. universitat @mputational

-innsbruck ogic

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

VTSA

Overview

Last Lecture
= theorem proving problems
= premise selection
= deep learning for theorem proving
= state estimation

Today

= automated reasoning

learning in classical ATPs

learning for tableaux

reinforcement learning in TP

= longer proofs

Artificial Intelligence in Theorem Proving

What about ATPs

Proof by contradiction

= Assume that the conjecture does not hold

= Derive that axioms and negated conjecture imply L

Saturation
= Convert problem to CNF
= Enumerate the consequences of the available clauses

= Goal: get to the empty clause

Redundancies
Simplify or eliminate some clauses (contract)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Calculus

Resolution

CVA DV-B CVAVB
(CV D)o (CV Ao

Artificial Intelligence in Theorem Provin;

Calculus

Ordered Resolution

CVA DV-B CVAVB
(CV D)o (CV Ao

Ao strictly maximal wrt Co and B maximal wrt Do.

Artificial Intelligence in Theorem Proving

Calculus

Ordered Resolution

CVA DV-B CVAVB
(CV D)o (CV Ao

Ao strictly maximal wrt Co and B maximal wrt Do.

Equality axioms?

Artificial Intelligence in Theorem Proving

Calculus

Ordered Resolution

CVA DV-B CVAVB
(CV D)o (CV Ao

Ao strictly maximal wrt Co and B maximal wrt Do.

Equality axioms?

Ordered Paramodulation

CVs#sd CVs=t DVL[
Co’ (CVv DV L[t])o’

Artificial Intelligence in Theorem Provin;

Calculus

Ordered Resolution

CVA DV-B CVAVB
(CV D)o (CV Ao

Ao strictly maximal wrt Co and B maximal wrt Do.

Equality axioms?

Ordered Paramodulation

CVs#sd CVs=t DVL[
Co’ (CVv DV L[t])o’

(s = t)o and L[s']o’ maximal in their clauses.

Artificial Intelligence in Theorem Provin;

Completion

Completion Procedure

(£0, @) F (€1, R1) F (E2,R2) F (E3,R3) F - - -

(&,R) : (Eu{s=~s}R)
) Cos~onr) crTvor G T eRn)
: (Eu{s=thLR) . (E,RU{s—t}) .
i - v~ At SO Pl
orien ERUs > 1)) ifs>t compose ERU{s S} if t —r U
simplify (Eu{s~t}R) ifs—pu collapse (&, RU{s = t}) if s 572 u

(EU{u~t},R) (EUlu~tLR)

Artificial Intelligence in Theorem Proving

Superposition Calculus

CVA DV-B CVAVB
(CV D)o (CV Ao
CVs=t DV-A[S] Cvs=t DVA[]
(CVv DV-Alt)o (CVv DV At)o
CVvs=t DVuls]#wv CVvs=t DVuls]=wv
(CV DVult] #v)o (CV DVult] =v)o
CVs#t CVu=vVs=t
Co (CVv#tVu=t)o

Basis of
= E, Vampire, Spass, Prover9, ~Metis

Artificial Intelligence in Theorem Provin;

Beyond the Calculus

Tautology Deletion

avbVv-avd

Subsumption (forward and backward)
e.g. E uses Feature Vector Indexing

{c3) —— {c3)
/
(3, 04y —2— {c4r —1— {c4}
/
{c1,c2, 3, cay —L {c2} 0 — o2y —1— {23
\

c1} — (o1} —— {c1}

Artificial Intelligence in Theorem Proving

Still..

fof (6, axiom,![X1]:![X2]:![X4]:gg(X1,sup_sup(X1,X2,X4)),file(’i/f/1/goal_138__Q_Restricted_Rewriting.qrstep

fof (32,
fof (55,
fof (68,
fof (70,
fof (74,
fof (78,
fof (79,
fof (85,
fof (86,
fof (98,
fof (99,
fof (100,
fof (102,
fof (103,
fof (109,
fof (114,
fof (116,
fof (125,
fof (127,
fof (131,
fof (134,
fof (136,
fof (143,
fof (160,
fof (171,

fof(186t

axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]:
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X3]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]
axiom, ! [X1]

axiom, ! [X67] :semilattice_sup(set(X67)),file(’i/f/1/goal_138__Q_Restricted_Rewriting.
K

11 [X2] :gg(set (product_prod(X1,X1)) ,transitive_rtrancl(X1,X2)),file(’i/f/1/goal_138__Q_Re
:1[X19] : ! [X20] : (member (product_prod(X1,X1),X19,X20)=>member (product_prod(X1,X1),X19,tran
:1[X5]: 1 [X3]:!1[X36]:![X20]:![X37]:![X16]: (ord_less_eq(set(product_prod(X1,X3)),X36,X20)=
:1[X20] :transitive_rtrancl(X1,transitive_rtrancl(X1,X20))=transitive_rtrancl(X1,X20),fil
11 [X24] : 1 [X34] : ! [X33] : ((~ (member (X1,X24,X34))=>member (X1,X24,X33))=>member (X1,X24, sup_su
:1[X11] : 1 [X13] :transitive_rtrancl(X1,sup_sup(set (product_prod(X1,X1)),transitive_rtrancl

1 [X22] : 1 [X39] : (member (X1,X22,collect (X1,X39))<=>pp(aa(X1,bool,X39,X22))),file(’i/£/1/go

: (semilattice_sup(X1)=>![X23]:![X24]:![X22]: (ord_less_eq(X1,sup_sup(X1,X23,X24),X22)<=>(
:1[X11] :relcomp(X1,X1,X1,transitive_rtrancl(X1,X11) ,transitive_rtrancl(X1,X11))=transiti
1 1[X33]: 1 [X34] : (gg(set (X1),X34)=>(ord_less_eq(set (X1),X33,X34)<=>sup_sup(set (X1),X33,X34
:1[X33] : ! [X34] :ord_less_eq(set (X1),X33,sup_sup(set(X1),X33,X34)) ,file(’i/f/1/goal_138__Q

