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Guarded Commands

Types
T ::= Bool | Int | Rational | Real

Expressions
E ::= c(onstant) | v (ariable) |[E+E|E*E|E—E

|E<E|EAE|EVE|—-E]| ... (+ syntactic sugar)

Assertions
A =E|Vx:T = A[dx:T: A|A=A]| ...

Program statements

S u= v:=E assignment
S; S sequential composition
if (x){S}else{S} nondeterministic choice
assert A assertion
assume A assumption

| havoc v nondeterministic assignment

All types are mathematical
(unbounded)

We assume that expressions
and programs are well-typed



Hoare logic

{AE/x]} x:=E{A} {AANB} assert A{B}

{A}SiC}; 1C;s’{B}

{A}S;s {B} {A =B} assume A {B}
{A}s{C} ({B}s {C}
{AANB}if (x){S}else{S’} {C} {Vx: A} havoc x { A}

A=A {A}s{B) B =B
{A}s{B}

Our Hoare triples have a partial correctness meaning



Challenges for automating proof search

» Writing Hoare-style proofs requires creativity

{A}s{C} {C}s’ {B}
{A}s;s’ {B}

How do we find intermediate assertions?

A— A {A'}s{B'} B =B Where and how do we
{AYs{B} weaken and strengthen assertions?

» How do we decide whether an implication holds?
- We delegate the task to an SMT solver



Weakest preconditions

Statement S wp[s] (B)
<= BE /x| To automate the proof of a triple
S 5 wp[S](wp[S'] (B)) 1A}S1B}

if («){S}else{s } | wp[S](B)Awp[s’](B) we decide

assert A ANB A= wp[s](B)
assume A A=B

havoc x Vx : B




Encoding into guarded commands: conditionals

» Other statements can be encoded into guarded commands

= Conditional statements

if (E){S}else{S’} {ANE}S{B} {AAn-E}S {B}
{A}if (E){S}else{S’ } {B}

can be encoded using nondeterministic choice and assume

[if (E){S} else{S’}] = if (x) {assumeE; S} else { assume —E; S’ }



Encoding into guarded commands: loops

= While statements are verified using loop invariants

= Encoding

Hoare logic
while (E) {S} {InNE}S{l}

(1T while (E)S {IA—E)}

N assert I
havoc Loop targets I

|

assume I assume I
assume E assume —E

// encoding of S l

assert I
assume false
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Encoding into guarded commands: loop termination

= Termination can be proved with termination measures while (E)

= Encoding

assert I
havoc Loop targets

assume I

assume E

assert 0 < R
oldR := R

// encoding of S

assert I
assert R < oldR
assume false

invariant I
decreases R

S}

|

assume I
assume —E

|
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Encoding of calls

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
{ ..}

method client() {
var i: Int
i := indexOf(Seq(1, 3, 2), 3)
assert i == 1

¥
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Modular Verification

= Verify each procedure separately
- Scalability

= Do not use the implementation of callees
- Software evolution
- Dynamic method binding, foreign functions

= Do not use the implementation of callers and
other procedures
- Correctness guarantees for libraries
- Software evolution

13



Contracts

» Contracts specify the intended behavior of parts
of the program

» For the verification of a procedure, use the
contracts of the rest of the program, not the
Implementation

= Verify calls in terms of procedure pre- and
postconditions

14



Encoding into guarded commands: procedures

= Procedure declarations

method P(X: T)
returns (y:
requires A
ensures B

1S}

T)

= Procedure calls

Z:=P(E)

where x is not free in E

assume A
// encoding of S

assert B

assert A[E /X]
havoc z
assume B[E /X]|[Z/V]

To handle recursion, proof may
assume that all procedures satisfy
their specifications

For terminating programs, the
correctness argument is not cyclic
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Summary

Prog. language,
spec. language and
methodology

\ 4

Front-end

\ 4

Guarded commands
language

A

y

Verification condition
generator

\ 4

SMT solver

Loops, procedures
Safety, functional correctness, termination

Translates programs and
specifications to IL

Can express
programs and specifications

Extracts proof obligations
automatically using wp

Resolves proof obligations
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VIPER

= viper.ethz.ch

= Try online: http://viper.ethz.ch/tutorial

= |nstall as VS Code extension

17
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Heap model: an object-based language

= A heap is a set of objects

field val: Int = No classes: each object has all fields
declared in the entire program

