Peter Muller

BUILDING DEDUCTIVE PROGRAM VERIFIERS

ETHzurich VTSA 2023

GHOST-ALLOC

V(a bt
() T ¢ :_a'b:y
True =¢ Jy.1a T
HOARE-VS
PP {Ple{v.0}e Wu
{Pre{v. Q¢
INV-ALLS)\(; ?S;
P=¢
HOARE-CTX
{PxQ}e{v.R}¢e persistent((]

Q —«{P}te{v.R}e

PERSISTENT-SEP

persistent(P) pe

Q: Values — Asserlions

{emp} alloc() {£. Rel(

ncrmallzable{O{l}}
,Q) = Qv } [flrel := v {Inlt }

{Rel(£

£,9) *Acq(t, Q)}
Wu. precise(Q(v)) A normalizable(Q(v))
{Acq(, Q) + Init(£]}

acq

{v-Acq(£, Qv = emp]) = Q(v)}

Wu. precise(Q(v)) A normalizable(Q(v))
{Aca(¢, Q) = Init(£) }
{Rel(¢, Q) » AQ(V) } [flrixe := v {Init(£) } il
{'v. Acq(f, Qv := emp]) * VQ(L]}
Q: Values — Asserlions
{emp} alloc() {£.Rel(¢, Q) x RMWAcq(¢, Q) }
Let UPD(?, Q:o1, Qacq) = Rel(£, Q:a1) * RMWACq(?, Qucq) * Init(£) in
Qacq(v) = J2. A(z) * (:z) Qacq(v) = J2. A(2) * T (2)
Yz (PxT(2) = Qua(v) A (2 V. (P2 T(2) = Qea(t)) A ¢(2)
V. pure(i(2)) Vz. pure((2))
normalizable(P) normalizable(P)
{UPD(E‘, Orery Qacq) * P} [fle {a. a#v—+ R} {UPD{E. Ore1, Qacq) * P} 6 {a.a #v— R}
o € {acq,rlx} o € {acq,rix}
{UPD(E’, Qre1, Qacq) * P} {U PD(Z, Qre1, Qacq) * P}
CASMQ_,.E]‘(,(E', v,v") CAS a1, (£, v,0")
{a. (@ =vA3z. Az) A p(z)) } {a.. (a=vA32. VA() Ap(2)) }
VieZvAR) Via#vAR)

Qacq(v) = Fz. Az) * T (2)
V2. (P T(2) = Qua(v') Ap(z))
V. pure(p(z))
acq) ¥ AP} [, {a.a #v— R}
o € {acq,rkx}

{UPD(£, Q.e2. @

Qucq(v) = Jz. A(2) x T(2)
Vz. (P T(z) = Qm(z) Ap(z))
Vz. pure(p(z
{UPD(£, Qra1., Queq) ¥ AP} [E]a {a.a#v— R}

persistent(P 4

{UPD(Z, Qza1. Qucq) * AP
CAS.cq.o(lv,v")

{a. (a=vA3z. A(z) A p(z)) }

V{e#vAR)

{UPD(Z, Qrar, Qucq) * AP
CASJ‘l:\(rT(E v, U’}
(a = v A Je. VA(2) Ap(z)) }

o € {acq, rlx}
a.
{ V(a#vAR)

Q(v) * P = false

{UPD(£, Oz, Quca)

* P}y {a.a#v— R}
T € {rlx, rel,acq,acq_rel}

o € {acq,rix}

{UPD(

0, Qra1, Qucq) * P} CAS, (£, v,0") {a.a Zv AR}

Frame rule
X.(pp|p(x)) C Ny €Y. (gp(z,v) |a(z,v))

b | r(z) +p(x)) C Ay e Y. (r" % gp(z,y) | r(2) * a(=,y))

Substitution rule
|p(z)) C Wy €Y. (g(z,y)|a(z.y)) F:X =X

Py | p(f(z')) C Wy e Y. (q(f(z),v) |a(F(z).v))
Atomicity weakening rule

L [P *p(z)) C Ny €Y. (g(z,v) | ¢ (z,y) * q(z.v))

L x| p(z)) C Ay €Y. (gp(z,v) *¢'(z,v) | a(z. v))

Open region rule
ta(z)) xp(z)) C Iy €Y. (gp(z,v) | I(t2(z)) *q(z. 1))

o [t2(z) * p(:r)) C AyeY. (qp(:t:._ y) }tﬁ{:c) * gz, y}}

Use atomic rule
g¢A VreX (z f(z)) € T(G)
) *p(z) * [Gla) C AyeY. (go(z,y) | I(t2(f(z))) * q(z.v))

A (z) % p(x) * [Cla) C Ny €Y. (gp(z,y) | t2(F(2)) * a(z,y))

Update region rule

A *
:r}}*-p(fr}> C WweyY <QP . y}!m EQ{(?}}))*EJ((;: 5}}>

Wr € X. (p, |t2(z) + p(z) % a = #)

C
3z € Q(z).t2(2) * qi(z,y) xa = (z,

EIIyEY <Qp{:rs y) v té(-’f) ¥ 2 (I._ y) L — ‘

Make atomic rule
{(z,y) |z € X,y Q(z)} C R(G)*
{pp*Iz € X .t)(z)xar> ¢}
(x), A+ C
{3z € X,y € Q(z). gp(,y) *a = (z,y)}

|t2(z) * [Gla) C 3y € Q). {gp(z.y) | t2(¥) * [Cla)

Outline

= Automated program verification

= Reasoning about the heap

Abstraction

Concurrency

Conclusion

Guarded Commands

Types
T ::= Bool | Int | Rational | Real

Expressions
E ::= c(onstant) | v (ariable) |[E+E|E*E|E—E

|E<E|EAE|EVE|—-E]| ... (+ syntactic sugar)

Assertions
A =E|Vx:T = A[dx:T: A|A=A]| ...

