
Bounded Model Checking of Software for Real-World Applications
Parts 4-6

UniGR Summer School on Verification Technology, Systems & Applications
VTSA 2018
Nancy, France

Carsten Sinz
Institute for Theoretical Informatics (ITI)

Karlsruhe Institute of Technology (KIT)

30.08.2018

�1

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

The Bounded Model Checker LLBMC
• LLBMC

• Bounded model checker for C programs

• Developed at KIT

• Successful in SV-COMP competitions

• Functionality
• Integer overflow, division by zero, invalid bit shift

• Illegal memory access (array index out of bound, illegal pointer access, etc.)

• Invalid free, double free

• User-customizable checks (via __llbmc_assume / __llbmc_assert)

• Employed techniques
• Loop unrolling, function inlining; LLVM as intermediate language

• SMT solvers, various optimizations (e.g. for handling array-lambda-expressions)

�2

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Overview
Thursday, August 30:

Part 4: Bounded model checking

Part 5: Improving scalability with light-weight program analysis methods

Part 6: Practical LLBMC

Working in groups on exercises

�3

Part 4:
Bounded Model Checking

�4

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Model Checking Problem
• Consider a finite-state transition system , where

• S is a set of states,

• is the set of initial states and

• is a transition relation between states.

• A run of M is a (finite or infinite) sequence of states such that 
 and for all .

• Let be a set of bad states.

• Question: Is there a run of M which reaches a bad state? (i.e.: Is there a run

with for some ?)

• Example:

�5

T ⊆ S × S

M = (S, I, T)

I ⊆ S

B ⊆ S

(s1, s2, …, sn, …)
s1 ∈ I (si, si+1) ∈ T i ≥ 1

si ∈ B i

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Model Checking Problem
• The model checking problem, as presented, is a graph reachability problem,

and thus in principle easily solvable (explicit state model checking).

• However, the graph can be extremely large (101000 or more elements in state

space)

• Moreover, the state space is typically structured: 
 
 
 
 
 
 
 
 
 

• Thus, a symbolic representation of state space and transition relation can be
used (and is typically much more efficient) => symbolic model checking

�6

Hardware Software

Elements Flip-flops, registers, ... Registers, memory, heap
allocation state ...

State space Cartesian product of Boolean
variables

Cartesian product of integer
variables of varying width

Transitions Updates to registers / flip-flops Updates of variables /
memory

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Symbolic Model Checking
• Idea: Use formulas to represent state sets and the transition relation.

• Examples:

�7

Hardware:

• 2-bit counter going from 0 to 2, starting at
1

• State encoded in two latches b and c (b
for the high-bit)

• Predicates for initial and bad states,
transition relation:

• I(s) = (¬b /\ c), B(s) = (b /\ c)

• T(s,s') = (b' ⇔ c) /\ (c' ⇔ ¬(b \/ c)) 

Software:
• [0] int x=0;  
[1] while (x<4) {  
[2] x++;  
[3] }  
[4] return x;

• State encoded as one integer and a
program counter

• Predicates for I, B and T:

• I(s) = (x=0 /\ PC=0)

• B(S) = (x>5)

• T(s,s') = (PC=0 ⇒ x'=0 /\ PC'=1) /\
(PC=1 /\ x<4 ⇒ PC'=2 /\ x'=x) /\
(PC=1 /\ x>=4 ⇒ PC'=4 /\ x'=x) /\ 
(PC=2 ⇒ /\ PC'=3 /\ x'=x+1) /\ ...

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Symbolic Model Checking
• To check, whether a bad state is reachable, we need the transitive closure T*

of T.

• There is an error, if is satisfiable.

• The transitive closure can be computed via a fixedpoint iteration.

• In the propositional case, BDDs (binary decision diagrams) are often used for

representing I, T, B and for computing the fixpoint.

�8

I(s) ∧ T*(s, s′�) ∧ B(s′�)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Hardware Bounded Model Checking
• Idea: avoid computation of transitive closure / fixpoint

• Use prefixes of length k for checking paths (runs).

• If 
 
 
is satisfiable, then there is a path of length k leading to a bad state.

• Advantages:
• No need to compute transitive closure of T

• Formula BMCk doesn't refer to a notion of state, can be solved with a SAT

solver (if state variables are Boolean)

• Disadvantages:

• k copies of state variables needed

• Complete only if bound is sufficient (how do we now that?)

•

�9

BMCk : I(s1) ∧
k−1

⋀
i=1

T(si, si+1) ∧
k

⋀
i=1

B(si)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Software Bounded Model Checking
• We can use the same idea as for hardware for software.

• But there are also different, more efficient encodings, e.g.:

• If a program is in SSA form, contains no loops and function calls, then
each variable is assigned in the whole program at most once.

• Thus, each assignment can be seen (and encoded) as a logical equality.

• We thus can use an encoding as follows (e.g., for an LLVM module):

• For each instruction I (and successor instruction I'): 
 
 

• Here:

• cexec is the execution condition of instruction I

• cbranch is the condition when control flow goes from I to I'

• Enc(I) is the encoding of the effects of I, Err(I) if there is an error executing

instruction I.

�10

cexec(I) ⇒ ¬Err(I) ∧ Enc(I)
cexec(I′�) = cexec(I) ∧ cbranch(I, I′�)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

• Use predicates Li(x,...) for program locations.