?ethOd foo() returns (res: Int) - Type rules of a source language can be encoded
var cell: Ref - Memory consumption is not a concern since
cell := new(val) programs are not executed
cell.val := 5

1= 11.val : .
y rES 1T EERLTE = Obijects are accessed via references

- Field read and update operations
- No information hiding

= No explicit de-allocation (garbage collector)
- Conceptually, objects could remain allocated

19



Extended programming language

Declarations

D= ... |fieldf: T
Types
T:= ... |Ref

Expressions

E:= ... |null|E.f

Statements

S i:=
| v:=new(f) | v :=new(x)
| x.f:=E

as before

allocation
field update

Fields are declared globally

Only one type of references

Pre-defined null-reference

Allocation with given list of
fields or all fields

20



Field access: naive proof rules

» Naive approach: treat field accesses like variable assignment

Field read

{E#null AA[E.f/v]} v:=E.f {A}

Field update

{x#null NA[E/x.f] } x.f:=E {A}

= Additional precondition prevents null-dereferencing

The naive proof rule for field update is unsound.

21



Naive rule for field update ignores aliasing

Field read field val: Int
{E#null NA[E.f/Vv] } v:=E.f {A} method foo(p: Ref)
{
Field update var q: Ref
assume p != null & p.val == 5
{x#null AA[E/x.f]} x.f:=E {A} {p#null Ap#null Ap.val =5 }
q :=p
{p#null Aq#null Aqval=>5}
p.val := 7

{ q# null Aqval =5}
assert g.val == 5

22



The frame problem

field f: Int
field g: Int

method set(p: Ref, v: Int)
requires p != null
ensures p.f == v

{
p.f := v

}

x.f :=0
X.g := 0
set(x, 5)
assert x.g == 0

» Bad idea: inspect body of callee to determine
which field locations are modified
- Not modular
- Does not work for abstract methods

» Bad idea: assume conservatively that all field
locations may be modified

- Callee needs a specification for all field locations,
even those it does not change

- Not modular: procedure specifications need to
change when a new field is declared



Summary of challenges

Heap data structures pose three major challenges for sequential verification
= Reasoning about aliasing
= Framing, especially for dynamic data structures

» Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

24



Access permissions

Associate each heap location with a
permission

Permissions are held by method
executions or loop iterations

Read or write access to a memory
location requires permission

Permissions are created when the
heap location is allocated

Permissions can be transferred, but
not duplicated or forged




Permission assertions

= Permissions are denoted in assertions by
access predicates Assertions

- Access predicates are not permitted under negations,
disjunctions, and on the left of implications

Assertions may contain both permissions and
value constraints

Many assertions that occur in a program must
be self-framing, that is, include all permissions
to evaluate the heap accesses in the assertion

An assertion that does not contain access
predicates is called pure

A ::

= ... | acc(E.f)

acc(p.f) & p.f > ©

requires p.f > © o

26



Separating conjunction

To handle aliasing, we introduce a new connective: separating conjunction

A * B holds in a state if:
- both A and B hold, and
- the sum of the permissions in A and B are held in that state
- A* B and A A B are equivalent if A and B are pure

Holding permission to locations p.f and q.f

implies that p and q do not alias ace(p.f) * ace(q.f) = p#q

Viper's && is separating conjunction

For the call swap(x, x), the precondition method swap(a: Ref, b: Ref)
IS equivalent to false requires acc(a.f) && acc(b.f)

27



Field access: proof rules with permissions

Field read

{acc(x.f) «A[x.f/v] } v:=x.f {acc(x.f)*xA}

Field update

{acc(x.f) } x.f:=E {ace(x.f)xx.f=E} Vyhere E does not contain
field accesses

» Each field access requires (and preserves) the corresponding permission

» Permission to a location implies that the receiver is non-null

28



Framing

Frame rule

{A} s {B} where S does not assign to a
{AxC} s {BxC} local variable that is free in C

* The frame C must be self-framing
- If heap locations constrained by C are disjoint from those modified by S, C is preserved
- Otherwise, the precondition is equivalent to false (the triple holds trivially)

= Example

{acc(x.f) } x.f:=5 {acc(x.f)xx.f=5}
{ acc(x.f) xacc(y.f)*xy.f =7} x.f:=5 {ace(x.f)xx.f=5x*acc(y.f)xy.f="7}

