AT

Karlsruhe Institute of Technology

Bounded Model Checking of Software for Real-World Applications
Parts 4-6

UniGR Summer School on Verification Technology, Systems & Applications
VTSA 2018
Nancy, France

Carsten Sinz
Institute for Theoretical Informatics (ITI)
Karlsruhe Institute of Technology (KIT)

30.08.2018

The Bounded Model Checker LLBMC AT

- LLBMC

- Bounded model checker for C programs

* Developed at KIT
- Successful in SV-COMP competitions

- Functionality
* Integer overflow, division by zero, invalid bit shift
- lllegal memory access (array index out of bound, illegal pointer access, etc.)
 |nvalid free, double free
« User-customizable checks (via __llbomc_assume / __llbmc_assert)

- Employed techniques
 Loop unrolling, function inlining; LLVM as intermediate language

- SMT solvers, various optimizations (e.g. for handling array-lambda-expressions)

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 2

Overview ﬂ("

stitute of Technology

Thursday, August 30:
Part 4. Bounded model checking
Part 5: Improving scalability with light-weight program analysis methods
Part 6: Practical LLBMC

Working In groups on exercises

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 3

Part 4:
Bounded Model Checking

Model Checking Problem AT

- Consider a finite-state transition system M = (S,1,T), where

« S is a set of states,
«] C S isthe set of initial states and
« TCSXS is atransition relation between states.

- A run of M is a (finite or infinite) sequence (s;, 55, ..., 5, ...) Of states such that
s €1 and (s;,s,,) €T forall i > 1.

 Let B C S be a set of bad states.

- Question: Is there a run of M which reaches a bad state? (i.e.: Is there a run
with s; € B for some i ?)

- Example:

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018

Model Checking Problem AT

Karlsruhe Institute of Technology

- The model checking problem, as presented, is a graph reachability problem,
and thus in principle easily solvable (explicit state model checking).

- However, the graph can be extremely large (101900 or more elements in state
space)

- Moreover, the state space is typically structured:

Hardware Software

Registers, memory, heap

Elements Flip-flops, registers, ... allocation state ...

Cartesian product of Boolean Cartesian product of integer
State space

variables variables of varying width
Transitions Updates to registers / flip-flops Updates of variables /
memory

- Thus, a symbolic representation of state space and transition relation can be
used (and is typically much more efficient) => symbolic model checking

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 6

Symbolic Model Checking (AT

Karlsruhe Institute of Technology

 Ildea: Use formulas to represent state sets and the transition relation.

- Examples:

Hardware: Software:
- 2-bit counter going from 0 to 2, starting at *[0] int x=0;
[1] while (x<4) {
1 [2] X++;
3
- State encoded in two latches b and ¢ (b {4% ieturn %

for the high-bit) - State encoded as one integer and a

 Predicates for initial and bad states, program counter
transition relation:

* l(s)=(-b/Ac),B(s)=(b/Ac)
* T(s,s')=(b'ec)\(c'e -(bV)

* Predicates for |, Band T:

* I(s) = (x=0 A\ PC=0)

« B(S) = (x>5)

* T(s,s') = (PC=0 = x'=0 A PC'=1) A\
(PC=1 A x<4 = PC'=2 N\ x'=x) N\
(PC=1 A x>=4 = PC'=4 A\ x'=x) \
(PC=2 = ANPC'=3 A x'=x+1) \ ...

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 7

Symbolic Model Checking AT

stitute of Technology

* To check, whether a bad state is reachable, we need the transitive closure T*
of T.

« There is an error, if I(s) A T*(s, s") A B(s') is satisfiable.
« The transitive closure can be computed via a fixedpoint iteration.

» In the propositional case, BDDs (binary decision diagrams) are often used for
representing |, T, B and for computing the fixpoint.

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 8

stitute of Technolog

Hardware Bounded Model Checking AT

Idea: avoid computation of transitive closure / fixpoint

Use prefixes of length k for checking paths (runs).

. If k—1 k
BMCy: I(s)) A /\ 1(s;, 8;01) A /\B(Si)
i=1 i=1

Is satisfiable, then there is a path of length k leading to a bad state.

Advantages:
* No need to compute transitive closure of T

 Formula BMCk doesn't refer to a notion of state, can be solved with a SAT
solver (if state variables are Boolean)

Disadvantages:
 k copies of state variables needed

- Complete only if bound is sufficient (how do we now that?)

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 9

Software Bounded Model Checking AT

Karlsruhe Institute of Technology

 We can use the same idea as for hardware for software.

 But there are also different, more efficient encodings, e.g.:

* If a program is in SSA form, contains no loops and function calls, then
each variable is assigned in the whole program at most once.

- Thus, each assignment can be seen (and encoded) as a logical equality.
- We thus can use an encoding as follows (e.g., for an LLVM module):
 For each instruction | (and successor instruction I'):
Coxecd) = TErr(l) A Enc({)
CexecI') = Cexecd) A Coranen(s I')
* Here:
 cexec is the execution condition of instruction |
» cbranch is the condition when control flow goes from | to I’

+ Enc(l) is the encoding of the effects of I, Err(l) if there is an error executing
instruction I.