Program statements

S u= v:=E assignment
S; S sequential composition
if (x){S}else{S} nondeterministic choice
assert A assertion
assume A assumption

| havoc v nondeterministic assignment

All types are mathematical
(unbounded)

We assume that expressions
and programs are well-typed

Hoare logic

{AE/x]} x:=E{A} {AANB} assert A{B}

{A}SiC}; 1C;s’{B}

{A}S;s {B} {A =B} assume A {B}
{A}s{C} ({B}s {C}
{AANB}if (x){S}else{S’} {C} {Vx: A} havoc x { A}

A=A {A}s{B) B =B
{A}s{B}

Our Hoare triples have a partial correctness meaning

Challenges for automating proof search

» Writing Hoare-style proofs requires creativity

{A}s{C} {C}s’ {B}
{A}s;s’ {B}

How do we find intermediate assertions?

A— A {A'}s{B'} B =B Where and how do we
{AYs{B} weaken and strengthen assertions?

» How do we decide whether an implication holds?
- We delegate the task to an SMT solver

Weakest preconditions

Statement S wp[s] (B)
<= BE /x| To automate the proof of a triple
S 5 wp[S](wp[S'] (B)) 1A}S1B}

if («){S}else{s } | wp[S](B)Awp[s’](B) we decide

assert A ANB A= wp[s](B)
assume A A=B

havoc x Vx : B

Encoding into guarded commands: conditionals

» Other statements can be encoded into guarded commands

= Conditional statements

if (E){S}else{S’} {ANE}S{B} {AAn-E}S {B}
{A}if (E){S}else{S’ } {B}

can be encoded using nondeterministic choice and assume

[if (E){S} else{S’}] = if (x) {assumeE; S} else { assume —E; S’ }

Encoding into guarded commands: loops

= While statements are verified using loop invariants

= Encoding

Hoare logic
while (E) {S} {InNE}S{l}

(1T while (E)S {IA—E)}

N assert I
havoc Loop targets I

|

assume I assume I
assume E assume —E

// encoding of S l

assert I
assume false

10

Encoding into guarded commands: loop termination

= Termination can be proved with termination measures while (E)

= Encoding

assert I
havoc Loop targets

assume I

assume E

assert 0 < R
oldR := R

// encoding of S

assert I
assert R < oldR
assume false

invariant I
decreases R

S}

|

assume I
assume —E

|

11

Encoding of calls

method indexOf(s: Seq[Int], e: Int) returns (res: Int)
{ ..}

method client() {
var i: Int
i := indexOf(Seq(1, 3, 2), 3)
assert i == 1

¥

12

Modular Verification

= Verify each procedure separately
- Scalability

= Do not use the implementation of callees
- Software evolution
- Dynamic method binding, foreign functions

= Do not use the implementation of callers and
other procedures
- Correctness guarantees for libraries
- Software evolution

13

Contracts

» Contracts specify the intended behavior of parts
of the program

» For the verification of a procedure, use the
contracts of the rest of the program, not the
Implementation

= Verify calls in terms of procedure pre- and
postconditions

14

Encoding into guarded commands: procedures

= Procedure declarations

method P(X: T)
returns (y:
requires A
ensures B

1S}

T)

= Procedure calls

Z:=P(E)

where x is not free in E

assume A
// encoding of S

assert B

assert A[E /X]
havoc z
assume B[E /X]|[Z/V]

To handle recursion, proof may
assume that all procedures satisfy
their specifications

For terminating programs, the
correctness argument is not cyclic

15

Summary

Prog. language,
spec. language and
methodology

\ 4

Front-end

\ 4

Guarded commands
language

A

y

Verification condition
generator

\ 4

SMT solver

Loops, procedures
Safety, functional correctness, termination

Translates programs and
specifications to IL

Can express
programs and specifications

Extracts proof obligations
automatically using wp

Resolves proof obligations

16

VIPER

= viper.ethz.ch

= Try online: http://viper.ethz.ch/tutorial

= |nstall as VS Code extension

17

Outline

Automated program verification

Reasoning about the heap

Abstraction

Concurrency

Conclusion

18

Heap model: an object-based language

= A heap is a set of objects

field val: Int = No classes: each object has all fields
declared in the entire program

?ethOd foo() returns (res: Int) - Type rules of a source language can be encoded
var cell: Ref - Memory consumption is not a concern since
cell := new(val) programs are not executed
cell.val := 5

1= 11.val : .
y rES 1T EERLTE = Obijects are accessed via references

- Field read and update operations
- No information hiding

= No explicit de-allocation (garbage collector)
- Conceptually, objects could remain allocated

19

Extended programming language

Declarations

D= ... |fieldf: T
Types
T:= ... |Ref

Expressions

E:= ... |null|E.f

Statements

S i:=
| v:=new(f) | v :=new(x)
| x.f:=E

as before

allocation
field update

Fields are declared globally

Only one type of references

Pre-defined null-reference

Allocation with given list of
fields or all fields

20

Field access: naive proof rules

» Naive approach: treat field accesses like variable assignment

Field read

{E#null AA[E.f/v]} v:=E.f {A}

Field update

{x#null NA[E/x.f] } x.f:=E {A}

= Additional precondition prevents null-dereferencing

The naive proof rule for field update is unsound.

