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What do I do?

software

audience

properties
abstract interpretation
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ML in High-Stakes Applications

4

data ML software act as surrogate model

automate decision-making

perform tasks that are impossible to program explicitly
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ML in High-Stakes Applications

07/10/2019, 23*16A self-driving Uber ran a red light last December, contrary to company claims - The Verge

Page 1 of 3https://www.theverge.com/2017/2/25/14737374/uber-self-driving-car-red-light-december-contrary-company-claims

  

A self-driving Uber ran a red
light last December, contrary to
company claims
Internal documents reveal that the car was at fault
By Andrew Liptak @AndrewLiptak  Feb 25, 2017, 11:08am EST

TRANSPORTATION UBER RIDE-SHARING

8

Last December, a self-driving Uber was caught on camera running a red light in
San Francisco, shortly after the vehicles began testing on the roads. While Uber
claimed at the time that a driver was at fault, a report from The New York Times

07/12/20, 12:05Self-Driving Uber SUV Didn't Recognize Jaywalking Pedestrian In Fatal Crash : NPR

Page 1 of 3https://www.npr.org/2019/11/07/777438412/feds-say-self-driving-ube…did-not-recognize-jaywalking-pedestrian-in-fatal-?t=1607339086095

Feds Say Self-Driving Uber SUV Did
Not Recognize Jaywalking
Pedestrian In Fatal Crash
Richard Gonzales November 7, 201910:57 PM ET

The self-driving Uber SUV that struck pedestrian Elaine Herzberg on March 18, 2018, in Tempe,
Ariz.

Tempe Police Department via AP

The self-driving Uber SUV involved in a crash that killed a Tempe, Ariz.,
woman last year did not recognize her as a jaywalking pedestrian and its
braking system was not designed to avoid an imminent collision,
according to a federal report released this week.

07/10/2019, 22)58

IBM's Watson recommended 'unsafe and incorrect' cancer treatments - STAT

Page 1 of 2

https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/

I

1

 2

IBM’s Watson supercomputer recommended ‘unsafe and incorrect’

cancer treatments, internal documents show

By Casey Ross3 @caseymross4 and Ike Swetlitz

July 25, 2018

Alex Hogan/STAT

nternal IBM documents show that its Watson supercomputer often spit out

erroneous cancer treatment advice and that company medical specialists and

customers identified “multiple examples of unsafe and incorrect treatment

recommendations” as IBM was promoting the product to hospitals and physicians

around the world.

The documents — slide decks presented last summer by IBM Watson Health’s

deputy chief health officer — largely blame the problems on the training of

Correctness  
Guarantees
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Machine Learning Pipeline

data preparation model training model deploymentdata predictions

ML software

Machine Learning Development Process
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Machine Learning Pipeline

7

insidious silent bugs

Data Preparation is Fragile

data preparation model training model deploymentdata predictions

https://xkcd.com/2054/
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Machine Learning Pipeline

8

no predictability and traceability

Model Training is Highly Non-Deterministic

data preparation model training model deploymentdata predictions

https://xkcd.com/1838/
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Machine Learning Pipeline

9

Models Only Give Probabilistic Guarantees

data preparation model trainingdata

https://xkcd.com/2451/

not sufficient for guaranteeing  
an acceptable failure rate  
under any circumstance

model deployment predictions
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Correctness Guarantees

10

software incorrect

correct

Alan Turing Henry Gordon Rice

A Mathematically Proven Hard Problem
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Formal Methods

11

Deductive Verification

Robert W Floyd Tony Hoare

• extremely expressive 
• relies on the user to guide the proof

software incorrect

correct
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Formal Methods

12

Model Checking

incorrect

correct

Edmund Clarke Allen Emerson

• analysis of a model of the software 
• sound and complete with respect to the model

model
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Formal Methods

13

Static Analysis by Abstract Interpretation

software

correct

Radhia CousotPatrick Cousot

• analysis of the source or object code 
• fully automatic and sound by construction 
• generally not complete

unknown%
& alarm
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Formal Methods for ML

15

Robert W. Floyd Tony Hoare

Deductive Verification

Radhia CousotPatrick Cousot

Static Analysis

Edmund Clarke Allen Emerson

Model Checking
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Formal Methods for ML