29



Framing for method calls

method set(p: Ref, v: Int) // assume we have acc(x.f) && acc(y.f)
requires acc(p.f) assume y.f ==
ensures acc(p.f) & p.f == v set(x, 5)

{ assert x.f == 5 & y.f ==
p.f := v

}

{ acc(p.f) } method set(p, v) {acc(p.f)*p.f=v}
{ acc(x.f) } set(x, 5) {acc(x.f)*xx.f=5}
{acc(x.f) xacc(y.f)«xy.f =7} set(x, 5) {acc(x.f)*xx.f=5=xacc(y.f)xy.f="7}

* A method may modify only heap locations to which it has permission

30



Permission transfer

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{

// assume we have acc(x.f) && acc(y.f)
assume x.f == 2 && y.f ==

set(x, 5) Framing!

assert x.f == 5 && y.f == 7

31



Permission transfer for method calls

—f{ acc(p.f)|} method set(p, w—f acc(p.f)*p.f =v|}

( {acc(x.f) } set(x, 5)({ acc(x.f)xx.f=5}

Macc(x.f)Hacc(y.f) «y.f =7} set(x, S)W acc(y.f)xy.f=17}
S— /'

» Permissions are held by method executions or loop iterations

» Calling a method transfers permissions from the caller to the callee (according to
the method precondition)

» Returning from a method transfers permissions from the callee to the caller
(according to the method postcondition)

= Residual permissions are framed around the call



Framing for loops

// assume we have acc(x.f) && acc(y.f)
x.f =0
y.f =7
while (x.f < 10)
invariant acc(x.f)

{
x.f :=x.f+1

}
assert y.f == 7

{ace(x.f)*xx.f<10} x.f:=x.f + 1 {acc(x.f) }
{ acc(x.f) } while(x.f < 10){ ... } {acc(x.f)*—-x.f <10}

{acc(x.f) xacc(y.f)xy.f =7} while(x.f < 10) { ... } {acc(x.f)*—x.f <10 *acc(y.f)*xy.f=7}



Permission transfer for loops

—f acc(x. f)|+x.f <10} x.F:=x.F)H—; acc(x.f)|}

( { acc(x.f) } while(x.f < 10){ ... ]({ acc(x.f)x—x.f <10}
Nacc(x. f)Jdacc(y.f) xy.f = 71 while(x.f < 10) { ... }\ﬂ acc(x.f)p —x.f < 10 xfacc(y.f) xy.f =7}

S~——_ [

» Permissions are held by method executions or loop iterations

» Entering a loop transfers permissions from the enclosing context to the loop
(according to the loop invariant)

» |Leaving a loop transfers permissions from the loop to the enclosing context
(according to the loop invariant)

» Residual permissions are framed around the loop

34



Permission transfer: inhale and exhale operations

= inhale A means:
- obtain all permissions required by assertion A
- assume all logical constraints

inhale acc(x.f) && x.f

= exhale A means: exhale acc(x.f) && x.f

- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

2

2
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Encoding of method bodies and calls

method foo() returns (..) x := foo()
requires A
ensures B

{S}
» Encoding without heap * Encoding with heap

assume A inhale A

- Body // encoding of S - Body | // encoding of S
assert B exhale B
assert A[..] exhale A[..]
havoc x havoc x

- Cal assume BJ...] - Cal inhale BJ..]

» inhale and exhale are permission-aware analogues of assume and assert

36



Verifying memory safety

= Memory safety is the absence of errors related to memory accesses, such as,
null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

» Using permissions, Viper verifies memory safety by default

var x: Ref method free(p: Ref) model de-allocation
x.f 1= 5 0 requires acc(p.f) via method call

var x: Ref free(x)

X := null x.f :=5
x.f :=5 ‘;:!'
free(x)

free(x)

37



Heaps

= Encode references and fields

type Ref // type for references

const null: Ref // null references

type Field T // polymorphic type for field names
field f: Int const f: Field int
field g: Ref const g: Field Ref

» Heaps map references and field names to values
type HeapType = <T>[Ref, Field T]T // polymorphic map

= Represent the program heap as global variable
var Heap: HeapType

38



Permissions and field access

= Permissions are tracked in a global permission mask

type MaskType = <T>[Ref, Field T]bool
var Mask: MaskType

» Convention: —Mask[null, ] for all fields f

= Field access

v := x.f x.f := E
assert Mask[x,f] assert Mask|[x,f]
v := Heap[x,f] Heap[x,f] :=E

- Field access requires permission!