21

Naive rule for field update ignores aliasing

Field read field val: Int
{E#null NA[E.f/Vv] } v:=E.f {A} method foo(p: Ref)
{
Field update var q: Ref
assume p != null & p.val == 5
{x#null AA[E/x.f]} x.f:=E {A} {p#null Ap#null Ap.val =5 }
q :=p
{p#null Aq#null Aqval=>5}
p.val := 7

{ q# null Aqval =5}
assert g.val == 5

22

The frame problem

field f: Int
field g: Int

method set(p: Ref, v: Int)
requires p != null
ensures p.f == v

{
p.f := v

}

x.f :=0
X.g := 0
set(x, 5)
assert x.g == 0

» Bad idea: inspect body of callee to determine
which field locations are modified
- Not modular
- Does not work for abstract methods

» Bad idea: assume conservatively that all field
locations may be modified

- Callee needs a specification for all field locations,
even those it does not change

- Not modular: procedure specifications need to
change when a new field is declared

Summary of challenges

Heap data structures pose three major challenges for sequential verification
= Reasoning about aliasing
= Framing, especially for dynamic data structures

» Writing specifications that preserve information hiding

And additional challenges for concurrent programs, e.g., data races

24

Access permissions

Associate each heap location with a
permission

Permissions are held by method
executions or loop iterations

Read or write access to a memory
location requires permission

Permissions are created when the
heap location is allocated

Permissions can be transferred, but
not duplicated or forged

Permission assertions

= Permissions are denoted in assertions by
access predicates Assertions

- Access predicates are not permitted under negations,
disjunctions, and on the left of implications

Assertions may contain both permissions and
value constraints

Many assertions that occur in a program must
be self-framing, that is, include all permissions
to evaluate the heap accesses in the assertion

An assertion that does not contain access
predicates is called pure

A ::

= ... | acc(E.f)

acc(p.f) & p.f > ©

requires p.f > © o

26

Separating conjunction

To handle aliasing, we introduce a new connective: separating conjunction

A * B holds in a state if:
- both A and B hold, and
- the sum of the permissions in A and B are held in that state
- A* B and A A B are equivalent if A and B are pure

Holding permission to locations p.f and q.f

implies that p and q do not alias ace(p.f) * ace(q.f) = p#q

Viper's && is separating conjunction

For the call swap(x, x), the precondition method swap(a: Ref, b: Ref)
IS equivalent to false requires acc(a.f) && acc(b.f)

27

Field access: proof rules with permissions

Field read

{acc(x.f) «A[x.f/v] } v:=x.f {acc(x.f)*xA}

Field update

{acc(x.f) } x.f:=E {ace(x.f)xx.f=E} Vyhere E does not contain
field accesses

» Each field access requires (and preserves) the corresponding permission

» Permission to a location implies that the receiver is non-null

28

Framing

Frame rule

{A} s {B} where S does not assign to a
{AxC} s {BxC} local variable that is free in C

* The frame C must be self-framing
- If heap locations constrained by C are disjoint from those modified by S, C is preserved
- Otherwise, the precondition is equivalent to false (the triple holds trivially)

= Example

{acc(x.f) } x.f:=5 {acc(x.f)xx.f=5}
{ acc(x.f) xacc(y.f)*xy.f =7} x.f:=5 {ace(x.f)xx.f=5x*acc(y.f)xy.f="7}

29

Framing for method calls

method set(p: Ref, v: Int) // assume we have acc(x.f) && acc(y.f)
requires acc(p.f) assume y.f ==
ensures acc(p.f) & p.f == v set(x, 5)

{ assert x.f == 5 & y.f ==
p.f := v

}

{ acc(p.f) } method set(p, v) {acc(p.f)*p.f=v}
{ acc(x.f) } set(x, 5) {acc(x.f)*xx.f=5}
{acc(x.f) xacc(y.f)«xy.f =7} set(x, 5) {acc(x.f)*xx.f=5=xacc(y.f)xy.f="7}

* A method may modify only heap locations to which it has permission

30

Permission transfer

method set(p: Ref, v: Int)
requires acc(p.f)
ensures acc(p.f) && p.f == v

{

// assume we have acc(x.f) && acc(y.f)
assume x.f == 2 && y.f ==

set(x, 5) Framing!

assert x.f == 5 && y.f == 7

31

Permission transfer for method calls

—f{ acc(p.f)|} method set(p, w—f acc(p.f)*p.f =v|}

({acc(x.f) } set(x, 5)({ acc(x.f)xx.f=5}

Macc(x.f)Hacc(y.f) «y.f =7} set(x, S)W acc(y.f)xy.f=17}
S— /'

» Permissions are held by method executions or loop iterations

» Calling a method transfers permissions from the caller to the callee (according to
the method precondition)

» Returning from a method transfers permissions from the callee to the caller
(according to the method postcondition)