16

2015

2016

2017

2018

2019

2020

2021

2022

2023

Results for “neural network robustness” on Google Scholar

0 350 700 1050 1400
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Formal Methods  
for Trained Models

data preparation model training model deploymentdata predictions
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Neural Networks
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input layer output layerhidden layers

output maxj xN, j

…

x0,0

x0,1

x0,2

x0,|L0|

x0,3 …

xi,j = max {∑
k

wi−1
j,k ⋅ xi−1,k + bi,j, 0}

Rectified Linear Unit (ReLU)

x1,0

x1,1

x1,|L1|

xN,0

xN,|LN|

Neural Networks

19

Feed-Forward ReLU-Activated Neural Networks
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

Neural Networks as Programs



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 21

Maximal Trace Semantics

x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

[[M]]

M
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Neural Network Verification
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘         ’ if x31 < 30 else ‘         ’

M

23

{[[M]]}

Collecting Semantics
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Intuition
Collecting Semantics

24

Property (by extension): set of elements that have that property

Property “being Jun Pang”

Property “being neural network M”

{[[M]]}
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Property Verification

25

ℳ ∈ P ⇔ {ℳ} ⊆ P

[[M]] P
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Stability

Safety

Fairness

Stop Max Speed 100

+ =
Goal G3 in [Kurd03]

Goal G4 in [Kurd03]
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Stop Max Speed 100

+ =Stability

Safety

Fairness

Goal G3 in [Kurd03]

Goal G4 in [Kurd03]
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Stability Verification

28

software

properties

audience

abstract interpretation
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Local Prediction Stability
Prediction is Unaffected by Input Perturbations
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Local Prediction Stability

ℛδ,ϵ
x

def= {[[M]] ∣ STABLEδ,ϵ
x ([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that are stable in the neighborhood  of a given input 
ℛδ,ϵ

x [[M]]
Pδ,ϵ(x) x

Distance-Based Perturbations

Pδ,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ δ(x, x′ ) ≤ ϵ}

Example (  distance): L∞ P∞,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ maxi |xi − x′ i | ≤ ϵ}

M ⊧ ℛδ,ϵ
x ⇔ {[[M]]} ⊆ ℛδ,ϵ

x

Theorem

M ⊧ ℛδ,ϵ
x ⇔ [[M]] ⊆ ⋃ℛδ,ϵ

x

Corollary

STABLEδ,ϵ
x (T ) def= ∀t, t′ ∈ T : t0 = x ∧ t′ 0 ∈ Pδ,ϵ(x) ⇒ tω = t′ ω
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Static Analysis Methods
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Abstract Interpretation

€ 2.95 

€ 3.65 

€ 2.25 

€ 5.35 

——— € 3 

———  
€ 3 

——— € 4 ——— 
   € 6

  FALSE ALARM

&
€ 2.25 + 
€ 2.95 + 
€ 3.65 + 
€ 5.35  
—————— 

€ 14.20 

€ 3 + 
€ 3 + 
€ 4 + 
€ 6  
———— 

€ 16

SOFTWARE 

ABSTRACTION

PROPERTY OF INTEREST
SOUNDNESS

COMPLETENESS

Intuition
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Forward Analysis

…

…

1. proceed forwards from 
an abstraction of all 
possible perturbations

2. check output for inclusion  
in expected output: 
included        stable 
otherwise       alarm 

→
→&
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Local Prediction Stability

ℛδ,ϵ
x

def= {[[M]] ∣ STABLEδ,ϵ
x ([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that are stable in the neighborhood  of a given input 
ℛδ,ϵ

x [[M]]
Pδ,ϵ(x) x

Distance-Based Perturbations

Pδ,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ δ(x, x′ ) ≤ ϵ}

Example (  distance): L∞ P∞,ϵ(x) def= {x′ ∈ ℛ|L0| ∣ maxi |xi − x′ i | ≤ ϵ}

M ⊧ ℛδ,ϵ
x ⇔ {[[M]]} ⊆ ℛδ,ϵ

x

Theorem

M ⊧ ℛδ,ϵ
x ⇔ [[M]] ⊆ ⋃ℛδ,ϵ

x

Corollary

STABLEδ,ϵ
x (T ) def= ∀t, t′ ∈ T : t′ 0 = x ∧ t0 ∈ Pδ,ϵ(x) ⇒ tω = t′ ω

Theorem

[[M]] ⊆ [[M]]♮ ⊆ ⋃ℛδ,ϵ
x ⇒ M ⊧ ℛδ,ϵ

x
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Example

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

0.5

0.75

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

P(⟨0.5,0.75⟩) def= {x ∈ ℛ × ℛ ∣ 0 ≤ x0 ≤ 1 ∧ 0 ≤ x1 ≤ 1}
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Interval Abstraction

