acted on.
• Mention names explicitly if they are essential to the meaning.
• Be clear as to why encryption is being done: confidentiality,

message authentication, binding of messages, ...
e.g., {X ,Y }sk(K) versus {X}sk(K), {Y }sk(K)

• Be clear on what properties you are assuming.
• Beware of clock variations (for timestamps).
• ... and more ...

• Good advice, but
• Is the protocol guaranteed to be secure

then?
• Is it optimal and/or minimal then?
• Have you considered all types of attacks?
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Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and
provide a mathematically sound means for reasoning
about these models.

Basis: suitable abstraction of protocols:

⇒

Analysis: with formal methods based on mathematics and
logic.
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Formal analysis of security protocols

interleaving trace models
state−based models

Cryptographically faithful proofs

Probabilistic cryptographic view

Dolev−Yao
(perfect cryptography)

Security Protocol Analysis

AutomaticDeductive

inductive proofs

Computational ModelsFormal Models

Bounded Session Unbounded Session
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Formal modeling of security protocols

Security protocol models

• Preliminaries: Term rewriting
• Syntax: Alice&Bob (A→ B : M) notation,

Tamarin: multiset rewrite rules
• Dolev-Yao adversary: message derivation

Security properties

• Semantics: transition system, event traces
• Security Goals: Secrecy, authentication,

privacy, . . .
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Syntax and semantics of security protocols

Syntax

• Alice&Bob: protocol is a sequence of A&B events:
A→ B : M.

• Tamarin: multiset rewrite rules (more fine-grained).

Semantics
• Semantics of rewrite rule specification is a transition system.

• Trace: records past events (send, receive, events, ...)

• Send rule: thread passes message to adversary (i.e., network)

• Receive rule: thread obtains an adversary-derivable message

Security properties

• Predicates on the traces for authentication, secrecy, ...

• Equivalence properties: privacy, anonymity, ...
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Why is security protocol analysis difficult?

Infinite state space

• Messages: adversary can produce messages of arbitrary size

• Sessions: unbounded number of parallel sessions

• Nonces: unbounded number of nonces (if sessions unbounded)

Undecidability

• Secrecy problem for security protocols is undecidable
(Even & Goldreich, 1983)

• even if the number of nonces or the message size is bounded

Approaches that work well in practice

• Symbolic analysis methods: avoid state enumeration

• Sophisticated search strategies to avoid non-termination

• Abstraction techniques: over-approximate reachable states
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Summary

• Security protocols can achieve properties that cryptographic
primitives alone can’t offer, e.g., authentication, freshness, ...

• A protocol without explicit goals and assumptions is useless.

• Even three-liners show how difficult the art of correct design is.

• Protocol without a proof of its properties is probably wrong.

• Formal modeling and analysis of protocols is useful.
Formal analysis is non-trivial (even assuming perfect
cryptography).
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