= Residual permissions are framed around the call

Framing for loops

// assume we have acc(x.f) && acc(y.f)
x.f =0
y.f =7
while (x.f < 10)
invariant acc(x.f)

{
x.f :=x.f+1

}
assert y.f == 7

{ace(x.f)*xx.f<10} x.f:=x.f + 1 {acc(x.f) }
{ acc(x.f) } while(x.f < 10){ ... } {acc(x.f)*—-x.f <10}

{acc(x.f) xacc(y.f)xy.f =7} while(x.f < 10) { ... } {acc(x.f)*—x.f <10 *acc(y.f)*xy.f=7}

Permission transfer for loops

—f acc(x. f)|+x.f <10} x.F:=x.F)H—; acc(x.f)|}

({ acc(x.f) } while(x.f < 10){ ...]({ acc(x.f)x—x.f <10}
Nacc(x. f)Jdacc(y.f) xy.f = 71 while(x.f < 10) { ... }\ﬂ acc(x.f)p —x.f < 10 xfacc(y.f) xy.f =7}

S~——_ [

» Permissions are held by method executions or loop iterations

» Entering a loop transfers permissions from the enclosing context to the loop
(according to the loop invariant)

» |Leaving a loop transfers permissions from the loop to the enclosing context
(according to the loop invariant)

» Residual permissions are framed around the loop

34

Permission transfer: inhale and exhale operations

= inhale A means:
- obtain all permissions required by assertion A
- assume all logical constraints

inhale acc(x.f) && x.f

= exhale A means: exhale acc(x.f) && x.f

- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

2

2

35

Encoding of method bodies and calls

method foo() returns (..) x := foo()
requires A
ensures B

{S}
» Encoding without heap * Encoding with heap

assume A inhale A

- Body // encoding of S - Body | // encoding of S
assert B exhale B
assert A[..] exhale A[..]
havoc x havoc x

- Cal assume BJ...] - Cal inhale BJ..]

» inhale and exhale are permission-aware analogues of assume and assert

36

Verifying memory safety

= Memory safety is the absence of errors related to memory accesses, such as,
null-pointer dereferencing, access to un-allocated memory, dangling pointers, out-
of-bounds accesses, double free, etc.

» Using permissions, Viper verifies memory safety by default

var x: Ref method free(p: Ref) model de-allocation
x.f 1= 5 0 requires acc(p.f) via method call

var x: Ref free(x)

X := null x.f :=5
x.f :=5 ‘;:!'
free(x)

free(x)

37

Heaps

= Encode references and fields

type Ref // type for references

const null: Ref // null references

type Field T // polymorphic type for field names
field f: Int const f: Field int
field g: Ref const g: Field Ref

» Heaps map references and field names to values
type HeapType = <T>[Ref, Field T]T // polymorphic map

= Represent the program heap as global variable
var Heap: HeapType

38

Permissions and field access

= Permissions are tracked in a global permission mask

type MaskType = <T>[Ref, Field T]bool
var Mask: MaskType

» Convention: —Mask[null,] for all fields f

= Field access

v := x.f x.f := E
assert Mask[x,f] assert Mask|[x,f]
v := Heap[x,f] Heap[x,f] :=E

- Field access requires permission!

39

Inhale

= inhale A means:
- obtain all permissions required by assertion A
- assume all logical constraints

= Encoding is defined recursively over the structure of A

inhale E assume [[E]]

inhale acc(E.f) assume —Mask[[[E]],f] Reaching more than full
Mask[[[E]],f] := true permission goes to magic

inhale E => A if([[E]]) { [[inhale A]] }

inhale A && B [[inhale A]]; [[inhale B]] Separating conjunction:

add sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

40

Exhale (simplified)

= exhale A means:
- assert all logical constraints
- check and remove all permissions required by assertion A
- havoc any locations to which all permission is lost

= Encoding is defined recursively over the structure of A
exhale E assert [[E]]

exhale acc(E.f) assert Mask[[[E]],f]
Mask[[[E]],f] := false
havoc Heap[[[E]],f]

exhale E => A if([[E]]) { [[exhale A]] }

Separating conjunction:
remove sum of permissions

* The encoding also asserts that E is well-defined (omitted here)

exhale A && B [[exhale A]]; [[exhale B]]

41

Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing
- Permissions and separating conjunction

* Framing, especially for dynamic data structures
- Sound frame rule, but no support yet for unbounded data structures

» Writing specifications that preserve information hiding 0

- Not solved, but see next section

And additional challenges for concurrent programs, e.g., data races
- Permissions are an excellent basis, but see later

42

Outline

Automated program verification

Reasoning about the heap

Abstraction

Concurrency

Conclusion

43

Running example: linked lists

field elem: Int
field next: Ref

method head(this: Ref) returns (res: Int)
requires acc(this.elem)
ensures acc(this.elem)
ensures res == this.elem

{

res := this.elem

}

» Specification reveals implementation
details

method append(this: Ref, e: Int)
requires // permission to all nodes
ensures // list was extended
{
if(this.next == null) {
var n: Ref
n := new(*)
n.next := null
this.elem := e
this.next := n
} else {
append(this.next, e)

}
}

= Permissions and behavior cannot be
expressed so far

44

Predicates

» User-defined predicates consist of a predicate name, a list of parameters, and a
self-framing assertion

