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Real-world protocol standards: ISO/IEC 9798
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Real-world protocol specifications: IKE RFC
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What are formal models?

• A language is formal when it has a well-defined syntax and
semantics. Additionally there is often a deductive system for
determining the truth of statements.

• Examples:

propositional logic, first-order logic.

• A model (or construction) is formal when it is specified in a
formal language.

• Standard protocol notation is not formal.

• We will see how to formalize such notations.
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Formal modeling and analysis of protocols

Goal: formally model protocols and their properties and
provide a mathematically sound means to reason
about these models.

Basis: suitable abstraction of protocols.

Analysis: with formal methods based on mathematics and
logic, e.g., theorem proving.
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Formal Methods

system
specification

security
properties

proof

How does the
system operate?

What shall
be achieved?

Does the system meet
its requirements?

satisfies
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From message sequence charts to protocol execution

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network
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Motivation

Term Rewriting is

• a useful and flexible formalism in general.
• Programming languages
• Automated deduction
• Rewriting logic

• used for representing messages and protocols in Tamarin.

Example: senc(m, k) represents the symmetric encryption of m
with key k
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Signature

Definition (Signature)

An unsorted signature Σ is a set of function symbols, each having
an arity n ≥ 0. We call function symbols of arity 0 constants.

Example (Peano notation for natural numbers)

Σ = {0, s,+}, where 0 is a constant, s has arity 1 and represents
the successor function, and + has arity 2 and represents addition.
Note that for binary operators we sometimes will use infix notation.
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Term Algebra

Definition (Term Algebra)

Let Σ be a signature, X a set of variables, and Σ∩X = ∅. We call
the set TΣ(X ) the term algebra over Σ. It is the least set such
that:

• X ⊆ TΣ(X ).

• If t1, . . . , tn ∈ TΣ(X ) and f ∈ Σ with arity n, then
f (t1, . . . , tn) ∈ TΣ(X ).

The set of ground terms TΣ consists of terms built without
variables, i.e., TΣ := TΣ(∅).

Exercise: constants are included in TΣ and TΣ(X ).

Example (Peano notation for natural numbers (continued))

s(0) ∈ TΣ

s(s(0)) + s(X ) ∈ TΣ(X )
+s(0)+ /∈ TΣ(X )
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Cryptographic Messages

We generally denote variables with upper case names X ,Y , . . ., and
function symbols (inc. constants) with lower case names a, b, ...

Definition (Messages)
A message is a term in TΣ(X ), where
Σ = A ∪ F ∪ Func ∪ {pair , pk, aenc , senc}. We call

X the set of variables A, B, X , Y , Z , ...,
A the set of agents a, b, c , ...,
F the set of fresh values na, nb, k (nonces, keys, ...),
Func the set of user-defined functions (hash, exp, ...),
pair(t1, t2) pairing, also denoted by 〈t1, t2〉,
pk(t) public key,
aenc(t1, t2) asymmetric encryption, also denoted by {t1}t2 ,
senc(t1, t2) symmetric encryption, also denoted by {|t1|}t2 .
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Free Algebra

Definition (Free Algebra)

In the free algebra every term is interpreted by itself (syntactically).

Example (Equational theory for symmetric cryptography)

Σ = A ∪ F ∪ {senc , sdec}, with senc and sdec of arity 2.
(E : sdec(senc(M,K ),K ) = M)

• t1 =free t2 iff t1 =syntactic t2.

• a 6=free b for different constants a and b.

• For above example: sdec(senc(X ,Y ),Y ) 6=free X .

This is too coarse as we clearly want to identify those two terms.
Hence, we will need to reason modulo equations.
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Equational Theory

Definition (Equation)

An equation is a pair of terms, written: t = t ′, and a set of
equations is called an equational theory (Σ,E ).

An equation can be oriented as t → t ′ ∈
→
E or as t ← t ′ ∈

←
E .

Equations are usually oriented left to right for use in simplification.

Example (Peano natural numbers (continued))

The equations E defining the Peano natural numbers are:
X + 0 = X
X + s(Y ) = s(X + Y )

Rewriting s(s(0)) + s(0) using
→
E yields the equational derivation:

s(s(0)) + s(0) = s(s(s(0)) + 0) = s(s(s(0))).
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Algebraic Properties

Example (Equations E )
{{M}K}(K)−1 = M ((K )−1)−1 = K

{|{|M|}K |}K = M exp(exp(B,X ),Y ) = exp(exp(B,Y ),X )

Definition (Congruence, Equivalence, Quotient)

Set of equations E induces a congruence relation =E on terms and
thus the equivalence class [t]E of a term modulo E . The quotient
algebra TΣ(X )/=E

interprets each term by its equivalence class.