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1
1

3

3

x20

x30

x31

0

x21

-1.5

1

-14
0.5

-1

-8

0

x00 ↦ [0, 1]

x01 ↦ [0, 1]

x10 ↦ [4, 6]
ReLU

x11 ↦ [3, 4]

x11 ↦ [3, 4]
ReLU

x10 ↦ [4, 6]

x20 ↦ [17, 24]

x20 ↦ [17, 24]

x21 ↦ [0, 3]

x21 ↦ [0, 3]

x30 ↦ [0, 10]

x31 ↦ [−4, 4]

not precise enough!

ReLU

ReLU

xi,j ↦ [a, b]
a, b ∈ ℛ
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Abstract Interpretation

€ 2.95 

€ 3.65 

€ 2.25 

€ 5.35 

€ 2.25 + 
€ 2.95 + 
€ 3.65 + 
€ 5.35  
—————— 

€ 14.20 

——— € 2,5 

———  
€ 3 

——— € 4 ——— 
   € 5,5

€ 2,5 + 
€ 3 + 
€ 4 + 
€ 5,5  
———— 

€ 15

Improving Precision
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

each neuron as a linear combination of the inputs  and the previous ReLUs

xi,j ↦ {∑i−1
k=0 ck ⋅ xk + c ck, c ∈ ℛ|Xk|

[a, b] a, b ∈ ℛ

0 ≤ axi,j ↦ {Ei,j
[a, b]

a < 0 ∧ 0 < bxi,j ↦ {xi,j
[0, b]

b ≤ 0xi,j ↦ {0
[0, 0]

xi,j ↦ {Ei,j
[a, b]

ReLU

xi−1,0 ↦ Ei−1,0…
xi−1,j ↦ Ei−1,j…

xi,j ↦ ∑
k

wi−1
j,k ⋅ Ei−1,k + bi,j

xi, j = ∑
k

wi−1
j,k ⋅ xi−1,k + bi, j
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x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20

x30

x31

0

x21

-1.5

1

-14

0.5

-1

-8

0

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x11 ↦ {0.5 ⋅ x00 + 0.5 ⋅ x01 + 3
[3, 4]

x10 ↦ {x00 + x01 + 4
[4, 6] x20 ↦ {2 ⋅ (x00 + x01 + 4) + 3 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)

[17, 24]

x21 ↦ {(x00 + x01 + 4) − 1 ⋅ (0.5 ⋅ x00 + 0.5 ⋅ x01 + 3)
[1, 2]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x31 ↦ {x00 + x01 − 1
[−1, 1]

Interval Abstraction
with Symbolic Constant Propagation [Li19]
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x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x40 ↦ {1.5 ⋅ x00 + 1.5 ⋅ x01 − 2 ⋅ x31 + 1
[−1, 4]

x41 ↦ {x31
[0, 1]

x31 ↦ {x00 + x01 − 1
[−1, 1]

x31 ↦ {x31
[0, 1]

ReLU

not precise enough!

Interval Abstraction
with Symbolic Constant Propagation [Li19]
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DeepPoly [Singh19]

maintain symbolic lower- and  upper-bounds for each neuron  + convex ReLU approximations

xi+1,j ↦ {[∑k ci,k ⋅ xi,k + c, ∑k di,k ⋅ xi,k + d] ci,k, c, di,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

0 ≤ ReLU(x)

xi,j ↦ [0, b(xi,j − a)
b − a ]

[0, b]

ba x

ReLU(x)

ReLU(x) ≤
b(x − a)

b − a

    
   

x ≤ ReL
U(x)

xi,j ↦ [xi,j,
b(xi,j − a)

b − a ]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[Li,j, Ui,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