Declarations predicate node(this: Ref) {
D — | predicate P(X: T) {A} acc(this.elem) && acc(this.next)
. A : }
= Predicate instances are assertions
Assertions method head(this: Ref) returns (res: Int)
A — .__| p(E) requires node(this)

ensures node(this)

{ .}

45

Recursive predicates

» Predicate definitions may be = Recursive predicates may denote a
recursive statically-unbounded number of
Declarations permissions
Du= ... | predicate P(p: T) {A} predicate list(this: Ref) {

_ acc(this.elem) && acc(this.next) &&
Assertions B (this.next != null ==> list(this.next))
A= ... |P(E) }

= Recursive predicate definitions are » |f1ist(x) holds, we have x!=x.next

interpreted as least fixed points

= All instances of the predicate have » list describes a finite linked list
finite unfoldings

46

Static verification with recursive predicates

= A program verifier in general cannot know statically how far to unfold recursive
definitions

predicate list(this: Ref) {
acc(this.next) &&
(this.next != null ==> list(this.next))

}

inhale list(x)
y.next := null // do we have permission?

47

|Iso-recursive predicates

» An iso-recursive semantics distinguishes between a predicate instance and its
body

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) && inhale list(x)
(this.next != null ==> list(this.next)) X.next := null // no permissione

¥

» [ntuition: permissions are held by method executions, loop iterations, or predicate
iInstances

48

Folding and unfolding predicates

= Exchanging a predicate instance for
its body, and vice versa, is done via
extra statements in the program

Statements
S = ...
| fold P(E)
| unfold P(E)

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) &&
(this.next != null ==> list(this.next))

¥

= An unfold statement exchanges a
predicate instance for its body

inhale list(x)
unfold list(x)
x.next := null

= Afold statement exchanges a
predicate body for a predicate
instance

inhale list(x)
unfold list(x)
x.next := null
fold list(x)

exhale 1list(x)

49

Encoding of predicates

= Recall that permissions are tracked in a global permission mask

type MaskType = <T>[Ref, Field T]bool
var Mask: MaskType

= \We use the same mask to track predicate instances

» An unfold statement exchanges a » A fold statement exchanges a
predicate instance for its body predicate body for a predicate
Instance
unfold P(E) fold P(E)
exhale P(E) exhale body(P(E))

inhale body(P(E)) inhale P(E)

50

Representation invariants

= Data structures typically maintain = Representation invariants can be
several consistency conditions expressed as part of a predicate

- Value constraints, e.g., references being

. . » redicate list(this: Ref
non-null or integers being positive P () 1

acc(this.elem) && acc(this.next) &&

- Structural constraints, e.g., a tree being (this.next != null ==> list(this.next) &&
balanced @ <= this.elem)
}
= Such representation invariants are method append(this: Ref, e: Int)

requires list(this)

- Established by constructors ensupres list(this)

- Assumed and preserved by all operations {
unfold list(this) // assume 1invariant

fold list(this) // check invariant
}

51

Unfolding-expressions

» Unfold and fold are statements because they change the state (heap and mask)

Expressions

» Unfolding-expressions allow one £

to temporarily unfold a predicate . _
during the evaluation of an expression | unfolding P(E) inE

» They enable inspecting fields whose permissions are folded inside a predicate

predicate list(this: Ref) {
acc(this.elem) && acc(this.next) && acc(this.len) &&
(this.next == null ==> this.len == 0) &&
(this.next != null ==> list(this.next) &&
unfolding list(this.next) in this.len == this.next.len + 1)

52

Specifying functional behavior

= Using old-expressions and
unfolding-expressions, we can
specify some aspects of
functional behavior

= But: Approach does not work
when behavior depends on an
unbounded number of fields
(e.g., sorting a list)

» And: specifications reveal
implementation details

predicate list(this: Ref) {
acc(this.next) && acc(this.len) &&
(this.next == null ==> this.len == 0) &&
(this.next != null ==> list(this.next) &&
unfolding list(this.next) in
this.len == this.next.len + 1)

method append(this: Ref, e: Int)
requires list(this)
ensures 1list(this)

ensures (unfolding list(this) in this.len) =

old(unfolding list(this) in this.len + 1)

53

Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing O

- Permissions and separating conjunction

* Framing, especially for dynamic data structures O

- Sound frame rule, predicates

= Writing specifications that preserve information hiding 0

- Not solved

54

Data abstraction

» To write implementation-independent specifications, we map the concrete data
structure to mathematical concepts and specify the behavior in terms of those

mathematical
sequence

1 —{ 14 = 3 — 1 = 12

[1,14, 3,1, 12] (1,3, 12, 14}

I><I

14

mathematical

95

Data abstraction via abstraction functions

n I I -
V'Der prowdes heap dependent function content(this: Ref): Seq[Int]

functions {
- side-effect free this.next == null ?
- terminatin seq[Int]() :
9 Seq(this.elem) ++ content(this.next)
- deterministic }

= Function bodies are expressions (incomplete declaration)

| _ Expressions
= Functions may be recursive, but E:x= ... |f(E)

termination is not checked by default =

56

Encoding of heap-dependent functions

» Heap-dependent functions are encoded as uninterpreted functions

» Function body is encoded as a definitional axiom

function f(x: T): T’ { function f(x: T, h: HeapType): T’
E
} axiom forall x: T, h: HeapType :: f(x, h) == [[E]]