39



Inhale

= inhale A means:
- obtain all permissions required by assertion A
- assume all logical constraints

= Encoding is defined recursively over the structure of A

inhale E assume [[E]]

inhale acc(E.f) assume —Mask[[[E]],f] Reaching more than full
Mask[[[E]],f] := true permission goes to magic

inhale E => A if([[E]]) { [[inhale A]] }

inhale A && B [[inhale A]]; [[inhale B]] Separating conjunction:

add sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

40



Exhale (simplified)

= exhale A means:
- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

= Encoding is defined recursively over the structure of A
exhale E assert [[E]]

exhale acc(E.f) assert Mask[[[E]],f]
Mask[[[E]],f] := false
havoc Heap[[[E]],f]

exhale E => A if([[E]]) { [[exhale A]] }

Separating conjunction:
remove sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

exhale A && B [[exhale A]]; [[exhale B]]

41



Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing
- Permissions and separating conjunction

* Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

» Writing specifications that preserve information hiding 0

- Not solved, but see next section

And additional challenges for concurrent programs, e.g., data races
- Permissions are an excellent basis, but see later
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Running example: linked lists

field elem: Int
field next: Ref

method head(this: Ref) returns (res: Int)
requires acc(this.elem)
ensures acc(this.elem)
ensures res == this.elem

{

res := this.elem

}

» Specification reveals implementation
details

method append(this: Ref, e: Int)
requires // permission to all nodes
ensures // list was extended
{
if(this.next == null) {
var n: Ref
n := new(*)
n.next := null
this.elem := e
this.next := n
} else {
append(this.next, e)

}
}

= Permissions and behavior cannot be
expressed so far

44



Predicates

» User-defined predicates consist of a predicate name, a list of parameters, and a
self-framing assertion

Declarations predicate node(this: Ref) {
D — | predicate P(X: T) {A} acc(this.elem) && acc(this.next)
. A : }
= Predicate instances are assertions
Assertions method head(this: Ref) returns (res: Int)
A — .__| p(E) requires node(this)

ensures node(this)

{ .}

45



Recursive predicates

» Predicate definitions may be = Recursive predicates may denote a
recursive statically-unbounded number of
Declarations permissions
Du= ... | predicate P(p: T) {A} predicate list(this: Ref) {

_ acc(this.elem) && acc(this.next) &&
Assertions B (this.next != null ==> list(this.next))
A= ... |P(E) }

= Recursive predicate definitions are » |f1ist(x) holds, we have x!=x.next

interpreted as least fixed points

= All instances of the predicate have » list describes a finite linked list
finite unfoldings
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Static verification with recursive predicates

= A program verifier in general cannot know statically how far to unfold recursive
definitions

predicate list(this: Ref) {
acc(this.next) &&
(this.next != null ==> list(this.next))

}

inhale list(x)
y.next := null // do we have permission?

47



|Iso-recursive predicates

» An iso-recursive semantics distinguishes between a predicate instance and its
body

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) && inhale list(x)
(this.next != null ==> list(this.next)) X.next := null // no permissione

¥

» [ntuition: permissions are held by method executions, loop iterations, or predicate
iInstances

48



Folding and unfolding predicates

= Exchanging a predicate instance for
its body, and vice versa, is done via
extra statements in the program

Statements
S = ...
| fold P(E)
| unfold P(E)

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

¥

= An unfold statement exchanges a
predicate instance for its body

inhale list(x)
unfold list(x)
x.next := null

= Afold statement exchanges a
predicate body for a predicate
instance

inhale list(x)
unfold list(x)
x.next := null
fold list(x)

exhale 1list(x)

49



Encoding of predicates

= Recall that permissions are tracked in a global permission mask

type MaskType = <T>[Ref, Field T]bool
var Mask: MaskType

= \We use the same mask to track predicate instances

» An unfold statement exchanges a » A fold statement exchanges a
predicate instance for its body predicate body for a predicate
Instance
unfold P(E) fold P(E)
exhale P(E) exhale body(P(E))

inhale body(P(E)) inhale P(E)

50



Representation invariants

= Data structures typically maintain = Representation invariants can be
several consistency conditions expressed as part of a predicate