0 ≤ a

b ≤ 0

ReLU

ReLU

ReLU a < 0 ∧ 0 < b

b ≤ − a

−a < b
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6]

x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]
[3, 4]
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24]

x21 ↦ {[x10 − x11, x10 − x11]
[1, 2]
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x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8]

45

DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x31 ↦ {[0.5 ⋅ x20 − 1.5 ⋅ x21 − 8, 0.5 ⋅ x20 − 1.5 ⋅ x21 − 8]
[−1, 1]

x31 ↦ {[0, 0.5 ⋅ x31 + 0.5]
[0, 1]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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DeepPoly [Singh19]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[2, 5]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x00 ↦ [0, 1] x01 ↦ [0, 1]
Back-Substitution
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DeepPoly [Singh19]

x00 ↦ [0, 1] x01 ↦ [0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

Partial Back-Substitution

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[0, 5]

x40 ↦ {[x21 + 1, 0.5 ⋅ x20 − 0.5 ⋅ x21 − 6]
[2, 5 . 5]

x40 ↦ {[x10 − x11 + 1, 0.5 ⋅ x10 + 2 ⋅ x11 − 6]
[1, 5]

x40 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 2, 1.5 ⋅ x00 + 1.5 ⋅ x11 + 2]
[2, 5]

x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]
[0, 1]
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 50

DeepPoly [Singh19]

x00 ↦ [0, 1] x01 ↦ [0, 1]

x30 ↦ {[x20 − x21 − 14, x20 − x21 − 14]
[2, 8] x31 ↦ {[0, 0.5 ⋅ (0.5 ⋅ x20 − 1.5 ⋅ x21 − 8) + 0.5]

[0, 1]

x10 ↦ {[x00 + x01 + 4, x00 + x01 + 4]
[4, 6] x11 ↦ {[0.5 ⋅ x00 + 0.5 ⋅ x01 + 3, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 3]

[3, 4]

x20 ↦ {[2 ⋅ x10 + 3 ⋅ x11, 2 ⋅ x10 + 3 ⋅ x11]
[17, 24] x21 ↦ {[x10 − x11, x10 − x11]

[1, 2]

x41 ↦ {[x31, x31]
[0, 1]

x41 ↦ {[0, 0.25 ⋅ x20 − 0.75 ⋅ x21 − 3.5]
[0, 1]

x41 ↦ {[0, − 0.25 ⋅ x10 + 1.5 ⋅ x11 − 3.5]
[0, 1]

x41 ↦ {[0, 0.5 ⋅ x00 + 0.5 ⋅ x01]
[0, 1]

Back-Substitution
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3
3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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DeepPoly [Singh19]

Maintaining Symbolic Bounds wrt Inputs 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

0

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x11 ↦ {[x00 − x01, x00 − x01]
[−2, 2]

x11 ↦ [0, 0.5 ⋅ x11 + 1] → [0, 0.5 ⋅ x00 − 0.5 ⋅ x01 + 1]
ReLU

x10 ↦ {[x00 + x01, x00 + x01]
[−2, 2]

x10 ↦ [0, 0.5 ⋅ x10 + 1] → [0, 0.5 ⋅ (x00 + x01) + 1] = [0, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 1]
ReLU

x40

1

-1
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DeepPoly [Singh19]

Maintaining Symbolic Bounds wrt Inputs 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

0

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x21 ↦ {[x10 − x11, x10 − x11] → [−0.5 ⋅ x00 + 0.5 ⋅ x01 − 1, 0.5 ⋅ x00 − 0.5 ⋅ x01 + 1]
[−2, 2]

x20 ↦ {[x10 + x11, x10 + x11] → [0, x00 + 2]
[0, 3]

x11 ↦ [0, 0.5 ⋅ x11 + 1] → [0, 0.5 ⋅ x00 − 0.5 ⋅ x01 + 1]

x10 ↦ [0, 0.5 ⋅ x10 + 1] → [0, 0.5 ⋅ (x00 + x01) + 1] = [0, 0.5 ⋅ x00 + 0.5 ⋅ x01 + 1]

x40

1

-1
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DeepPoly [Singh19]

Maintaining Symbolic Bounds wrt Inputs 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