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 10

Alternative: Horn-Clause Encoding AT

Karlsruhe Institute of Technology

- Use predicates Li(x,...) for program locations.
« Then write each program transition as a rule like, e.g.,
« L1(x,y) A x>5 A y<10 => L2(x+1,y)

« Similar techniques are used in the Swift intermediate representation (SIL):

In SIL, basic blocks take arguments, which are used as an alternative to LLVM's phi nodes. Basic block arguments are
bound by the branch from the predecessor block:

sil @iif : $(Builtin.Intl, Builtin.Int64, Builtin.Int64) —-> Builtin.Int64 {
bb@(%cond : $Builtin.Intl, %ifTrue : $Builtin.Int64, %ifFalse : $Builtin.Int64):
cond_br %cond : $Builtin.Intl, then, else
then: .
br finish(%ifTrue : $Builtin.Int64)
else:
br finish(%ifFalse : $Builtin.Int64)
finish(%sresult : $Builtin.Int64):
return %$result : $Builtin.Int64

}

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 11

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

| LBMC Encoding: Basic Blocks AT

Cexec(€ntry) = true

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 12

| LBMC Encoding: Basic Blocks AT

\4

BB,

Cexec(BBz) — Cexec(BB1)

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 13

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

LLBMC Encoding: Basic Blocks AT

\4

br C, BBQ, BB3

Cexec(BB2) = Cexec(BB1) N C

Cexec(BB3) = Cexec(BB1) A —C

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 14

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

LLBMC Encoding: Basic Blocks AT

CeXGC(BB3) — Cexec(BB1) N\ Cf
V Cexec(BBz) /\ CQ

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 15

int f(int x, int y) {
return (x — y > 0) == (X > y));
}

define i32 @f(i32 %x, i32 %y) {
entry:
hsub = sub nsw i32 %x, %y
hcmp = icmp sgt 132 %sub, O
hconv = zext il %cmp to 132
hecmpl = icmp sgt i32 %x, %y
hconv2 = zext il Ycmpl to i32
hcmp3 = icmp eq i32 Y%conv, Y%conv2
hconvd = zext il %cmp3 to i32
ret Jconvé

LLBMC Encoding: Instructions A“(IT

Sub = bvsub X y
N cmp = (bvsgt sub bV32,0) ? bvy4 : bvyp
A conv = zero_extend3q CMp
A cmp1 = (bvsgt X¥) ? bvy 4 : bvyg
A\ conv2 = zero_extendszy cmp1
A emp3 = (conv = conv2) ? bviy : bvyg
A\ conv4 = zero_extendy; cmp3

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 16

L LBMC Encoding: Phi Nodes AT

Karlsruhe Institute of Technology

= ®([xo, BBy], [x1, BBs])

= x5 + 1

X2 = Cexec(BB1) ? Xo : Xj

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 17

LLBMC Encoding: Loops (AT

Karlsruhe Institute of Technology

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 18

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

LLBMC Encoding: Memory Accesses AT

a; = write @y Ip €p

a> = write a kL €4

write : AX | x E— A
read : Ax | — E

az = write as Ib €»

N\
63 = read a3 I3

read(write(write(write(ag, iy, €p), i1, €1), I2, €2), i)

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 19

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

LLBMC Encoding: Heap State AT

~

hy = malloc "hg pPg So
3

£
ho = malloc hy Py S1

N\
hy = free hs po

b = validaccess 'hs p3 S3

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 20

mp
WiIth

Part 5:

roving Scalabll

Light-Weight

ty

Program-Analysis Methods

21

Backwards Slicing (AT

Karlsruhe Institute of Technology

int a, b;

bb
. .] T I"
int foo(int x, 1nt y)
: J
int r = a, t = b; il
if (a > b) { \
t = a*2;
bb10
}
, J
while (t > a) { bb11
t -= 2; T |F
y++; A
} bb17
bb14 —_
if (x '= 0) { / &
b = x-a; // slice here
bb19 bb22
} else {
b = t+y; \ /
} bb24

CFQG for 'foo' function

return x+b;

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018 22

Control Dependence Graph (C

DG)

AT

Karlsruhe Institute of Technology

bb
T| F
bb9
TI|F
! \
bbl5 bbl6
bbl17
bb8
bb21 bb33
T|F TI|F
bb30 bb31 bb46
bb32 bb47
' /
bbds
bb49

CFG for 'BINARYSEARCH_S16_Near iL' function

Carsten Sinz e Bounded Model Checking of Software ® VTSA 2018 Summer School, Nancy, France e 30.08.2018

23

Part 4:

Pract

ical LL

SMC

24

$ llbmc --help
OVERVIEW: llbmc

LLBMC Command Line Options AT

Karlsruhe Institute of Technology

USAGE: llbmc [options] <input bitcode files>

OPTIONS:

—arguments=<string>
-fp-div-by-zero-checks
-fp-nan-checks
-function-name=<string>
-heap-model

=eager

=lazy
-help
-ignore-volatile
-incremental
-leak-check
-log-level

=off

=error

=sparse

=verbose

=debug
-mallocs-may-fail
-max-builtins-iterations=<uint>
-max-function-call-depth=<uint>
-max-loop-iterations=<uint>
-max-memcpy-iterations=<uint>
-memcpy

=instantiation-based

=eager

=unroll

Arguments to be passed to "main"
Check for floating-point division by zero
Check for NaN production in floating-point arithmetic
Name of the function to be checked
Set the heap model:
eager expansion as in SSV 2010 (default)
lazy expansion as in SMT 2011
Display available options (-help-hidden for more)
Treat volatile loads like non-volatile loads
Incremental SMT solving (experimental)
Check for memory leaks
Set log level to one of the following:
log nothing
log only errors
log on sparse level (default)
log on verbose level
log on debug level
Mallocs may fail (i.e., return NULL)
Maximum number of times the loops in C library functions are executed
Maximum number of function inlining steps
Maximum number of times a loop is executed
Maximum number of times the loops in memcpy/memmove/memset are executed
Set treatment for memcpy/memmove/memset:
instantiation-based encoding (default)
eager encoding
unroll loop

Carsten Sinz e Bounded Model Checking of Software e VITSA 2018 Summer School, Nancy, France e 30.08.2018 25

LLBMC Command Line Options AT

Karlsruhe Institute of Technology

-no-custom-assertions - Do not check custom assertions (__llbmc assert)
-no-div-by-zero-checks - Do not check for divisions by zero
-no-max-function-call-depth-checks - Do not add assertions but assumptions for function calls
-no-max-loop-iterations-checks - Do not add assertions but assumptions for backedges
-no-memcpy-disjoint-checks - Do not check for disjointness of memory regions for memcpy
-no-memory-access-checks - Do not check load and store operations
-no-memory-allocation-checks - Do not check heap and stack allocation operations
-no-memory-free-checks - Do not check free operations
-no-overflow-checks - Do not check for signed overflows
-no-shift-checks - Do not check bit shifts for too large shifts
-only-custom-assertions - Only check custom assertions (assert/ llbmc assert)
-output-file=<string> - Output file name (if not stdout)
-smt-solver - Set the SMT solver to use as a backend:

=boolector - Boolector with Lingeling

=boolector-lambda-toasc - Boolector with lambdarized ToASC and Lingeling

=stp - STP with MiniSat (default)

=stp-msp - STP with MiniSat and propagators

=stp-sms - STP with simplifying MiniSat

=reference-count-debugger - debug reference counting of SMT expressions

=reference-count-debugger-1lia - debug reference counting of SMT expressions with LIA for bitvectors
-smt-solver-timeout=<int> - Timeout (in seconds) for the SMT solver
-stack-promotion - Set extent to which stack memory locations are promoted to registers:

=on - all promotable stack memory locations (default)

=safe - only promotable stack memory locations that are initialized in an

obvious way
=safe-expensive - only promotable stack memory locations that are initialized
(expensive check)

=off - no stack memory locations

-start-with-empty-heap - Start without any allocations on the heap (default)

(experimental if disabled)

Carsten Sinz e Bounded Model Checking of Software e VITSA 2018 Summer School, Nancy, France e 30.08.2018 26

AT

Karlsruhe Institute of Technology

LLBMC Command Line Options

Output options

-result - bug checking result

-sSynopsis - error synopsis

-location - error location

-stacktrace - LLVM stack trace

—-counterexample - LLVM counter-example

-bitcode - LLVM bitcode (after transformations)
-simple - ILR (simple)

-pretty - ILR (pretty)

-latex - ILR (latex)

-VCs - ILR verification conditions

-statistics - ILR formula statistics

-model - ILR model

-assertion - ILR assertion information

-variables - ILR variable assignments

-graphviz - DOT format (Graphviz)

-btor - BTOR format (Boolector)

-smtlib - SMTLIB format

-smtlib-uf - SMTLIB format (using UFs)

-smtlib2 SMTLIB2 format (using "let")

-smtlib2-uf SMTLIB2 format (using "let" and UFs)
-smtlib2x SMTLIB2 format (using "define-fun")
-smtlib2x-uf SMTLIB2 format (using "define-fun" and UFs)
-smtlib2x-1ia SMTLIB2 format (using "define-fun") using LIA for bitvectors
-smtlib2x-uf-lia SMTLIB2 format (using "define-fun" and UFs) using LIA for bitvectors

-stp-api

-uninitialized-globals
-version

C program calling STP's API
Do not initialize global variables
Display the version of this program

Carsten Sinz e Bounded Model Checking of Software e VITSA 2018 Summer School, Nancy, France e 30.08.2018

27