• Then write each program transition as a rule like, e.g.,

• L1(x,y) /\ x>5 /\ y<10 => L2(x+1,y)

• Similar techniques are used in the Swift intermediate representation (SIL):

Alternative: Horn-Clause Encoding

�11

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Basic Blocks

�12

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Basic Blocks

�13

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Basic Blocks

�14

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Basic Blocks

�15

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Instructions

�16

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Phi Nodes

�17

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Loops

�18

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Memory Accesses

�19

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Encoding: Heap State

�20

Part 5:
Improving Scalability
with Light-Weight Program-Analysis Methods

�21

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Backwards Slicing

�22

int a, b;

int foo(int x, int y)
{
 int r = a, t = b;
 if (a > b) {
 t = a*2;
 }

 while (t > a) {
 t -= 2;
 y++;
 }

 if (x != 0) {
 b = x-a; // slice here
 } else {
 b = t+y;
 }

 return x+b;
}

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

Control Dependence Graph (CDG)

�23

Part 4:
Practical LLBMC

�24

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Command Line Options

�25

$ llbmc --help
OVERVIEW: llbmc

USAGE: llbmc [options] <input bitcode files>

OPTIONS:
 -arguments=<string> - Arguments to be passed to "main"
 -fp-div-by-zero-checks - Check for floating-point division by zero
 -fp-nan-checks - Check for NaN production in floating-point arithmetic
 -function-name=<string> - Name of the function to be checked
 -heap-model - Set the heap model:
 =eager - eager expansion as in SSV 2010 (default)
 =lazy - lazy expansion as in SMT 2011
 -help - Display available options (-help-hidden for more)
 -ignore-volatile - Treat volatile loads like non-volatile loads
 -incremental - Incremental SMT solving (experimental)
 -leak-check - Check for memory leaks
 -log-level - Set log level to one of the following:
 =off - log nothing
 =error - log only errors
 =sparse - log on sparse level (default)
 =verbose - log on verbose level
 =debug - log on debug level
 -mallocs-may-fail - Mallocs may fail (i.e., return NULL)
 -max-builtins-iterations=<uint> - Maximum number of times the loops in C library functions are executed
 -max-function-call-depth=<uint> - Maximum number of function inlining steps
 -max-loop-iterations=<uint> - Maximum number of times a loop is executed
 -max-memcpy-iterations=<uint> - Maximum number of times the loops in memcpy/memmove/memset are executed
 -memcpy - Set treatment for memcpy/memmove/memset:
 =instantiation-based - instantiation-based encoding (default)
 =eager - eager encoding
 =unroll - unroll loop

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Command Line Options

�26

 -no-custom-assertions - Do not check custom assertions (__llbmc_assert)
 -no-div-by-zero-checks - Do not check for divisions by zero
 -no-max-function-call-depth-checks - Do not add assertions but assumptions for function calls
 -no-max-loop-iterations-checks - Do not add assertions but assumptions for backedges
 -no-memcpy-disjoint-checks - Do not check for disjointness of memory regions for memcpy
 -no-memory-access-checks - Do not check load and store operations
 -no-memory-allocation-checks - Do not check heap and stack allocation operations
 -no-memory-free-checks - Do not check free operations
 -no-overflow-checks - Do not check for signed overflows
 -no-shift-checks - Do not check bit shifts for too large shifts
 -only-custom-assertions - Only check custom assertions (assert/__llbmc_assert)
 -output-file=<string> - Output file name (if not stdout)
 -smt-solver - Set the SMT solver to use as a backend:
 =boolector - Boolector with Lingeling
 =boolector-lambda-toasc - Boolector with lambdarized ToASC and Lingeling
 =stp - STP with MiniSat (default)
 =stp-msp - STP with MiniSat and propagators
 =stp-sms - STP with simplifying MiniSat
 =reference-count-debugger - debug reference counting of SMT expressions
 =reference-count-debugger-lia - debug reference counting of SMT expressions with LIA for bitvectors
 -smt-solver-timeout=<int> - Timeout (in seconds) for the SMT solver
 -stack-promotion - Set extent to which stack memory locations are promoted to registers:
 =on - all promotable stack memory locations (default)
 =safe - only promotable stack memory locations that are initialized in an
 obvious way
 =safe-expensive - only promotable stack memory locations that are initialized
 (expensive check)
 =off - no stack memory locations
 -start-with-empty-heap - Start without any allocations on the heap (default)
 (experimental if disabled)

Carsten Sinz • Bounded Model Checking of Software • VTSA 2018 Summer School, Nancy, France • 30.08.2018

LLBMC Command Line Options

�27

 Output options
 -result - bug checking result
 -synopsis - error synopsis
 -location - error location
 -stacktrace - LLVM stack trace
 -counterexample - LLVM counter-example
 -bitcode - LLVM bitcode (after transformations)
 -simple - ILR (simple)
 -pretty - ILR (pretty)
 -latex - ILR (latex)
 -VCs - ILR verification conditions
 -statistics - ILR formula statistics
 -model - ILR model
 -assertion - ILR assertion information
 -variables - ILR variable assignments
 -graphviz - DOT format (Graphviz)
 -btor - BTOR format (Boolector)
 -smtlib - SMTLIB format
 -smtlib-uf - SMTLIB format (using UFs)
 -smtlib2 - SMTLIB2 format (using "let")
 -smtlib2-uf - SMTLIB2 format (using "let" and UFs)
 -smtlib2x - SMTLIB2 format (using "define-fun")
 -smtlib2x-uf - SMTLIB2 format (using "define-fun" and UFs)
 -smtlib2x-lia - SMTLIB2 format (using "define-fun") using LIA for bitvectors
 -smtlib2x-uf-lia - SMTLIB2 format (using "define-fun" and UFs) using LIA for bitvectors
 -stp-api - C program calling STP's API
 -uninitialized-globals - Do not initialize global variables
 -version - Display the version of this program