: 1 [X1] : supteq(X1,X3)=sup_sup(set (product_prod(term(X1,X3) ,term(X1,X3))),supt (X1,X3),id(
:1[X34]:1[X33] :ord_less_eq(set(X1),X34,sup_sup(set(X1),X33,X34)),file(’i/f/1/goal_138__
:1[X33]:1[X18]:![X34]: (ord_less_eq(set(X1),X33,X18)=>(ord_less_eq(set(X1),X34,X18)=>ord
1 1[X34] : 1 [X33] : (gg(set(X1),X33)=>(ord_less_eq(set (X1),X34,X33)=>sup_sup(set(X1),X33,X34
:1[X33]: 1 [X18] : ! [X34] : ! [X48] : (ord_less_eq(set (X1),X33,X18)=>(ord_less_eq(set(X1),X34,X4
:1[X33] :ord_less_eq(set(X1),X33,X33) ,file(’i/f/1/goal_138__Q_Restricted_Rewriting.qrste
:1[X24] :1[X33]: ! [X34] : (member (X1,X24,X33)=>(" (member (X1,X24,X34))=>member (X1,X24,minus_
:1[X24] : 1 [X33]: ! [X34] : (member (X1,X24,minus_minus (set (X1),X33,X34))=>"((member (X1,X24,X3
1 1[X33] : (gg(set (X1),X33)=>collect (X1,aTP_Lamp_a(set (X1),fun(X1,bool),X33))=X33),file(’i
: (order (X1)=>![X35]: ! [X49]: ((gg(X1,X35)&gg(X1,X49))=>(ord_less_eq(X1,X35,X49)=>(ord_les
: (preorder (X1)=>![X35]: ! [X49]:! [X50] : (ord_less_eq(X1,X35,X49)=>(ord_less_eq(X1,X49,X50)
:1[X33]:1[X34]: (ord_less_eq(set(X1),X33,X34)<=>![X52]: (gg(X1,X52)=>(member (X1,X52,X33)=
: 1 [X39]: 1 [X35] : ! [X33] : (pp(aa(X1,bool,X39,X35))=>(member (X1,X35,X33)=>7[X30] : (gg(X1,X30)
:1[X65] : 1 [X66] : (pp(aa(X1,bool,aTP_Lamp_a(set(X1),fun(X1,bool) ,X65),X66))<=>member (X1,X6
qrsteps_comp_s

Artificial Intelligence in Theorem Proving

Still the search space is huge: What can we learn?

What has been learned
= CASC: Strategies
= AIM: Hints

= Hammers: Premises

What can be chosen in Superposition calculus
= Term ordering
= (Negative) literal selection
= Clause selection

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

E-Prover given-clause loop

(processed clauses)

Simpli-
Gene- fiable?

Simplify

(unprocessed clauses)

Most important choice: unprocessed clause selection [Schulz 2015]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Learning for E: Data Collection

Mizar top-level theorems
= Encoded in FOF

32,521 Mizar theorems with > 1 proof
= training-validation split (90%-10%)
= replay with one strategy

Collect all CNF intermediate steps

= and unprocessed clauses when proof is found

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

[Urban 2006]

Deep Network Architectures

Cezary Kaliszyk

Logistic loss

Fully Connected
(1 node)

Fully Connected ’
(1024 nodes)

’ Max Pooling ‘
t

Conv 5 (1024) + RelU

f

Concatenate ’

Conv 5 (1024) + RelLU

Clause Embedder

f

Negated conjecture ’
embedder

Conv 5 (1024) + RelLU

Clause tokens Negated conjecture
tokens

Overall network

al Intelligence in Theorem Proving

f
’ Input token embeddings

Convolutional Embedding

Recursive Neural Networks

= Curried representation of first-order statements
= Separate nodes for apply, or, and, not

= Layer weights learned jointly for the same formula

Embeddings of symbols learned with rest of network

= Tree-RNN and Tree-LSTM models!

IRelation to graphs

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Model accuracy

Cezary Kaliszyk

Model | Embedding Size | Accuracy: 50-50% split
Tree-RNN-256x2 256 77.5%
Tree-RNN-512x1 256 78.1%
Tree-LSTM-256x2 256 77.0%
Tree-LSTM-256x%3 256 77.0%
Tree-LSTM-512x2 256 77.9%
CNN-1024x3 256 80.3%
*CNN-1024 %3 256 78.7%
CNN-1024x3 512 79.7%
CNN-1024x%3 1024 79.8%
WaveNet-256 x3x7 256 79.9%
*WaveNet-256 x3x 7 256 79.9%
WaveNet-1024 x3x 7 1024 81.0%
WaveNet-640x3x7(20%) 640 81.5%
*WaveNet-640x3x7(20%) 640 79.9%

* = train on unprocessed clauses as negative examples

Artificial Intelligence in Theorem Proving

Improving Proof Search inside E

Overview

Select one
Using a deep neural
network
Unprocessed
Clauses <:| Processed Clauses
Superposition
Problem

= Deep neural network evaluation is slow

= Slower than combining selected clause with all processed clauses?

2State of 2016

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Hybrid heuristic

Optimizations for performance

= Batching
= Combining TF with auto

1000 1000
—— Pure CNN — Auto
80% Hybrid CNN 80% WaveNet 640*
? — Pure CNN; Auto ? — WaveNet 256
3 — Hyrbid CNN; Auto kA — WaveNet 256*
3 60% 3 60% — WaveNet 640
g g — CNN
3 p=}
2 = CNN*
g 40% g 40%
fo}]
o o
20% 20%
0% 0% T
10° 10° 10° 10° 102 10° 10° 10°
Processed clause limit Processed clause limit

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Harder Mizar top-level statements

] Model | DeepMath 1 | DeepMath 2 | Union of 1 and 2 |

Auto 578 581 674

*WaveNet 640 644 612 767
*WaveNet 256 692 712 864
WaveNet 640 629 685 997
*CNN 905 812 1,057

CNN 839 935 1,101

| Total (unique) [1,451 [1458 | 1,712

Overall proved 7.4% of the harder statements

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Harder Mizar top-level statements