• Two terms are semantically equal iff that is a consequence of
E .

• For the above example equations:
• a 6=E b for any distinct constants a and b
• If m1 6=E m2 then also h(m1) 6=E h(m2)
• {{M}(K)−1}K =E M
• {|{|M|}exp(exp(g ,Y ),X )|}exp(exp(g ,X ),Y ) =E M
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Substitution

Definition (Substitution)

A substitution σ is a function σ : X → TΣ(X ) where σ(x) 6= x for
finitely many x ∈ X .
We write substitutions in postfix notation and homomorphically
extend them to a mapping σ : TΣ(X )→ TΣ(X ) on terms:

f (t1, . . . , tn)σ = f (t1σ, . . . , tnσ)

Example (Applying a substitution)

Given substitution σ = {X 7→ senc(M,K )} and the term
t = sdec(X ,K ) we can apply the substitution and get
tσ = sdec(senc(M,K ),K ).
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Substitution (continued)

Definition (Substitution composition)

We denote with στ the composition of substitutions σ and τ , i.e.,
τ ◦ σ.

Example (Substitution composition)

For substitutions σ = [x 7→ f (y), y 7→ z ] and
τ = [y 7→ a, z 7→ g(b)] we have
στ = [x 7→ f (a), y 7→ g(b), z 7→ g(b)].
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Position

Definition (Position)

A position p is a sequence of positive integers. The subterm t|p of
a term t at position p is obtained as follows.

• If p = [ ] is the empty sequence, then t|p = t.

• If p = [i ] · p′ for a positive integer i and a sequence p′, and
t = f (t1, . . . , tn) for f ∈ Σ and 1 ≤ i ≤ n then t|p = ti |p′ , else
t|p does not exist.

Example (Position in a term)

For the term t = sdec(senc(M,K ),K ) we have five subterms:
t|[ ] = t
t|[1] = senc(M,K )
t|[1,1] = M
t|[1,2] = K
t|[2] = K
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Graphical representation of positions in a term

Tree of subterms of sdec(senc(M,K )) and their positions.

sdec(senc(M,K ),K ) [ ]

[1] senc(M,K )

[1, 1] M K [1, 2]

K [2]
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Matching and Application

Definition (Matching)

A term t matches another term l if there is a subterm of t, i.e.,
t|p, such that there is a substitution σ so that t|p = lσ. We call σ
the matching substitution.

Definition (Application of a rule)

A rule (oriented equation) l → r is applicable on a term t, when t
matches l .

The result of such a rule application is the term t[rσ]p, where σ is
the matching substitution.
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Unification

Definition (Unification)

We say that t
?
= t ′ is unifiable in (Σ,E ) for t, t ′ ∈ TΣ(X ), if there

is a substitution σ such that tσ =E t ′σ and we call σ a unifier.

For syntactic unification (E = ∅) there is a most general unifier for
two unifiable terms, and it is decidable whether they are unifiable.

Unification modulo theories (E 6= ∅) is much more complicated:
undecidable in general, or potentially (infinitely) many unifiers.

This is no good for automated analysis: we need to restrict
ourselves.
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Termination of
→
E

Definition (Termination)

(Σ,
→
E ) has infinite computations if there is a function

a : N→ TΣ(X ) such that

a(0)→→
E
a(1)→→

E
a(2)→→

E
. . .→→

E
a(n)→→

E
a(n + 1) . . .

We say (Σ,
→
E ) it is terminating when it does not have infinite

computations.

Example (Termination)

For E = {a = b},
→
E is terminating.

For E = {a = b, b = a},
→
E is not terminating.
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Confluence of
→
E

Definition (Confluence)

Confluence is the property that guarantees the order of applying
equalities is immaterial, formally:
∀t, t1, t2.t →∗ t1 ∧ t →∗ t2 ⇒ ∃s.t1 →∗ s ∧ t2 →∗ s

t

t1 t2

s

Example (Confluence)

For E = {a = b, a = c}, we have that
→
E is not confluent, as b and

c are reachable from a, but not joinable.
For E = {a = b, a = c , b = c}, then

→
E is confluent.
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Equations in Tamarin

Tamarin supports (see Tamarin manual for details)

• any user-defined equational theory that is convergent
(confluent and terminating) with finite variant property

• special built-in theories: Diffie-Hellman exponentiation,
bilinear pairing, multisets, XOR (soon...)