(will be revised later)

- [[_1] is the encoding function (omitted for types), parametric in the heap
- A proof obligation checks that the function body is well-defined (omitted here)

» Function calls are encoded as applications of these functions

f(E) F([[E]], Heap)

o7

Another frame problem

function content(this: Ref): Seq[Int]

{ .
this.next == null ? = Each heap update modifies the
Seq[Int]() : (global) heap
Seq(this.elem) ++ content(this.next)
}

* Any information about heap-

e N e) dependent functions is lost

tmp := content(x)

y.f :=5 = Recovering the information by

assert tmp == content(x) O inspecting the function body would
violate information hiding and would

tmp := content(x, Heap) not work for abstract functions
assert Mask[y,f]

Heap[y,f] := 5
assert tmp == content(x, Heap)

58

Read effects

» Heap-dependent functions must have

a precondition that frames the function
body, that is, provides all permissions
to evaluate the body

The precondition over-approximates
the locations the function value
depends on (its read effect)

If permission to a location is not
included in the precondition, modifying
it cannot affect the function value,
which allows framing

function content(this: Ref): Seq[Int]
requires list(this)
{
unfolding list(this) in
(this.next == null ?
Seq[Int]() :
Seq(this.elem) ++ content(this.next)

)
}

// assume we have list(x) && acc(y.f)
tmp := content(x)
y.f :=5

assert tmp == content(x) (:::)

59

Framing axioms

* The read effect is used to generate a framing axiom for the function

= [f two heaps agree on a function’s read effect then the function yields the same
result in both heaps

function get(x: Ref): Int function get(x: Ref, h: HeapType): int
requires acc(x.elem)
{ ..} axiom forall x: Ref, hl: HeapType, h2: HeapType ::

hl[x,elem] == h2[x,elem] ==> get(x, hl) == get(x, h2)

Actual axiom is more complex to break symmetry,
which causes unnecessary quantifier instantiations

» The encoding for predicates in function preconditions is analogous, but needs to
consider all heap locations included in a predicate

60

Partial functions

= Preconditions of heap-dependent f“::tt‘l’:eiegfzzgmz) RS e
functions specify the read effect (. ?
» Like method preconditions, they may function first(this: Ref): Int
also constrain the function arguments : FEIEES LISH{ERS) 24 B < JengHGEns)
(including the heap) content(this)[0]
}

= Definitional axioms provide a partial definition of the (total) uninterpreted function

function f(x: T): T’ function f(x: T, h: HeapType): T’
requires A
{ E} axiom forall x: T, h: HeapType ::

[[A]] ==> f(x, h) == [[E]]

61

Challenges revisited

Heap data structures pose three major challenges for sequential verification

= Reasoning about aliasing O

- Permissions and separating conjunction

* Framing, especially for dynamic data structures O

- Sound frame rule, predicates

= Writing specifications that preserve information hiding O

- Data abstraction, heap-dependent functions

62

Outline

Automated program verification

Reasoning about the heap

Abstraction

Concurrency

Conclusion

63

Reasoning about concurrent programs — challenges

x.f :=x.f+1

acquire x
acquire y

release x
release y

Data races

acquire y
acquire x

release x
release y

Deadlock

x.f :=x.f+1

acquire x

Xx.f =5 acquire x
release x x.f =0
acquire x release x
y := 10 / x.f

release x

Reasoning about thread interference

x.f := 0
acquire x acquire x
x.f 1= x.f+1 Xx.f := x.f+1
release x release x
acquire x
assert x.f == 2

Reasoning about thread cooperation

64

Thread-modular verification

= All verification techniques introduced so method create() returns (res: Ref)
far are procedure-modular ensures list(res)
. , ensures content(res) == Seq[Int]()
- Reason about calls in terms of the callee’s {

specification
- Verification of a method does not consider
callers or implementation of callees

= We will now present techniques that are acquire x

x.f :=5

also thread-modular S 5

- Reason about a thread execution without acquire x
knowing which other threads might run y := 10 / x.f

concurrently release x

= Both forms of modularity are crucial for verification to scale

Thread-local state

al := new(bal)
a2 := new(bal)
a3 := new(bal)
deposit(a2, 150)

deposit(al, 590) transfer(a2, a3, 100)

assert al.bal == a2.bal

= The parallel branches operate on disjoint memory; data races are not possible

66

Structured parallelism
* Permissions and separating conjunction lead to a simple proof rule

where S, does not assign to
Iy ; slA{ Bls} S{ Azé 528{ B } local variables free in S, A,
{Ar«Ax} S [|S; {B1xBsy} or B, (and analogous for S,)

» Separating conjunction prevents interference between the parallel branches
(since the only potentially-shared memory is the heap)

» Programs with data races have an unsatisfiable precondition

{acc(x.f) } x.f :=7 { ...} {acc(x.f)} y:=x.f{...}
{acc(x.f)*xacc(x.f) } x.f :=7||y :=x.f {...}

67

Encoding structured parallelism

* The proof rule employs the familiar permission transfer

AAl s [B)] Al s. (BN

{Al Q{Bl*B
A A ICT s | s>B.liB.}{C

= We can encode this proof rule via exhale and inhale operations

method left(..) returns (res;: T) exhale A [..]
requires A, exhale A,[..]
ensures B, havoc res,, res,
{ // encoding of S, } inhale B,[..]