- Value constraints, e.g., references being

. . » redicate list(this: Ref
non-null or integers being positive P ( ) 1

acc(this.elem) && acc(this.next) &&

- Structural constraints, e.g., a tree being (this.next != null ==> list(this.next) &&
balanced @ <= this.elem)
}
= Such representation invariants are method append(this: Ref, e: Int)

requires list(this)

- Established by constructors ensupres list(this)

- Assumed and preserved by all operations {
unfold list(this) // assume 1invariant

fold list(this) // check invariant
}
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Unfolding-expressions

» Unfold and fold are statements because they change the state (heap and mask)

Expressions

» Unfolding-expressions allow one £

to temporarily unfold a predicate . _
during the evaluation of an expression | unfolding P(E) inE

» They enable inspecting fields whose permissions are folded inside a predicate

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) && acc(this.len) &&
(this.next == null ==> this.len == 0) &&
(this.next != null ==> list(this.next) &&
unfolding list(this.next) in this.len == this.next.len + 1)
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Specifying functional behavior

= Using old-expressions and
unfolding-expressions, we can
specify some aspects of
functional behavior

= But: Approach does not work
when behavior depends on an
unbounded number of fields
(e.g., sorting a list)

» And: specifications reveal
implementation details

predicate list(this: Ref) {
acc(this.next) && acc(this.len) &&
(this.next == null ==> this.len == 0) &&
(this.next != null ==> list(this.next) &&
unfolding list(this.next) in
this.len == this.next.len + 1)

method append(this: Ref, e: Int)
requires list(this)
ensures 1list(this)

ensures (unfolding list(this) in this.len) =

old(unfolding list(this) in this.len + 1)
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Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing O

- Permissions and separating conjunction

* Framing, especially for dynamic data structures O

- Sound frame rule, predicates

= Writing specifications that preserve information hiding 0

- Not solved
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Data abstraction

» To write implementation-independent specifications, we map the concrete data
structure to mathematical concepts and specify the behavior in terms of those

mathematical
sequence

1 —{ 14 = 3 — 1 = 12

[1,14, 3,1, 12] (1,3, 12, 14}

I><I

14

mathematical
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Data abstraction via abstraction functions

n I I -
V'Der prowdes heap dependent function content(this: Ref): Seq[Int]

functions {
- side-effect free this.next == null ?
- terminatin seq[Int]() :
9 Seq(this.elem) ++ content(this.next)
- deterministic }

= Function bodies are expressions (incomplete declaration)

| _ Expressions
= Functions may be recursive, but E:x= ... |f(E)

termination is not checked by default =
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Encoding of heap-dependent functions

» Heap-dependent functions are encoded as uninterpreted functions

» Function body is encoded as a definitional axiom

function f(x: T): T’ { function f(x: T, h: HeapType): T’
E
} axiom forall x: T, h: HeapType :: f(x, h) == [[E]]

(will be revised later)

- [[_1] is the encoding function (omitted for types), parametric in the heap
- A proof obligation checks that the function body is well-defined (omitted here)

» Function calls are encoded as applications of these functions

f(E) F([[E]], Heap)
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Another frame problem

function content(this: Ref): Seq[Int]

{ .
this.next == null ? = Each heap update modifies the
Seq[Int]() : (global) heap
Seq(this.elem) ++ content(this.next)
}

* Any information about heap-

e N e ) dependent functions is lost

tmp := content(x)

y.f :=5 = Recovering the information by

assert tmp == content(x) O inspecting the function body would
violate information hiding and would

tmp := content(x, Heap) not work for abstract functions
assert Mask[y,f]

Heap[y,f] := 5
assert tmp == content(x, Heap)
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Read effects

» Heap-dependent functions must have

a precondition that frames the function
body, that is, provides all permissions
to evaluate the body

The precondition over-approximates
the locations the function value
depends on (its read effect)

If permission to a location is not
included in the precondition, modifying
it cannot affect the function value,
which allows framing

function content(this: Ref): Seq[Int]
requires list(this)
{
unfolding list(this) in
(this.next == null ?
Seq[Int]() :
Seq(this.elem) ++ content(this.next)

)
}

// assume we have list(x) && acc(y.f)
tmp := content(x)
y.f :=5

assert tmp == content(x) (:::)
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Framing axioms