] Model | DeepMath 1 | DeepMath 2 | Union of 1 and 2 |

Auto 578 581 674

*WaveNet 640 644 612 767
*WaveNet 256 692 712 864
WaveNet 640 629 685 997
*CNN 905 812 1,057

CNN 839 935 1,101

| Total (unique) [1,451 [1458 | 1,712

Overall proved 7.4% of the harder statements

= Batching and hybrid necessary
= Model accuracy unsatisfactory

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

E N I G M A [Jakubuv,Urban 2017]

I
& |

\
f g -

PN

x y skoy skoy f g
\ e N
x ® ® O

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

E N I G M A [Jakubuv,Urban 2017]

! p— é !
TN \
! g -
A~ S N
x y skoy skoy f g
\ P PN
x ® ® O

= Evaluation on AIM
= E's auto-schedule: 261

= Single best strategy: 239

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

ENIGMA

[Jakubuv,Urban 2017]

= Evaluation on AIM
= E's auto-schedule: 261

= Single best strategy: 239

Cezary Kaliszyk

N o
\
! g -
A~ S N
r y skoy skoo f g
\ e N
P ® ® O O

®

1 iff predict(C, M) =

10 otherwise

predict-weight(C, M) = {

weight(C, M) = v - length(C') + predict-weight(C, M)

Artificial Intelligence in Theorem Proving

E N I G M A [Jakubuv,Urban 2017]

! p— é !
/\ ‘
! g -
A~ S N
r y skoy skoo f g
‘ & ® 6 0
= Evaluation on AIM T ‘
®

= E's auto-schedule: 261

= Single best strategy: 239
1 iff predict(C, M) =

predict-weight(C, M) = {10 otherwise
weight(C, M) = v - length(C') + predict-weight(C, M)

= Different trained models: 337

= Accuracy: 97.6%

= Looping and boosting

= Still in 30s: best trained strategy: 318

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Automated Theorem Proving

Historical dispute: Gentzen and Hilbert

= Today two communities: Resolution (-style) and Tableaux

Possible answer: What is better in practice?
= Say the CASC competition or ITP libraries?

= Since the late 90s: resolution (superposition)

But still so far from humans?
= We can do learning much better for Tableaux
= And with ML beating brute force search in games, maybe?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

leanCoP: Lean Connection Prover [Otten 2010]

Connected tableaux calculus
= Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC (ATP Systems Competition)

= despite their much larger implementation

Compact Prolog implementation, easy to modify

= Variants for other foundations: iLeanCoP, mLeanCoP

= First experiments with machine learning: MalLeCoP

Easy to imitate
= leanCoP tactic in HOL Light

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Lean connection Tableaux

Very simple rules:

= Extension unifies the current literal with a copy of a clause
= Reduction unifies the current literal with a literal on the path

N AXi
0. M, Path "
C, M, PathU {L,} ;
R
CU L, M. Path U (L] eduction
G\ {L2}, M, PathU {Li} ¢, M, Path Extension

CU{Li}, M, Path

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Example lean connection proof

Clauses: Tableau: P(a)
a : P(x) / \
& R(x,y) V ~P(x) V Q(y) R(a,b) ~P(3) Q(b)
¢ 2 S(x) vV =Q(b) /N /N
c:S(x) VvV -Q(x) —R(a,b) Q(b) 5(b) —Q(b)
s ~Q(x) V =R(a, x) /N / N\

¢ ~R(a,x) vV Q(x) —~Q(b) —R(a,b) —5(b) —Q(b)

Artificial Intelligence in Theorem Proving

leanCoP Example [Otten'15]

= Formula to prove:
((CxQ(x)V=Q(c)) = P) A (P=(FyQ(»)AR))) = (PAR)

= DNF:
(PAR)V(=PAQRX)V (mQbAP)V (—=Qc A=P)V (P A-R)
= Matrix:
P -P -Qb -Qc P
R QX P -P -R
= Tableaux:
P/\R [E -P —‘Qb —'QC P]
A\ N\ R P R
P QX P -R) ;
NN - .

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

leanCoP: Basic Code

prove ([Lit|Cla],Path,PathLim,Lem,Set) :-
(-NegLit=Lit;-Lit=NegLit) ->
(
member (NegL ,Path) ,unify_with_occurs_check (NegL ,6 NegLit)

lit (Neglit ,NegL,Clal,Grndl),
unify_with_occurs_check (NegL, NegLit),

prove(Clal,[Lit|Path],PathLim,Lem, Set)
) s

prove (Cla,Path,PathLim,Lem,Set) .
prove([l,_,_,_,_).

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

leanCoP: Actual Code (Optimizations, No history)

prove ([Lit|Clal,Path,PathLim,Lem,Set) :-
\+ (member (LitC,[Lit|Clal]), member (LitP,Path) ,LitC==LitP),
(-NegLit=Lit;-Lit=NegLit) ->
(
member (LitL,Lem), Lit==LitL

member (NegL ,Path) ,unify_with_occurs_check(NegL,6 NegLit)

lit (NeglLit ,NegL,Clal,Grndl),
unify_with_occurs_check(NegL, NegLit),
(Grndl=g -> true ;
length (Path,K), K<PathLim -> true ;
\+ pathlim -> assert(pathlim), fail),
prove(Clal,[Lit|Path],PathlLim,Lem, Set)
),
(member (cut,Set) -> ! ; true),
prove (Cla,Path,PathLim,[Lit|Lem],Set).
prove([l,_,_,_,_).