0

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x21 ↦ {[x10 − x11, x10 − x11] → [−0.5 ⋅ x00 + 0.5 ⋅ x01 − 1, 0.5 ⋅ x00 − 0.5 ⋅ x01 + 1]
[−2, 2]

x20 ↦ {[x10 + x11, x10 + x11] → [0, x00 + 2]
[0, 3]

x21 ↦ [0, 0.5 ⋅ x21 + 1] → [0, 0.25 ⋅ x00 − 0.25 ⋅ x01 + 1.5]
ReLU

x40

1

-1
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DeepPoly [Singh19]

Maintaining Symbolic Bounds wrt Inputs 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

0

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x31 ↦ {[x21, x21] → [0, 0.25 ⋅ x00 − 0.25 ⋅ x01 + 1.5]
[0, 2]

x20 ↦ {[x10 + x11, x10 + x11] → [0, x00 + 2]
[0, 3]

x21 ↦ [0, 0.5 ⋅ x21 + 1] → [0, 0.25 ⋅ x00 − 0.25 ⋅ x01 + 1.5]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1] → [1, 1.25 ⋅ x00 − 0.25 ⋅ x01 + 4.5]
[1, 6]  with back-substitution  ← [1, 5 . 5]

x40

1

-1
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DeepPoly [Singh19]

Maintaining Symbolic Bounds wrt Inputs 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

0

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x31 ↦ {[x21, x21] → [0, 0.25 ⋅ x00 − 0.25 ⋅ x01 + 1.5]
[0, 2]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1] → [1, 1.25 ⋅ x00 − 0.25 ⋅ x01 + 4.5]
[1, 6]  with back-substitution  ← [1, 5 . 5]

x40 ↦ {
…
[−1, 6] ←  with back-substitution  ← [1, 4]

x40

1

-1
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Other Static Analysis Methods
• T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. 

Vechev. AI2: Safety and Robustness Certification of Neural Networks with 
Abstract Interpretation. In S&P, 2018.  
the first use of abstract interpretation for verifying neural networks


• G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. Vechev. Fast and Effective 
Robustness Certification. In NeurIPS, 2018. 
a custom zonotope domain for certifying neural networks 


• G. Singh, R. Ganvir, M. Püschel, and M. Vechev. Beyond the Single Neuron 
Convex Barrier for Neural Network Certification. In NeurIPS, 2019.  
a framework to jointly approximate k ReLU activations 

• M. N. Müller, G. Makarchuk, G. Singh, M. Püschel, and M. Vechev. PRIMA: 
General and Precise Neural Network Certification via Scalable Convex Hull 
Approximations. In POPL, 2022.  
a multi-neuron abstraction via a convex-hull approximation algorithm
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Local Prediction Stability
Not Enough!

8 8 8 8 8 8 8
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Stability Instability

59

Local Explanation Stability [Munakata23]

Input

Saliency Map

Expected Saliency

Distance

δ = 4
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Example

60
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1
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1
1

2
1

3
1
2
1

-1

-3

-4

1

1
1
-2

-1

2
1

0.25

2

0.25

5.25

-2.75

1*0.25 - 3*1+1*0.5 + 2*0.75 + 4 = 0.25  0.25ReLU⟶x1

x2

x3

x4
-1 * (x1 - 3*x2 + x3 - 2*x4) +  
2 * (x1 + x2 + 2*x3 + x4) + 

1 * (3* x1 + x2 + 2*x3 + x4) = 
4*x1 + 6*x2 + 5*x3 +  5*x4

Saliency Maps
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Semantic Perturbations
Example

61
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0.75

1

0.5

4
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5

5

Brightness 
Decrease

-0.25

0

0.5
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0.25

1

5
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Saliency Map Stability
Example

62
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1

0.5

4 6

5 5

1 3

1 2

0.5

0.75

0.25

0

1 5

3 4

0 0.5

0 0.25

1 3

1 2

1 3

1 2

0

0 0

0.25 0

0 0

0

distance = 3.87 distance = 6.56 distance = 6.56 distance = 6.56
δ = 4



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024

Example

64
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1
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Encoding Semantic Perturbations [Mohapatra20]
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Activation Patterns
Example