Example (Tamarin Syntax)

functions: h/1, senc/2, sdec/2

equations: sdec(senc(m,k),k) = m

builtins: diffie-hellman, bilinear-pairing, multiset

/* There are also other convenient builtins:

hashing, asymmetric-encryption, symmetric-encryption,

signing, revealing-signing */
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Multiset rewriting in Tamarin

In Tamarin, protocols are modeled using rewrite rules operating on
multisets of facts:

l
a−→ r

where l , a, and r are multisets of facts, l is called the left hand
side, r the right hand side, and a the actions of the rule.

The rule’s left and right sides specify which facts are consumed or
produced when executing the rule, the actions are recorded as
event labels on the trace and are used to specify properties.

29 / 54



Multiset rewriting in Tamarin: example

Example

• rule 1:
Init()−−−→ A(′5′),C(′3′) (’x’ is a constant)

• rule 2: A(x)
Step(x)−−−−→ B(x)

or in Tamarin syntax:

rule 1: [ ] --[ Init() ]-> [ A(’5’), C(’3’) ]

rule 2: [ A(x) ] --[ Step(x) ]-> [ B(x) ]

// A rule without action:

rule 3: [ C(x) ] --> [ D(x) ]
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Fresh and public Terms

Definition (Fresh terms)

Agents generate fresh terms using fresh facts, denoted by Fr.
These fresh terms represent randomness being used, are assumed
unguessable and unique, i.e., can represent nonces.

There is a countable supply of fresh terms, each as argument of a
fresh fact, usable in rules.

In Tamarin, fresh variables are prefixed with a ∼, e.g., ∼r.

Definition (Public terms)

We define public terms to be terms known to all participants of a
protocol. These include all agent names and all constants.

In Tamarin, public variables are prefixed with a $, e.g., $X.
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Communication and persistent facts

Messages are sent and received via Out (output to the network)
and In (input from the network) facts, respectively.

Example (Input and Output)

rule 3: [ Key(x), In(y) ] --> [ Out( senc(y,x) ) ]

Facts can be linear or persistent.

• Linear facts can only be consumed once

• Persistent facts can be consumed infinitely often.

Persistent facts are marked with a ! in Tamarin, e.g.:

rule key-reveal:

[ !Ltk(~k) ] --[ Reveal(~k) ]-> [ Out(~k) ]

By default, facts are linear.
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Well-formedness

Protocol rules must be well-formed.

Definition (Well-formedness)

For a protocol rule l
a−→ r to be well-formed, the following

conditions must hold.

1 In and Fr, only occur in l .

2 Out only occurs in r .

3 Every variable in r or a that is not public must occur in l .

4 All occurrences of the same fact have the same arity, and the
same persistence.
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Example protocol: NSPK

Graphical:

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A
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Protocol rules

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[St A 1(A, tid , skA, pk(skB)), Fr(NA)] −→
[St A 2(A, tid , skA, pk(skB),NA), Out({NA,A}pk(skB)]

[St A 2(A, tid , skA, pk(skB),NA), In({NA,NB}pk(skA))] −→
[St A 3(A, tid , skA, pk(skB),NA,NB)]

[St A 3(A, tid , skA, pk(skB),NA,NB)] −→
[St A 4(A, tid , skA, pk(skB),NA,NB), Out({NB}pk(skB))]

Be careful: pattern matching!
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PKIs and longterm data

A B

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK

Generate longterm keys and public keys.

[Fr(skR)] −→ [!Ltk(R, skR),Out(pk(skR))]
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Initialization of protocol roles

A

{NA, A}pk(B)

{NA,NB}pk(A)

{NB}pk(B)

msc NSPK A

[Fr(id), !Ltk(A, skA), !Ltk(B, skB)]
Create(A,id)−−−−−−−→

[St A 1(A, id , skA, pk(skB))]
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Modeling the Adversary

Initiator

Protocol specification Protocol execution

Responder

Alice as
initiator

Alice as
initiator

Bob as
initiator

Bob as
responder

Charlie as
responder

request

{| m |}k

cryptographic primitives

communication model

agent model

Network
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Danny Dolev & Andrew C. Yao

On the Security of Public Key Protocols (IEEE Trans. Inf. Th., 1983)

• Consider a public key system wherre for every user X
• there is a public encryption function EX

— every user can apply this function.
• and a private decryption function DX

— only X can apply this function.
• These functions have the property that EXDX = DXEX = 1.