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

First experiment: MalLeCoP in Prolog [Tableaux 2011]

- { n

Select extension steps [leanCoP] orovers ‘

= Using external advice \‘""*EEEEEEEEEEEEE:-' :l’g
Slow implementation \\
= 1000 less inf per second advisor

| cache |
Can avoid 90% inferences! :

Important: Strategies SNow
learning
system

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

What about efficiency: FEMalLeCoP [LPAR 2015]

Advise the:

= selection of clause for every tableau extension step

Proof state: weighted vector of symbols (or terms)

= extracted from all the literals on the active path
= Frequency-based weighting (IDF)
= Simple decay factor (using maximum)

Consistent clausification
= formula 7[X]: p(X) becomes p(’skolem(?[A]:p(A),1)°)

Predictor: Custom sparse naive Bayes

= association of the features of the proof states

= with contrapositives used for the successful extension steps

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

FEMalLeCoP: Data Collection and Indexing

Extension of the saved proofs

= Training Data: pairs (path, used extension step)

External Data Indexing (incremental)

= te_num: number of training examples
= pf_no: map from features to number of occurrences € Q
= cn_no: map from contrapositives to numbers of occurrences

= cn_pf_no: map of maps of cn/pf co-occurrences

Problem Specific Data
= Upon start FEMaLeCoP reads

= only current-problem relevant parts of the training data
= cn_no and cn_pf_no filtered by contrapositives in the problem

= pf_no and cn_pf_no filtered by possible features in the problem

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Efficient Relevance (1/2)

Estimate the relevance of each contrapositive ¢ by
P(¢ is used in a proof in state ¢ | 1 has features F(7))

where F(v) are the features of the current path.

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Efficient Relevance (1/2)

Estimate the relevance of each contrapositive ¢ by
P(¢ is used in a proof in state ¢ | 1 has features F(7))

where F(v) are the features of the current path.

Assuming the features are independent, this is:

P(¢ is used in v’s proof)
) erF(v)ﬂF(ap) P (1 has feature f | ¢ is used in ¢’s proof)

- erF(’y)_F(v) P(w has feature f | ¢ is not used in ¢’s proof)

. erl__(@)i,__(v) P(?/J does not have f | ¢ is used in ¥’s proof)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Efficient Relevance (2/2)

All these probabilities can be estimated (using training examples):

amet S im0 o S i ren 3 e - 20

fE(FNS) fe(f—3) fe(E—F)

where
= f are the features of the path

S are the features that co-occurred with ¢

t = cn_no(yp)

s = cn_fp_no(y)
i is the IDF

o, are experimentally chosen parameters

Artificial Intelligence in Theorem Proving

Inference speed ... drops to about 40%

Prover Proved (%)

OCaml-leanCoP 574 (27.6%)
FEMaLeCoP 635 (30.6%)
together 664 (32.0%)

(evaluation on MPTP bushy problems, 60 s)

On various datasets, 3-15% problems more solved than leanCoP

(run for double the time)

Cezary Kaliszyk

Artificial Intelligence in Theorem Proving

What about stronger learning?

= If put directly, huge times needed

Yes, but... [Michalewski 2017]
= Still improvement small
730 700

720 &0
70 “““““““““ “ ““ “‘ &40 |||||||||‘ “ “““““““““‘““

times in seconds from 3000 to 7200 times in seconds from 3000 to 7200

NBayes vs XGBoost on 2h timeout

=
5
&8
a8

2 =
& g8
ol 9
e =

2
&8
il
&

9

Preliminary experiments with deep learning [Olsak 2017)

= So far too slow

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Is theorem proving just a maze search?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Is theorem proving just a maze search?

Yes and NO!
= The proof search tree is not the same as the tableau tree!
= Unification can cause other branches to disappear.

Can we provide a tree search like interface?

= Two functions suffice
start : problem — state

action : action — state

= where
state = (action list x remaining goal-paths)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Is it ok to change the tree?

Most learning for games sticks to game dynamics

= Only tell it how to do the moves

Why is it ok to skip other branches

= Theoretically ATP calculi are complete

= Practically most ATP strategies incomplete

In usual 30s — 300s runs
= Depth of proofs with backtracking: 5-7 (complete)
= Depth with restricted backtracking: 7-10 (more proofs found!)

But with random playouts: depth hundreds of thousands!

= Just unlikely to find a proof — learning

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Monte Carlo First Try: MONTECOP

Use Monte Carlo playouts to guide restricted backtracking

= Improves on leanCoP, but not by a big margin
= Potential still limited by depth

500 [1 350]
490 | — 300 |- |
< <
g g
g 4801 18 2s0f 1
“ H
5 5
2 4r0f 102 L J
3 3 20
a [a8
460 - 1 150 B
wor] wob oo
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
maxIterations Smax

Artificial Intelligence in Theorem Proving

“Simple” learning in LEANCOP

FEMalLeCoP: Speed: 40%

On various datasets, 3-15% problems more solved than leanCoP

XGBoost: Speed: 8%

But more precise and again small improvement

Monte Carlo
= Improves on leanCoP, but not by a big margin
= Change in game moves
= More inspiration from games?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

AlphaZero (1/3) [Silver et al]

Policy network Value network
P @ |S) Vo s)
L 3
b,

[

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

AlphaZero (2/3) [Silver et al]

a Self-play s, s, s,

Sy S, S3

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

AlphaZero (3/3) [Silver et al]

a Select b Expand and evaluate € Backup
1 Repeat)
%
_QxU QY PANE €

How to select the best action?

[Szepesvari 2006]

Intuition
= Given some prior probabilities
= And having done some experiments
= Which action to take?

= (later extended to sequences of actions in a tree)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

How to select the best action? [Szepesvari 2006]

Intuition
= Given some prior probabilities
= And having done some experiments
= Which action to take?

= (later extended to sequences of actions in a tree)

Wi . . .
— average reward p;i action / prior
i

N number of experiments n; action / experiments

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

How to select the best action? [Szepesvari 2006]

Intuition
= Given some prior probabilities
= And having done some experiments
= Which action to take?

= (later extended to sequences of actions in a tree)

Monte Carlo Tree Search with Upper Confidence Bounds for Trees

= Select node n maximizing

w; InN
— + C - p’. .
nj nj
= where W
1 . . .
— average reward pi action i prior
i
N number of experiments n; action / experiments

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

MCTS tree for WAYBEL _0:28

. . =0.3099
Tabl 'r '
ableaux starting axiom n—1182

RelStr(c1)

p=0.35
r=0.2889
n=536

p=0.21 p=0.10 p=0.13 p o 14 p o 14 p=0.20 p=0.08
r=0.1859 | [r=0.2038| |r=0.2110| |r=0.2384| |r=0.3370| |r=0.3967| |r=0.1116 upper(cl)
n=28 n=9 n=14 n= 21 n= 181 n:279 n=3

p=0.30 p= 015 p=0.56
r=0.1368 | |r=0.0288| |r=0.4135 [Subset(union(c2),carrier(cl))

n=14 n=2 n=262

p=0.66) ("p=0.18") (p=0.17
Subset(c2, powerset(carrier(cl)) |r=0.4217| |r=0.2633| |r=0.2554

n=247 n=8 n=6

36 more MCTS tree levels until proved

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Learn Policy and Value

Policy: Which actions to take?