65
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1

Saliency Map Stability

Prediction Stability

0

1/14

1

1/14

0 1

δ = 4

1*(-1*β + 0.25) - 3*(-1*β + 1)  
+1*(-1*β + 0.5) - 2*(-1*β + 0.75) + 4 ≥ 0

1*(-1*β + 0.25) + 1*(-1*β + 1)  
+ 2*(-1*β + 0.5) + 1*(-1*β + 0.75) - 1 ≥ 0 

3*(-1*β + 0.25) + 1*(-1*β + 1)  
+2*(-1*β + 0.5) + 1*(-1*β + 0.75) - 3 ≥ 0

1*(x1) - 3*(x2) + 1*(x3) - 2*(x4) + 4 ≥ 0

1*(x1) + 1*(x2) + 2*(x3) + 1*(x4) - 1 ≥ 0

3*(x1) + 1*(x2) + 2*(x3) + 1*(x4) - 3 ≥ 0

-1*β + 0.25 ≥ 0

-1*β + 1 ≥ 0

-1*β + 0.5 ≥ 0

-1*β + 0.75 ≥ 0
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Prediction Stability
Example
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5.25 - 20β

1*(-1*β + 0.25) - 3*(-1*β + 1)  
+1*(-1*β + 0.5) - 2*(-1*β + 0.75) + 4  

1*(-1*β + 0.25) + 1*(-1*β + 1)  
+2*(-1*β + 0.5) + 1*(-1*β + 0.75) - 1

3*(-1*β + 0.25) + 1*(-1*β + 1)  
+2*(-1*β + 0.5) + 1*(-1*β + 0.75) - 3

-1*β + 0.25

-1*β + 1

-1*β + 0.5

-1*β + 0.75

12β - 2.75

5.25 - 20β > 12β - 2.75
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Saliency Map Stability
Example
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δ = 4

-1 * (x1 - 3*x2 + x3 - 2*x4) +  
2 * (x1 + x2 + 2*x3 + x4) +  

1 * (3* x1 + x2 + 2*x3 + x4) = 
4*x1 + 6*x2 + 5*x3 +  5*x4
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Naïve Breadth-First Search
Example
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Example
Naïve Breadth-First Search
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Example
Naïve Breadth-First Search
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Naïve Breadth-First Search
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Geometric Boundary Search [Munakata23]

72
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Experimental Results
Geometric Boundary Search

73

Saliency Map Stability (SMS)

Prediction Stability (PS)

gbs-SMS
gbs-PSMS

gbs-PS
bfs 

gbs-SMS
gbs-PSMS

gbs-PS
bfs 

EXPONENTIAL COST
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Abstract (Boundary) Search

74
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Safety

75

Stop Max Speed 100

+ =Stability

Safety

Fairness

Goal G3 in [Kurd03]

Goal G4 in [Kurd03]
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Safety Verification

76

software

properties

audience

abstract interpretation
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ACAS Xu [Julian16][Katz17]

Airborne Collision Avoidance System for Unmanned Aircraft
implemented using 45 feed-forward fully-connected ReLU networks

A DNN implementation of ACAS Xu presents new certification challenges.
Proving that a set of inputs cannot produce an erroneous alert is paramount
for certifying the system for use in safety-critical settings. Previous certification
methodologies included exhaustively testing the system in 1.5 million simulated
encounters [20], but this is insufficient for proving that faulty behaviors do not
exist within the continuous DNNs. This highlights the need for verifying DNNs
and makes the ACAS Xu DNNs prime candidates on which to apply Reluplex.

Network Functionality. The ACAS Xu system maps input variables to action
advisories. Each advisory is assigned a score, with the lowest score corresponding
to the best action. The input state is composed of seven dimensions (shown in
Fig. 6) which represent information determined from sensor measurements [19]:
(i) ρ: Distance from ownship to intruder; (ii) θ: Angle to intruder relative to
ownship heading direction; (iii) ψ: Heading angle of intruder relative to ownship
heading direction; (iv) vown: Speed of ownship; (v) vint: Speed of intruder; (vi) τ :
Time until loss of vertical separation; and (vii) aprev: Previous advisory. There
are five outputs which represent the different horizontal advisories that can be
given to the ownship: Clear-of-Conflict (COC), weak right, strong right, weak
left, or strong left. Weak and strong mean heading rates of 1.5 ◦/s and 3.0 ◦/s,
respectively.