* The read effect is used to generate a framing axiom for the function

= [f two heaps agree on a function’s read effect then the function yields the same
result in both heaps

function get(x: Ref): Int function get(x: Ref, h: HeapType): int
requires acc(x.elem)
{ ..} axiom forall x: Ref, hl: HeapType, h2: HeapType ::

hl[x,elem] == h2[x,elem] ==> get(x, hl) == get(x, h2)

Actual axiom is more complex to break symmetry,
which causes unnecessary quantifier instantiations

» The encoding for predicates in function preconditions is analogous, but needs to
consider all heap locations included in a predicate
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Partial functions

= Preconditions of heap-dependent f“::tt‘l’:eiegfzzgmz) RS e
functions specify the read effect (. ?
» Like method preconditions, they may function first(this: Ref): Int
also constrain the function arguments : FEIEES LISH{ERS) 24 B < JengHGEns)
(including the heap) content(this)[0]
}

= Definitional axioms provide a partial definition of the (total) uninterpreted function

function f(x: T): T’ function f(x: T, h: HeapType): T’
requires A
{ E} axiom forall x: T, h: HeapType ::

[[A]] ==> f(x, h) == [[E]]
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Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing O

- Permissions and separating conjunction

* Framing, especially for dynamic data structures O

- Sound frame rule, predicates

= Writing specifications that preserve information hiding O

- Data abstraction, heap-dependent functions
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Reasoning about concurrent programs — challenges

x.f :=x.f+1

acquire x
acquire y

release x
release y

Data races

acquire y
acquire x

release x
release y

Deadlock

x.f :=x.f+1

acquire x

Xx.f =5 acquire x
release x x.f =0
acquire x release x
y := 10 / x.f

release x

Reasoning about thread interference

x.f := 0
acquire x acquire x
x.f 1= x.f+1 Xx.f := x.f+1
release x release x
acquire x
assert x.f == 2

Reasoning about thread cooperation
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Thread-modular verification

= All verification techniques introduced so method create() returns (res: Ref)
far are procedure-modular ensures list(res)
. , ensures content(res) == Seq[Int]()
- Reason about calls in terms of the callee’s {

specification
- Verification of a method does not consider
callers or implementation of callees

= We will now present techniques that are acquire x

x.f :=5

also thread-modular S 5

- Reason about a thread execution without acquire x
knowing which other threads might run y := 10 / x.f

concurrently release x

= Both forms of modularity are crucial for verification to scale



Thread-local state

al := new(bal)
a2 := new(bal)
a3 := new(bal)
deposit(a2, 150)

deposit(al, 590) transfer(a2, a3, 100)

assert al.bal == a2.bal

= The parallel branches operate on disjoint memory; data races are not possible
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Structured parallelism
* Permissions and separating conjunction lead to a simple proof rule

where S, does not assign to
Iy ; slA{ Bls} S{ Azé 528{ B } local variables free in S, A,
{Ar«Ax} S [|S; {B1xBsy} or B, (and analogous for S,)

» Separating conjunction prevents interference between the parallel branches
(since the only potentially-shared memory is the heap)

» Programs with data races have an unsatisfiable precondition

{acc(x.f) } x.f :=7 { ...} {acc(x.f)} y:=x.f{...}
{acc(x.f)*xacc(x.f) } x.f :=7||y :=x.f {...}
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Encoding structured parallelism

* The proof rule employs the familiar permission transfer

AAl s [B)] Al s. (BN

{Al Q{Bl*B
A A ICT s | s>B.liB.}{C

= We can encode this proof rule via exhale and inhale operations

method left(..) returns (res;: T) exhale A [..]
requires A, exhale A,[..]
ensures B, havoc res,, res,
{ // encoding of S, } inhale B,[..]

inhale B,[...]
Encode left and right branch
as methods with specifications Encode parallel composition like
two half method calls
(adjusted to handle old-expressions)
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Example: parallel list search

method busy(courses: Ref, seminars: Ref, exams: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars) && list(exams)
ensures list(courses) && list(seminars) && list(exams)
ensures res == (today in content(courses) ||
today in content(seminars) ||
today in content(exams))

{
var rightRes: Bool
rightRes := contains(seminars, today)
var leftRes: Bool var res?: Bool
leftRes := contains(courses, today) res2 := contains(exams, today)

rightRes := rightRes || res2

res := leftRes || rightRes
}
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Shared state

» The solution presented so far supports
concurrency with thread-local state

» Threads exchange information upon
fork and join, but cannot communicate
or collaborate while they are running