= Proportions predicted based on proportions in similar states

Value: How good (close to a proof) is a state?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Learn Policy and Value

Policy: Which actions to take?

= Proportions predicted based on proportions in similar states
= Explore less the actions that were “bad” in the past

= Explore more and earlier the actions that were “good”

Value: How good (close to a proof) is a state?

= Reward states that have few goals

= Reward easy goals

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Learn Policy and Value

Policy: Which actions to take?

= Proportions predicted based on proportions in similar states
= Explore less the actions that were “bad” in the past

= Explore more and earlier the actions that were “good”

Value: How good (close to a proof) is a state?

= Reward states that have few goals

= Reward easy goals

Where to get training data?

= Explore 1000 nodes using UCT
= Select the most visited action and focus on it for this proof

= A sequence of selected actions can train both policy and value

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Mizar TPTP problems: train (29272) and test (3252) sets

Baseline

System leanCoP playouts UCT

Test 1143 431 804

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Mizar TPTP problems: train (29272) and test (3252) sets

Baseline

System leanCoP playouts UCT

Test 1143 431 804

10 iterations

Iteration 1 2 3 4 5

Test 1354 1519 1566 1595 1624

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Mizar TPTP problems: train (29272) and test (3252) sets

Baseline

System leanCoP playouts UCT
Train 10438 4184 7348
Test 1143 431 804

10 iterations

Iteration 1 2 3 4 5 6 7 8 9 10

Train 12325 13749 14155 14363 14403 14431 14342 14498 14481 14487
Test 1354 1519 1566 1595 1624 1586 1582 1591 1577 1621

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Mizar TPTP problems: train (29272) and test (3252) sets

Baseline

System leanCoP playouts UCT
Train 10438 4184 7348
Test 1143 431 804

10 iterations

Iteration 1 2 3 4 5 6 7 8 9 10

Train 12325 13749 14155 14363 14403 14431 14342 14498 14481 14487
Test 1354 1519 1566 1595 1624 1586 1582 1591 1577 1621

More Time

leanCoP, 4M inferences, strategies 1396
rlICoP union 1839

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

RL-CoP setup summary

1. Representation:

2. Playout: follow 3. Explore the

a search in the tree maximum UCT until hode and backup

should correspond
to a tableaux

the found reward

unexplored node
to all nodes above

5. Focus on
most visited
node

6. Repeat

4. Repeat
100 times

1000 times

7. Do this for all
theorems. We get
many sequences
of focused steps

8. Train new
predictors for
policy and value
using the seqs.

9. Repeat!

RL-CoP setup summary

1. Representation:

2. Playout: follow 3. Explore the

a search in the tree maximum UCT until hode and backup

should correspond
to a tableaux

the found reward

unexplored node
to all nodes above

5. Focus on
most visited
node

6. Repeat

4. Repeat
100 times

1000 times

7. Do this for all
theorems. We get
many sequences
of focused steps

8. Train new
predictors for
policy and value
using the seqs.

9. Repeat!

ATP versus learned ATP

ATPs tend to find short proofs.

= Learning helps only minimally

800

14000
||:||:|B()Wll0 hops 82 hops 04 hops

12000
600
10000

8000
400

6000

Number of proofs

200 4000

1 2 3 4 5 6 7 8 L3S 0 2 2 © 50
Length of proofs

Cumulative proof lengths of rlICoP on the Mizar

Graph Representations for Higher-Order Logic and ; X
Mathematical Library [NeurlPS 2018]

Theorem Proving [A. Paliwal et.al., 2019]

Artificial Intelligence in Theorem Proving

Main aims of FLoP [Zombori’2019]

= Build an internal guidance system that can find long proofs
= Find a domain that is simple enough to analyse the inner workings of the prover
= At first, try to learn from very few problems (with given or without given proofs)

= Try to generalize to harder problems (longer proofs) with a similar structure

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Domain: Robinson Arithmetic

Name Axiom

zeroSuccessor VX : —(0o = X)
diffSuccessor VX,Y : (s(X)=s(Y)) = (X =Y)

addZero VX :plus(X,0) = X
addSuccessor VX, Y : plus(X,s(Y)) = s(plus(X,Y))
mulZero VX :mul(X,0) =0

mulSuccessor VX,Y : mul(X,s(Y)) = plus(mul(X,Y), X)

Prove simple ground equalities

Proofs are non trivial, but have a strong shared structure

Proof lengths can get very long as numbers increase

See how little supervision is required to learn some proof types

Artificial Intelligence in Theorem Proving

Challenges for RL for TP

= Theorem proving as a 1 person game

= Meta-Learning task: each problem is
a new maze: train on some, evaluate
on others

= Sparse, binary rewards
= Defining good features

= Action space not fixed:
different across steps and across
problems

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Challenges for RL for TP

Algorithm 1 FLoP: Curriculum Learning on Proofs

Input: problem set P, policy 7, progress threshold € [0..1]
train steps € N, episodes between updates: k € N

m Theorem pro\/i ng as a]_ person ga me Output: trained policy 7, possible new proofs for problems in 7
1: steps < 0
2: curriculum < 1
. . 3: while steps < train steps do
= Meta-Learning task: each problem is & Successes 40
. . I 5: for jin 1.k do
a new maze: train on some, evaluate 6: p 4 random problem from problem set P > An episode corresponds to a problem
on others 7: if p has stored proof then > Determine initial state
8: Take proof steps according to stored proof until curriculum number of steps remain
9: s «— state of problem p after initial proof steps taken
10: else
u S parse, bina ry rewa rds 11: s < starting state of problem p
12: while not episode over do
13: Take action according to policy 7(a;|s;), observe next state s;.1 and reward ;1
. 14 steps < steps + 1
" Deflnmg gOOd features 15: if proof is found for p then
16: successes «— successes + 1
17: if found proof is shorter than previous proof then
= Action space not fixed: 18:) store proof as new proof for p
19: if no proof of p was known before then
different across steps and across 20: curriculum < 1 > Restart curriculum learning
bl 21: Update policy ™
problems 22: success rate «— successes / k
23: if success rate > progress threshold then
24: curriculum < curriculum + 1 > Advance curriculum

al Intelligence in Theorem Proving

Cezary Kaliszyk i .