Ownship

vown

Intruder

vint

ρ

ψ

θ

Fig. 6: Geometry for ACAS Xu Horizontal Logic Table

The array of 45 DNNs was produced by discretizing τ and aprev, and produc-
ing a network for each discretized combination. Each of these networks thus has
five inputs (one for each of the other dimensions) and five outputs. The DNNs
are fully connected, use ReLU activation functions, and have 6 hidden layers
with a total of 300 ReLU nodes each.

Network Properties. It is desirable to verify that the ACAS Xu networks
assign correct scores to the output advisories in various input domains. Fig. 7
illustrates this kind of property by showing a top-down view of a head-on en-
counter scenario, in which each pixel is colored to represent the best action if
the intruder were at that location. We expect the DNN’s advisories to be con-
sistent in each of these regions; however, Fig. 7 was generated from a finite set

5 input sensor measurements 

• : distance from ownship to intruder

• : angle to intruder relative to ownship heading direction

• : heading angle to intruder relative to ownship heading direction

• : speed of ownship

• : speed of intruder

ρ
θ
ψ
vown
vint

22 / 30

Properties of Interest

1. No unnecessary turning advisories
2. Alerting regions are consistent
3. Strong alerts do not appear when vertical separation 

is large

5 output horizontal advisories 

• Strong Left

• Weak Left

• Clear of Conflict

• Weak Right

• Strong Right
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ACAS Xu Properties [Katz17]

Example: “if intruder is near and approaching from the left, go Strong Right”

250 ≤ ρ ≤ 400

0.2 ≤ θ ≤ 0.4

…

…

…

…

…

…

…
…

ρ

θ

ψ

vown

vint

SL

WL

CoC

WR

SR
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Safety

M ⊧ 𝒮I
O ⇔ {[[M]]} ⊆ 𝒮I

O

Theorem

M ⊧ 𝒮I
O ⇔ [[M]] ⊆ ⋃𝒮I

O

Corollary

𝒮I
O

def= {[[M]] ∣ SAFEI
O([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that satisfy the input and output specification  and 
𝒮I

O [[M]]
I O

SAFEI
O([[M]]) def= ∀t ∈ [[M]] : t0 ⊧ I ⇒ tω ⊧ O

Input-Output Properties
: input specificationI
: output specificationO



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 80

Model Checking Methods
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Safety
Example

lj ≤ x0,j ≤ uj xN > 0
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SMT-Based Methods
Verification Reduced to Constraint Satisfiability 

lj ≤ x0,j ≤ uj

xN ≤ 0

j ∈ {0,…, |X0 |}

 i ∈ {1,…, n − 1},
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = max{0, ̂xi,j}

input specification

(negation of)  
output specification

satisfiable       counterexample 
otherwise       safe

→
→
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Planet use approximations to  reduce the solution search space

0 ≤ xi,j
x̂i,j ≤ xi,j

xi,j ≤
bi,j

bi,j − ai,j
⋅ (x̂i,j − ai,j)

xi,j = max{0, ̂xi,j}

ba ̂x

x

0 ≤ x

x ≤
b
b − a

⋅ (x̂ − a)

x̂ ≤ x

R. Ehlers - Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks (ATVA 2017)
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Reluplex

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

based on the simplex algorithm  extended to support ReLUs

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂vij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

0
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

̂v′ ij
…
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Reluplex

G. Katz et al. - Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks (CAV 2017)

based on the simplex algorithm  extended to support ReLUs

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂vij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

vij
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

0
…

Variable Value
x00

x̂ij

xN

…

xij
…

v00

̂v′ ij

vN

…

̂v′ ij
…

Follow-up Work
 
G. Katz et al. - The 
Marabou Framework for 
Verification and Analysis 
of Deep Neural Networks 
(CAV 2019)
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Other SMT-Based Methods
• L. Pulina and A. Tacchella. An Abstraction-Refinement Approach to Verification 

of Artificial Neural Networks. In CAV, 2010. 
the first formal verification method for neural networks 


• O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. 
Criminisi. Measuring Neural Net Robustness with Constraints. In NeurIPS, 2016. 
an approach for finding the nearest adversarial example according to the 
L∞ distance