• The Dolev-Yao adversary:
• Controls the network (read, intercept, send)
• Is also a user, called Z
• Can apply EX for any X
• Can apply DZ
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Dolev-Yao Deduction

Definition (Adversary Knowledge)

We represent the adversary knowing a term t by a fact K(t). The
set of the adversary’s knowledge is K and contains persistent facts
of the form K(t).

Definition (Adversary Knowledge Derivation)

The adversary can use the following inference rules on the state:

Fr(x)

K(x)

Out(x)

K(x)

K(x)

In(x)

K(t1) . . .K(tk)

K(f (t1, ..., tk))
∀f ∈ Σ(k-ary)

N.B. terms are used modulo the equational theory. So, given
K(< t1, t2 >) the operator fst can be applied, and result is K(t1).
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Dolev-Yao Deduction

Example

Given K(x),K({|b, n|}k),K(k),K(m) ∈ K. Use the equational
theory E (containing decryption and pairing) to derive
K({|m|}prf (n,x)) where prf is some (constructible) function.

K(m)

K({|b, n|}k) K(k)

K({|{|b, n|}k |}k)

K(b, n)
E

K(snd(b, n))

K(n)
E

K(x)

K(prf (n, x))

K({|m|}prf (n,x))
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Dolev-Yao Deduction

Definition (Adversary Knowledge Derivation as rewrite rules)

[Fr(x)] −→ [K(x)]

[Out(x)] −→ [K(x)]

[K(x)]
K(x)−−−→ [In(x)]

[K(t1), . . . ,K(tk)] −→ [K(f (t1, . . . , tk))] ∀f ∈ Σ(k-ary)

Note: the adversary deriving a message and then sending it (via
In) is annotated with the action fact K (identical to its state fact
of the same name!); we use this for our reasoning later.
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Outlook

We will define a trace semantics for protocols in terms of labeled
transition systems.
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Labeled Multiset Rewriting

Definition (Multiset)

A multiset is a set of elements, each imbued with a multiplicity.
Instead of stating an explicit multiplicity, we may also simply write
elements multiple times.
We use \] for the multiset difference, and ∪] for the union.

Definition (Labeled multiset rewriting)

A labeled multiset rewriting rule is a triple, l , a, r , each of which is
a multisets of facts, and written as:

l
a−→ r
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State

Definition (State)

A state is a multiset of facts.

Example (State)

St R 1(A, id , k1, k2),Out(k1),Out(k2),Out(k2)
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Ground substitution

Definition (Ground substitutition)

A substitution is called ground when each variable is mapped to a
ground term.

Definition (Ground instances)

We call the ground instances of a term t all those terms tσ that
are ground for some (ground) substitution.
A fact F is ground if all its terms are ground. The multiset of all
ground facts is G].
For a rule, its ground instances are those where all facts are
ground, and we use

ginsts(R)

for the set of all ground instances of the set of rules R.
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Fresh rule

Definition (Fresh rule)

We define a special rule that creates fresh facts. This is the only
rule allowed to produce fresh facts and has no precondition:

[] −→ [Fr(N)]

Note that each created nonce N is fresh, and thus unique.
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Labeled operational semantics - single step

Definition (Steps)

For a multiset rewrite system R we define the labeled transition
relation step, steps(R) ⊆ G] × ginsts(R)× G], as follows:

l
a→ r ∈ ginsts(R), l ⊆] S , S ′ = (S \] l) ∪] r

(S , l
a→ r , S ′) ∈ steps(R)
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Executions

Definition (Execution)

An execution of R is an alternating sequence

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

of states and multiset rewrite rule instances with

(1) S0 = ∅
(2) ∀i : (Si−1, li

ai→ ri , Si ) ∈ steps(R)

(3) Fresh names are unique, i.e., for n fresh, and

(li
ai→ ri ) = (lj

aj→ rj) = ([]→ [Fr(n)]) it holds that i = j .
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Trace

Definition (Trace)

The trace of an execution

S0, (l1
a1→ r1),S1, . . . ,Sk−1(lk

ak→ rk), Sk

is defined by the sequence of the multisets of its action labels, i.e.:

a1; a2; . . . ; ak
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Semantics of a rule

Two parts:

• State transition

• Trace event

Example (Transition example)

[St I 2(A, 17, k), In(m)]
Recv(A,m)−−−−−−→ [St I 3(A, 17, k ,m)]

Agent state changes, and In fact is consumed, while Recv action is
added to trace.
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