inhale B,[...]
Encode left and right branch
as methods with specifications Encode parallel composition like
two half method calls
(adjusted to handle old-expressions)
68

Example: parallel list search

method busy(courses: Ref, seminars: Ref, exams: Ref, today: Int) returns (res: Bool)
requires list(courses) && list(seminars) && list(exams)
ensures list(courses) && list(seminars) && list(exams)
ensures res == (today in content(courses) ||
today in content(seminars) ||
today in content(exams))

{
var rightRes: Bool
rightRes := contains(seminars, today)
var leftRes: Bool var res?: Bool
leftRes := contains(courses, today) res2 := contains(exams, today)

rightRes := rightRes || res2

res := leftRes || rightRes
}

69

Shared state

» The solution presented so far supports
concurrency with thread-local state

» Threads exchange information upon
fork and join, but cannot communicate
or collaborate while they are running

= Communication between threads is
typically supported by shared state or
message passing

= We will focus on shared state, but
message passing can also be
supported using permissions

= Example: Producer-Consumer

|_producer shared consumer |

producer buffer consumer

= Concurrent accesses to mutable
shared state require synchronization
to prevent data races and ensure
correctness

= We will focus on locks as a
synchronization primitive

70

Synchronization via locks

producer

producer

method produce(buf: Ref)

{

}

while(true) {

}

acquire buf
if(buf.val == null) {
buf.val := new()

}

release buf

shared
buffer

consumer

consumer

method consume(buf: Ref)

{

while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null
}

release buf

Permission to access
buf.val cannot be
obtained via the
preconditions (that would
prevent concurrent
executions)

Intuitively, permissions
are obtained by acquiring
a lock

71

L ock invariants

= A lock guards accesses to certain memory locations

class Buffer { _ _
@GuardedBy ("this") Java provides annotations to

Product val; document which locations are
} guarded by a lock

= \We associate each lock with a lock invariant

class Buffer { Permissions in the lock invariant
lock invariant acc(this.val) 1a

Product val; express which locations are
} guarded by the lock

» [ntuition: permissions are held by method executions, loop iterations, predicate
Instances, or locks

72

Locks and permission transfer

class Buffer {
lock invariant acc(this.val)
Product val;

}

method produce(buf: Ref)
{
while(true) {
acquire buf
if(buf.val == null) {
buf.val := new()
}
release buf
}
}

method consume(buf: Ref)

{

while(true) {
acquire buf
if(buf.val != null) {
// consume buf.val
buf.val := null
}
release buf
}
}

73

More on lock invariants

= A lock invariant holds whenever the lock is not currently being held by a thread

» Lock invariants contain arbitrary self-framing assertions

acc(this.val) & 0 < this.val list(this) && © < length(this)

» Self-framingness is crucial for soundness

Methods could violate the invariant

@ < this.val without acquiring the lock

74

Simplified encoding of locks

» Locks are encoded as references
= We model non-reentrant locks (repeated acquire leads to deadlock)

» Therefore, each acquire obtains permissions from the lock

acquire x inhale Inv(x)

release x exhale Inv(x)

= The rule for acquire does not prevent deadlock; extra proof obligations can be
imposed to ensure that locks are acquired in an order

75

Outline

Automated program verification

Reasoning about the heap

Abstraction

Concurrency

Conclusion

76

Java OpenCL Vyper

Rust Python Go Prototypes

Viper intermediate
language

Symbolic Verification condition
execution generation

SMT solver

77

Example: Go verification in Gobra

requires acc(x) && acc(y)
ensures acc(x) &% acc(y)

ensures *x == old(*y)
ensures *y == old(*x)
func swap(x *int, y *int) {
tmp := *x
*x = *y
Yy = tmp
t

» (o supports pointers to integers
= Parameters can be assigned to
» Locals get initialized by default

field val: Int
method swap(x: Ref, y: Ref)

requires acc(x.val) && acc(y.val)
ensures acc(x.val) && acc(y.val)
ensures x.val == old(y.val)
ensures y.val == old(x.val)

var ylLocal: Ref // declare Llocals
var xLocal: Ref

xLocal := X // copy parameters
yLocal :=y

var tmp: Int // declare tmp
inhale tmp == 0

tmp := xLocal.val // tmp = *Xx
xLocal.val := ylLocal.val // *x = *y
yLocal.val := tmp // *y = tmp

78

Exposing the verification logic

requires acc(x) && acc(y)
» Gobra’s specification and verification Z::z:zz 2;c(x)oi‘§(:c§(y)
technique is very similar to Viper's ensures *y —— old(*i)
func swap(x *int, y *int) {
= Developers need to use permissions, tmp = *x
declare predicates, use unfold and fold X = zy
statements, etc. } >

= The overhead for programmers is substantial (both amount and complexity of
annotations)

» Many existing verifiers take this approach because it enables modular verification
of programs in mainstream languages, including concurrent and heap-

manipulating programs

79

Ownership types in Rust

fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;

*x = *y;
*y = tmp;
}
fn client()
{

let mut a = 17,
swap(&mut a, &mut a);

}

®

error[EQ499]: cannot borrow "a as
mutable more than once at a time
--> .\swap.rs:11:26

11 | swap(&mut a, &mut a);

| AAAAANA

second mutable borrow occurs here

error: aborting due to previous error

» Rust’s type system tracks ownership of memory locations

= |t guarantees memory safety

= Can we leverage this guarantee to simplify verification?