FLoP

External guidance based on RL

= Theorem Prover encapsulated as an environment

= Use curriculum learning

Applicable when we know the proof of a problem
= More efficient use of training signals
= Start learning from the end of the proof

= Gradually move starting step towards the beginning of proof

Proximal Policy Optimization (PPO)

= Actor learns a policy (what steps to take)
= Critic learns a value (how promising is a proof state)
= Actor is confined to change slowly to increase stability

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Datasets

Stage Set Size Description
Stage 1 Train 2 1+41=2,1-1=1
Eval 1800 Expressions of the form N1 + N2 = N3, N1 - No = N3, where 0 <
N; < 30. (Examples: 3+4="7 or 5-12=60)
Stage 2 Train 3 141=2,1-1=1,1-1-1=1
Eval 1000 T = N, where 0 < N, and T is a random expression with 3 operators
and operands NN; such that 0 < N; < 10. (E.g.: ((34+4)-2)+6=20)
Stage 3 Train 810 Ty = T>, where T3 and 7> are random expressions with 3 operators and
operands N; such that 0 < N; < 2.
Eval 1000 Ty = T5, where T1 and 15 are random expressions with 3 operators and

Cezary Kaliszyk

operands N; such that2 < N; < 10. (E.g. ((3+4)-2)+6=((1+1)-5)-2)

Artificial Intelligence in Theorem Proving

Evaluation

Cezary Kaliszyk

=0

&0

0

20

o
1] W00 200 %00 400 5000

W00 100 2000 200

(a) (b) (c)
Figure 4: Comparing the length of proofs found by FLOP (blue) and rlCOP (orange) on the Robinson Arithmetic
dataset. All figures are cumulative histograms, vertical axes show the number of proofs, horizontal axes show
the length of proofs. Best models are shown for both FLOP and rICOP. Figures (a), (b), (c) correspond to Stage
1, 2, 3 respectively. FLOP found more proofs in all stages.

(a) (b) (©)
Figure 5: (a)-(c) — Stages 1-3, training graphs centered at the mean reward, darker bars are delimited by

quantiles at 0.25 and 0.75, lighter bars extending from min to max; in total 36 models, 6 models per graph, 20M
samples per experiment. Curriculum helps in Stages 2 and 3.

al Intelligence in Theorem Proving

Learning for ATPs: Summary and next steps

For some calculi major improvement

= Learning for Resolution-style systems open

Learn features

RL prefers shorter proofs
= but they may not be the ones that generalize best
Evaluate with backtracking

Scale to more interesting domains

= Bolzano—Weierstrass

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Communication with a Proof Assistant

The prover does not get what | mean

= Completely clear things need to be fully expanded
= Even if | said it 100 times, | have to say it again
= (or implement the expansion)

Compared to a student

= Proof assistant does not get what | mean

= Cannot repeat a simple action

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Proof assistant — assistant

Given some text, the assistant can say

= What you wrote
= What you wanted to write

= (What | think you meant)
= Does it make sense

= Can | be convinced of this
= (Can | prove this™)

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Proof assistant — assistant

Given some text, the assistant can say

= What you wrote
= What you wanted to write
= (What | think you meant)

= Does it make sense
= Can | be convinced of this
= (Can | prove this™)

Tasks
= Understand IKTEX formulas, as well as some text
= Translate it to logic (of a/the proof assistant)

= Report on the success

Questions
= Can we (a computer) learn how to state lemmas formally?

= Can we (a computer) learn to prove?

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Demo

Cezary Kaliszyk | Intelligence in Theorem Proving

Strong-semantics probabilistic parser for HOL Light
Input the formula to parse. Separate symbols with spaces:
[sin 0 = cos pi/2 Submit
debug: cache— decode — 18 bigramdtrigram features — 1024 nearest neighbours — 16 nyk parses — 12 distinct terms
Conjecture as HOL Light A)
) 8 Type info: Automatically Provable?
term:
sin (&0) = cos pi / &2 disproved
sin (&0) = cos (pi / &2) yes REWRITE_TAC [SIN_0; COS_P12]
csin (Cx (&0)) = Cx (cos (pi / &2)) yes REWRITE_TAC [CSIN_0; COS_PI2]
esin (Cx (&0)) = ccos (Cx (pi / &2)) yes 1(\/155\01{\]1{;«: [f’\; ZL]“LR‘\‘“ €x_cos;
Cx (sin (&0)) = ccos (Cx (pi / &2) yes ygiogl_lTAc [SIN_0; NUMERAL; CX_COS;
Cx (sin (&0)) = Cx (cos (pi / &2)) yes REWRITE_TAC [SIN_0; COS_P12]
esin (Cx (&0)) = ccos (Cx pi / Cx (&2)) yes 124\5531{1‘5\5“ UL 2 IL r) I: \P II;2 ; X_DIV;
csin (Cx (&0)) = ccos (Cx pi) / Cx (&2) no advice
esin (Cx (&0)) = Cx (cos pi) / Cx (&2) no advice
Cx (sin (&0)) = ceos (Cx pi / Cx (&2) yes Iff S(SI,\'STT(}:)CS[?S]’ UNEMERAL DI

Time

(6.74s)
(0.87s)
(0.74s)
(0.76s)
(0.70s)
(0.80s)

(0.93s)

(1.23s)

Why don't we have this? (1/2)

Claus Zinn and others tried and have not arrived very far because:

= lack of background knowledge
= lack of powerful automated reasoning

= lack of self-adapting translation

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Why don't we have this? (1/2)