= Communication between threads is
typically supported by shared state or
message passing

= We will focus on shared state, but
message passing can also be
supported using permissions

= Example: Producer-Consumer

|_producer shared consumer |

producer buffer consumer

= Concurrent accesses to mutable
shared state require synchronization
to prevent data races and ensure
correctness

= We will focus on locks as a
synchronization primitive
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Synchronization via locks

producer

producer

method produce(buf: Ref)

{

}

while(true) {

}

acquire buf
if(buf.val == null) {
buf.val := new()

}

release buf

shared
buffer

consumer

consumer

method consume(buf: Ref)

{

while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null
}

release buf

Permission to access
buf.val cannot be
obtained via the
preconditions (that would
prevent concurrent
executions)

Intuitively, permissions
are obtained by acquiring
a lock
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L ock invariants

= A lock guards accesses to certain memory locations

class Buffer { _ _
@GuardedBy ("this") Java provides annotations to

Product val; document which locations are
} guarded by a lock

= \We associate each lock with a lock invariant

class Buffer { Permissions in the lock invariant
lock invariant acc(this.val) 1a

Product val; express which locations are
} guarded by the lock

» [ntuition: permissions are held by method executions, loop iterations, predicate
Instances, or locks
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Locks and permission transfer

class Buffer {
lock invariant acc(this.val)
Product val;

}

method produce(buf: Ref)
{
while(true) {
acquire buf
if(buf.val == null) {
buf.val := new()
}
release buf
}
}

method consume(buf: Ref)

{

while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null
}
release buf
}
}
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More on lock invariants

= A lock invariant holds whenever the lock is not currently being held by a thread

» Lock invariants contain arbitrary self-framing assertions

acc(this.val) & 0 < this.val list(this) && © < length(this)

» Self-framingness is crucial for soundness

Methods could violate the invariant

@ < this.val without acquiring the lock
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Simplified encoding of locks

» Locks are encoded as references
= We model non-reentrant locks (repeated acquire leads to deadlock)

» Therefore, each acquire obtains permissions from the lock

acquire x inhale Inv(x)

release x exhale Inv(x)

= The rule for acquire does not prevent deadlock; extra proof obligations can be
imposed to ensure that locks are acquired in an order
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Java OpenCL Vyper

Rust Python Go Prototypes

Viper intermediate
language

Symbolic Verification condition
execution generation

SMT solver
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Example: Go verification in Gobra

requires acc(x) && acc(y)
ensures acc(x) &% acc(y)

ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {
tmp := *x
*x = *y
Yy = tmp
t

» (o supports pointers to integers
= Parameters can be assigned to
» Locals get initialized by default

field val: Int
method swap(x: Ref, y: Ref)

requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)
ensures x.val == old(y.val)
ensures y.val == old(x.val)

var ylLocal: Ref // declare Llocals
var xLocal: Ref

xLocal := X // copy parameters
yLocal :=y

var tmp: Int // declare tmp
inhale tmp == 0

tmp := xLocal.val // tmp = *Xx
xLocal.val := ylLocal.val // *x = *y
yLocal.val := tmp // *y = tmp
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Exposing the verification logic

requires acc(x) && acc(y)
» Gobra’s specification and verification Z::z:zz 2;c(x)oi‘§(:c§(y)
technique is very similar to Viper's ensures *y —— old(*i)
func swap(x *int, y *int) {
= Developers need to use permissions, tmp = *x
declare predicates, use unfold and fold X = zy
statements, etc. } >

= The overhead for programmers is substantial (both amount and complexity of
annotations)

» Many existing verifiers take this approach because it enables modular verification
of programs in mainstream languages, including concurrent and heap-

manipulating programs
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Ownership types in Rust

fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;

*x = *y;
*y = tmp;
}
fn client()
{

let mut a = 17,
swap(&mut a, &mut a);

}

®

error[EQ499]: cannot borrow "a  as
mutable more than once at a time
--> .\swap.rs:11:26

11 | swap(&mut a, &mut a);

| AAAAANA

second mutable borrow occurs here

error: aborting due to previous error

» Rust’s type system tracks ownership of memory locations

= |t guarantees memory safety

= Can we leverage this guarantee to simplify verification?
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Example: Rust verification in Prusti