80

Example: Rust verification in Prusti

» Prusti extracts permissions (and
predicates) automatically from type

#[ensures(*x == old(*y))] information

#[ensures(*y == old(*x))]
fn swap(x: &mut i32, y: &mut i32) {
let tmp = *x;

}

*x
X
y

= A Viper “core proof” of memory safety

*y; IS generated completely automatically
tmp;

Pxrust—x1| Users can add functional correctness

specifications, by using a slight
extension of Rust expressions

The overhead for programmers is substantially reduced
(both amount and complexity of annotations)

81

Comparison of annotation over

#![feature(box_patterns)]
use prusti_contracts::*;

struct Node {
elem: i32,
next: List,

}

enum List {
Empty,
More (Box<Node>),

}

impl List {
#[pure]
#[ensures(result >= 0)]
fn len(&self) -> usize {
match self {
List::Empty => O,
List::More(box node) =>
1 + node.next.len(),
¥
}

#[ensures(result.len() ==
self.len() + that.len())]
pub fn zip(&self, that: &List) -> List {
match self {
List::Empty => that.clonelList(),
List::More(box node) => {
Let new_node = Box::new(Node {
elem: node.elem,
next: that.zip(&node.next),
s
List: :More(new_node)
}
¥
¥

}

#[ensures(result.len() == self.len())]

pub fn clonelList(&
match self {

List::Empty =>

List: :More(box

Let new_node

elem: node

Hs

self) -> List {

List::Empty,
node) => {
= Box::new(Node {

.elem,
next: node.

next.cloneList(),

List: :More(new_node)

}
}
}

Pxrust—xi

field next: Ref
field elem: Int

predicate list(this: Ref) {
acc(this.elem) &% acc(this.next) &&
(this.next != null ==> list(this.next))

¥

function len(this: Ref): Int
requires acc(list(this), wildcard)

unfolding acc(list(this), wildcard) in
(this.next == null ? @ : len(this.next) + 1)
}

method zip(this: Ref, that: Ref)
returns (res: Ref)

requires acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures acc(list(this), 1/2) &&
acc(list(that), 1/2)

ensures list(res)

ensures res != null

ensures len(res) == len(this) + len(that)

unfold acc(list(this), 1/2)
if(this.next == null) {
res := clonelList(that)
} else {
res := new(*)
res.elem := this.elem
var rest: Ref
rest := zip(that, this.next)
res.next := rest
fold list(res)

}
fold acc(list(this), 1/2)

nead: List zip example

method cloneList(this: Ref) returns (res: Ref)

}

requires acc(list(this), 1/2)

ensures acc(list(this), 1/2) && list(res)
ensures res != null

ensures len(res) == len(this)

res := new(*)

unfold acc(list(this), 1/2)

if(this.next == null) {
res.next := null

} else {
var tmp: Ref
tmp := cloneList(this.next)
res.elem := this.elem
res.next := tmp

}
fold acc(list(this), 1/2)
fold list(res)

ViPER

82

Expressiveness

Language features

Imperative code
Obiject-oriented code
Nominal, structural, and
dynamic typing
Closures

Multithreading with shared state
and message passing

Weak-memory concurrency

Properties

Memory safety

Absence of overflows
Termination

Functional correctness
Race freedom

Deadlock freedom

Secure information flow
Resource manipulation
Worst-case execution time

83

Limitations

» Limitations inherited from the SMT solver
- Undecidable theories may lead to spurious errors
- Verification time for large methods

= Annotation overhead
- Typically 2-5 lines of annotations per line of code

= Trust assumptions
- Correctness of SMT solver
- Correctness of Viper
- Correctness of front-end encoding

84

Verifiers developed at ETH

VIPER

Pxrust—«1

Verification infrastructure for
permission-based reasoning

Basis for our other verifiers
viper.ethz.ch

Modular verification of Rust
programs

Leverages Rust type system
to simplify verification
prusti.ethz.ch

Modular verification of Go
programs

Used for large-scale
verification projects, e.g.,
verifiedSCION

gobra.ethz.ch

Modular verification of Python
programs

Correctness and security
properties

Variant for Ethereum smart
contracts in Vyper

www.pm.inf.ethz.ch/research/
nagini.htmi

85

Modularity is important for scalability,
components, and evolution

Java OpenCL Viyper
Rust Python Go Prototypes

Viper intermediate
language

Symbalic Verification condition
execution generation

| SMT solver ‘

Intermediate languages enable reuse
of infrastructure

Permissions enable modular
reasoning about resources

VIPER

Viper lets you encode a wide
variety of reasoning techniques

86

References

= John C. Reynolds:
Separation Logic: A Logic for Shared Mutable Data Structures. LICS, 2002

= Matthew Parkinson and Gavin Bierman:
Separation logic and abstraction. POPL, 2005

= Peter W. O'Hearn:
Resources, Concurrency and Local Reasoning. CONCUR, 2004

= K. Rustan M. Leino and Peter Mdller:
A Basis for Verifying Multi-threaded Programs. ESOP, 2009

= Peter Muller, Malte Schwerhoff, and Alexander J. Summers:
Viper: A Verification Infrastructure for Permission-Based Reasoning. VMCAI, 2016

87