Claus Zinn and others tried and have not arrived very far because:

= lack of background knowledge
= lack of powerful automated reasoning

= lack of self-adapting translation

But huge machine learning progress

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Why don't we have this? (2/2)

Controlled languages

= Ranging from Naproche and MathLang to Mizar

Easy start but huge number of patterns
100 most frequent patterns cover half of 42,931 ProofWiki sentences [CICM’14]

5829 Let 7 be [7].

2688 Let 7.

774 Then 7 is [7].

736 Let 7 be [?] of $7%.
724 Let 7 and 7 be [7].
578 Let 7 be the [?] of 7.
555 Let 7 be the [7].

But can go very far

= Thousands of manually entered patterns [Matsuzaki+'16,'17)

= Better than humans on university entrance exams (some domains) [Arai+'18]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Learning data: Aligned corpora

Dense Sphere Packings: A Blueprint for Formal Proofs

= 400 theorems and 200 concepts mapped [Hales13]
= |saFoR [Sternagel Thiemann14]
= most of “Term Rewriting and All That” [BaaderNipkow]

Compendium of Continuous Lattices (CCL)

= 60% formalized in Mizar [BancerekRudnicki02]
= high-level concepts and theorems aligned

Feit-Thompson theorem by Gonthier [Gonthier13]
= Two graduate books

detailed proofs and symbol linking in Wikipedia, ProofWiki, PlanetMath, ...

Artificial Intelligence in Theorem Proving

Aligned corpora: Kepler Example
' ormetormet |

[Definition of [fan, blade] DSKAGVP (fan) [fan <+ FAN]

[Let (V, E) be a pair consisting of a set V C R? and a set E of unordered pairs of distinct elements
f V. The pair is said to be a fan if the following properties hold.
1. (CARDINALITY) Vs finite and nonempty. [cardinality +» fanf]
2. (ORIGIN) O ¢ V. [origin ¢ fan2]
3. (NONPARALLEL) If {v, w} € E, then v and w are not parallel. [nonparallel < fan6]
4. (INTERSECTION) For alle,&’ € EU {{v} : v € V}, [intersection <+ fan7]

CE)NCE) = Cene).

#DSKAGVP”
0
hen e € E, call C°(¢) or C(e) a blade of the fan. let FAN=new definition' FAN(x,V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fanl(x,V,E) /\ fan2(x,V
fan6(x,V,E)/\ fan7(x,V,E)"
basic properties Dbasic properties
The rest of the chapter develops the properties of fans. We begin with a completely trivial The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of
consequence of the definition. the definition.
let CTVTAQA=prove(!(x: rQa\‘}) (V:real"3->bool) (E:(real”3->bool)->bool) (E1:(real"3->bool)->bool)
lLemma [] CTVTAQA (subset-fan) FAN(K,V,E) /\ €L SUBSET €
FAN(x V,E1)"

If (V, E) is a fan, then for every E' C E, (V, E’) is also a fan.
REPEAT GEN TAC
THEN REWRITE_TAC[FAN; fanl;fan2;fan6;fan7;graph]

[Proof i

[This proof is elementary.

(xireal”3) (Vireal"3->bool) (E: (real"3->bool)->haol) (v:resl”3).

mm VB A
> cyclic_set (se(Yot _edge vV E) x v,

lLemma [fan cyclic] XOHLED MESON_TAC[CYCLIC SET_EDGE FAN]);;

E(v) ¢> set_of_edge] Let (V, E) be a fan. For each v € V/, the set
E(v)={weV : {v,w}cE}
is cyclic with respect to (0,v).

[Proof

If w € E(v). then v and w are not parallel. Also, if w # w’ € E(v), then

Aligned corpora: Kepler Example

596 formulas from the Flyspeck book extracted with KTEXML

= Translation to HOL Light based on a small table

= 17% same as formal ones

Too hard
= make more precise examples or [ongoing]
= start with simpler ones UTP'15 +]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Informalization

22000 Flyspeck statements informalized

= 72 overloaded instances like “+" for vector_add
= 108 infix operators

= forget all “prefixes”
" real_, int_, vector_, nadd_, hreal_, matrix_, complex_
= ccos, cexp, clog, csin,
" ysum, rpow, nsum, list_sum,

= Deleting all brackets, type annotations, and casting functors

= Cx and real_of num (which alone is used 17152 times).

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

informal sentence

@

linguistic parsing tool with
integrated typechecking

. < A

probabilistic
context-free
grammar

types
knowledge
base

I
[
several possible translations
(formal hypothesis)

prover ‘

$ &

formal theorem/proof/definition
HOL, Mizar, ...

knowledge base
obtained by
machine learning

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

CYK and parsing — just a little

Induce PCFG (probabilistic context-free grammar) from term trees

= inner nodes — rules frequencies — probabilities

Binarize PCFG grammar for efficiency

CYK parses ambiguous sentences

= outputs most probable parse trees

= tweak: small probability for each symbol to be a variable

Pruning
= Compatible types for free variables in subtrees
= HOL type-checking

= Hammer

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Example tree inducing grammar

"(Type bool)"

° "(Type (fun real bool))"

@ G (O >
0D @ Commd> ()
@S Comar>

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Statistics

Just PFG [ITP'15]
= 39.4% of the Flyspeck sentences parsed correctly

= average rank: 9.34

Problems with PCFG and CYK

1xx+2x%x

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Statistics

Just PFG [ITP'15]
= 39.4% of the Flyspeck sentences parsed correctly

= average rank: 9.34

Problems with PCFG and CYK

1xx+2x%x

Use deeper trees [ITP 2017]

= semantic pruning + subtree depth 4-8 + substitution trees
= 83% sentences parsed correctly

= average rank: 1.93

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Types helped us - what about no types?

Mizar
= Developed by mathematicians for mathematicians

= Many features significantly different from the usual

How would you formalize:
1. SuM OF THE RESULT OF OPERATION WITH EACH ELEMENT OF A SET

For simplicity, we adopt the following convention: X denotes a real unitary
space, ¥, ¥, Y1, y2 denote points of X, 7, j denote natural numbers, Dy denotes
a non empty set, and p1, po denote finite sequences of elements of D;.