» Prusti extracts permissions (and
predicates) automatically from type

#[ensures(*x == old(*y) )] information

#[ensures(*y == old(*x) )]
fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;

}

*x
X
y

= A Viper “core proof” of memory safety

*y; IS generated completely automatically
tmp;

Pxrust—x1| Users can add functional correctness

specifications, by using a slight
extension of Rust expressions

The overhead for programmers is substantially reduced
(both amount and complexity of annotations)
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Comparison of annotation over

#![feature(box_patterns)]
use prusti_contracts::*;

struct Node {
elem: i32,
next: List,

}

enum List {
Empty,
More (Box<Node>),

}

impl List {
#[pure]
#[ensures(result >= 0)]
fn len(&self) -> usize {
match self {
List::Empty => O,
List::More(box node) =>
1 + node.next.len(),
¥
}

#[ensures(result.len() ==
self.len() + that.len())]
pub fn zip(&self, that: &List) -> List {
match self {
List::Empty => that.clonelList(),
List::More(box node) => {
Let new_node = Box::new(Node {
elem: node.elem,
next: that.zip(&node.next),
s
List: :More(new_node)
}
¥
¥

}

#[ensures(result.len() == self.len())]

pub fn clonelList(&
match self {

List::Empty =>

List: :More(box

Let new_node

elem: node

Hs

self) -> List {

List::Empty,
node) => {
= Box::new(Node {

.elem,
next: node.

next.cloneList(),

List: :More(new_node)

}
}
}

Pxrust—xi

field next: Ref
field elem: Int

predicate list(this: Ref) {
acc(this.elem) &% acc(this.next) &&
(this.next != null ==> list(this.next))

¥

function len(this: Ref): Int
requires acc(list(this), wildcard)

unfolding acc(list(this), wildcard) in
(this.next == null ? @ : len(this.next) + 1)
}

method zip(this: Ref, that: Ref)
returns (res: Ref)

requires acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures list(res)

ensures res != null

ensures len(res) == len(this) + len(that)

unfold acc(list(this), 1/2)
if(this.next == null) {
res := clonelList(that)
} else {
res := new(*)
res.elem := this.elem
var rest: Ref
rest := zip(that, this.next)
res.next := rest
fold list(res)

}
fold acc(list(this), 1/2)

nead: List zip example

method cloneList(this: Ref) returns (res: Ref)

}

requires acc(list(this), 1/2)

ensures acc(list(this), 1/2) && list(res)
ensures res != null

ensures len(res) == len(this)

res := new(*)

unfold acc(list(this), 1/2)

if(this.next == null) {
res.next := null

} else {
var tmp: Ref
tmp := cloneList(this.next)
res.elem := this.elem
res.next := tmp

}
fold acc(list(this), 1/2)
fold list(res)

ViPER
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Expressiveness

Language features

Imperative code
Obiject-oriented code
Nominal, structural, and
dynamic typing
Closures

Multithreading with shared state
and message passing

Weak-memory concurrency

Properties

Memory safety

Absence of overflows
Termination

Functional correctness
Race freedom

Deadlock freedom

Secure information flow
Resource manipulation
Worst-case execution time
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Limitations

» Limitations inherited from the SMT solver
- Undecidable theories may lead to spurious errors
- Verification time for large methods

= Annotation overhead
- Typically 2-5 lines of annotations per line of code

= Trust assumptions
- Correctness of SMT solver
- Correctness of Viper
- Correctness of front-end encoding
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Verifiers developed at ETH

VIPER

Pxrust—«1

Verification infrastructure for
permission-based reasoning

Basis for our other verifiers
viper.ethz.ch

Modular verification of Rust
programs

Leverages Rust type system
to simplify verification
prusti.ethz.ch

Modular verification of Go
programs

Used for large-scale
verification projects, e.g.,
verifiedSCION

gobra.ethz.ch

Modular verification of Python
programs

Correctness and security
properties

Variant for Ethereum smart
contracts in Vyper

www.pm.inf.ethz.ch/research/
nagini.htmi
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Modularity is important for scalability,
components, and evolution

Java OpenCL Viyper
Rust Python Go Prototypes

Viper intermediate
language

Symbalic Verification condition
execution generation

| SMT solver ‘

Intermediate languages enable reuse
of infrastructure

Permissions enable modular
reasoning about resources

VIPER

Viper lets you encode a wide
variety of reasoning techniques
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