Next we state the proposition

(1) Suppose p; is one-to-one and ps is one-to-one and rngp; = rng pz. Then
dom p; = dom py and there exists a permutation P of dom p; such that
p2 = p1 - P and dom P = domp; and rng P = dom p;.

Let Dy be a non empty set and let f be a binary operation on Dj. Let us
assume that f is commutative and associative and has a unity. Let Y be a finite
subset of Dy. The functor f@Y yields an element of Dy and is defined as follows:

(Def. 1) There exists a finite sequence p of elements of Dy such that p is one-to-
oneand mgp=Y and f®Y = f ©p.

Let us consider X and let Y be a finite subset of the carrier of X. The

Cezary Kaliszyk Al nce in Theorem Proving

Mizar Statistics

13%
Mizar: subtree depth 2 (constructor-level) 33%
4.6
37%
Mizar: subtree depth 4-8 (constructor-level) 64%
2.64
32%

Mizar: subtree depth 4-8 (pattern-level) 59%
2.74

60%

Flyspeck/HOL light: subtree depth 4-8 83%
1.93

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Sequence-to-sequence models: decoder/encoder RNN

target output words

Je suis étudiant </s> iloss layer

Iprojection layer

I i i hidden layer 2

embedding layer

Ihidden layer 1

I am a student <s> Je suis étudiant

source input words target input words

[Luong et al’15]

Cezary Kaliszyk Artificial Intelligence in Theorem Proving

Sequence-to-sequence models: decoder/encoder RNN

moi suis étudiant </s>

target output words étudiant
— >

loss layer le

Je suis étudiant </s>
moi

projection layer

:
FEA o

I

!

hidden layer 1

embedding layer

f

I am a student <s> Je suis étudlant

a student<s> moi Suis étudiant

source input words target input words

[Luong et al’15]

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

Neural Auto-formalization [cicM 18]

Identical 0
Statements
Best Model 69179 (total) 65.73%
- 1024 Units 22978 (no-overlap) A7.77%

Artificial Intelligence in Theorem Proving

Cezary Kaliszyk

Neural Auto-formalization

[CICM'18]

Identical 0
Statements

Best Model 69179 (total) 65.73%

- 1024 Units 22978 (no-overlap) A7.77%

Top-5 Greedy Cover 78411 (total) 74.50%

- 1024 Units 28708 (no-overlap) 59.68%

- 4-Layer Bi. Res.

- 512 Units

- 6-Layer Adam Bi. Res.

- 2048 Units

Top-10 Greedy Cover 80922 (total) 76.89%

- 1024 Units 30426 (no-overlap) 63.25%

- 4-Layer Bi. Res.

- 512 Units

- 6-Layer Adam Bi. Res.

- 2048 Units

- 2-Layer Adam Bi. Res.

- 256 Units

- 5-Layer Adam Res.

- 6-Layer Adam Res.

- 2-Layer Bi. Res.

Union of All 39 Models 83321 (total) 79.17%
32083 (no-overlap) 66.70%

Cezary Kaliszyk

Artificial Intelligence in Theorem Proving

Neural Auto-formalization

[CICM'18]

Identical 0 <1 <2 <3
Statements

Best Model 69179 (total) 65.73% 74.58% 86.07% 88.73%

- 1024 Units 22978 (no-overlap) AT.77% 59.91% 70.26% 74.33%

Top-5 Greedy Cover 78411 (total) 74.50% 82.07% 87.27% 89.06%

:i?f:y:r”gis Res 28708 (no-overlap) 59.68% 70.85% 78.84% 81.76%

- 512 Unit

- 6-Layer Adam Bi. Res.

- 2048 Units

Top-10 Greedy Cover 80922 (total) 76.89% 83.91% 88.60% 90.24%

:}ff:yg”gis Res 30426 (no-overlap) 63.25% 73.74% 81.07% 83.68%

- 512 Unit

- 6-Layer Adam Bi. Res.

- 2048 Units

- 2-Layer Adam Bi. Res.

- 256 Units

- 5-Layer Adam Res.

- 6-Layer Adam Res.

- 2-Layer Bi. Res.

Union of All 39 Models 83321 (total) 79.17% 85.57% 89.73% 91.25%
32083 (no-overlap) 66.70% 76.39% 82.88% 85.30%

Cezary Kaliszyk

Artificial Intelligence in Theorem Proving

Machine Learning applied to informal LaTeX

For @,
any sets F ol
space.

m Where £, = 0, hence we can find a closed subset # in H and
. U is a closed immersion of S, then U — T is a separated algebraic

Proof. Proof of (1). It also start we get

S=8pec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, ?? and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=JU:xs, U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy . is a scheme where z,z’,s” € S’ such that Ox ,» — O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2"/S")
and we win.

To prove study we see that F|y is a covering of X’, and 7; is an object of Fx/s for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M = I* @specqr) 05,0 — ix'F)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S)7% ¢ (Sch/S) fpps

and
V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.
Proof. See discussion of sheaves of sets. o

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces étate Which gives an open subspace of X and T equal to Szar,

see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T(X,0x.0y)-
When in this case of to show that Q — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition ??
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there erists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,, ., Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. u]

The following lemma surjective restrocomposes of this implies that ., = F,, =

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fx;s. Set T =
Jy CTI,,. Since I™ C I™ are nonzero over ig < p is a subset of T o o Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox) = Ox(D)
where K is an F-algebra where 4,4, is a scheme over S. o

[Karpathy'16]

Final Summary / Take Home

Proofs are hard

= Machine learning key to most powerful proof assistant automation

Older but very efficient algorithms with significant adjustments

= Many other learning problems and scenarios

Not covered

= Learning strategy selection [Jakubuv,Urban]
" Kernel methods [Kiihlwein]
" Deep Prolog [Rocktaschel]
= Semantic Features, Conecturing

" Tactic selection [Nagashima,...]
= SVM [Holden]
" Adversarial Networks [Szegedy]
® Human proof optimization

= Theory exploration [Bundy+]
= Concept Alignment [Gauthier]

Artificial Intelligence in Theorem Proving