• X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep 
Neural Networks. In CAV, 2017.  
an approach for proving local robustness to adversarial perturbations


• N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh. 
Verifying Properties of Binarized Deep Neural Networks. In AAAI, 2018. 
C. H. Cheng, G. Nührenberg, C. H. Huang, and H. Ruess. Verification of 
Binarized Neural Networks via Inter-Neuron Factoring. In VSTTE, 2018. 
approaches focusing on binarized neural networks
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MILP-Based Methods
Verification Reduced to Mixed Integer Linear Program

δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

xi,j = δi,j ⋅ ̂xi,j
δi,j = 1 ⇒ ̂xi,j ≥ 0
δi,j = 0 ⇒ ̂xi,j < 0

lj ≤ x0,j ≤ uj j ∈ {0,…, |X0 |} input specification

min xN objective function
       counterexample 

otherwise       safe
min xN ≤ 0 →

→
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δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MILP-Based Methods
Bounded Encoding with Symmetric Bounds

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}
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̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

0 ≤ xi,j ≤ Mi,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − Mi,j ⋅ (1 − δi,j)

Mi,j = max{−li, ui}

lj ≤ x0,j ≤ uj

Sherlock
Output Range Analysis

use local search to  speed up the MILP solver

find another input   
such that 

X̂
L̂ ≤ xN

xN < L̂

S. Dutta et al. - Output Range Analysis for Deep Feedforward Neural Networks (NFM 2018)
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δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MILP-Based Methods
Bounded Encoding with Asymmetric Bounds

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)
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δi,j ∈ {0, 1}
i ∈ {1,…, n − 1}
j ∈ {0,…, |Xi |}

i ∈ {0,…, n − 1}̂xi+1,j =
|Xi|

∑
k=0

wi
j,k ⋅ xi,k + bi,j

MIPVerify
Finding Nearest Adversarial Example

0 ≤ xi,j ≤ ui,j ⋅ δi,j
̂xi,j ≤ xi,j ≤ ̂xi,j − li,j ⋅ (1 − δi,j)

V. Tjeng et al. - Evaluating Robustness of Neural Networks with Mixed Integer Programming (ICLR 2019)

minX′ d(X, X′ )

xN ≠ O
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Other MILP-Based Methods
• R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar. A Unified 

View of Piecewise Linear Neural Network Verification. In NeurIPS, 2018. 
a unifying verification framework for piecewise-linear ReLU neural 
networks


• C.-H. Cheng, G. Nührenberg, and H. Ruess. Maximum Resilience of 
Artificial Neural Networks. In ATVA, 2017.  
an approach for finding a lower bound on robustness to adversarial 
perturbations


• M. Fischetti and J. Jo. Deep Neural Networks and Mixed Integer Linear 
Optimization. 2018.  
an approach for feature visualization and building adversarial examples
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Static Analysis Methods
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Forward Analysis

…

…

1. proceed forwards from 
an abstraction of the 
input specification I

2. check output for inclusion  
in output specification : 
included        safe 
otherwise       alarm 

O
→
→&
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Safety

M ⊧ 𝒮I
O ⇔ {[[M]]} ⊆ 𝒮I

O

Theorem

M ⊧ 𝒮I
O ⇔ [[M]] ⊆ ⋃𝒮I

O

Corollary

𝒮I
O

def= {[[M]] ∈ 𝒫(Σ*) ∣ SAFEI
O([[M]])}

 is the set of all neural networks M (or, rather, their semantics )  
that satisfy the input and output specification  and 
𝒮I

O [[M]]
I O

SAFEI
O([[M]]) def= ∀t ∈ [[M]] : t0 ⊧ I ⇒ tω ⊧ O

Input-Output Properties
: input specificationI
: output specificationO

[[M]] ⊆ [[M]]♮ ⊆ ⋃𝒮I
O ⇒ M ⊧ 𝒮I

O

Theorem
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Example

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict
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DeepPoly[Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x11 ↦ {[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦ {[x11, 2
3 ⋅ x11 + 2

3 ]
[−1, 2]

ReLU

x10 ↦ {[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦ {[x10, 2
3 ⋅ x10 + 2

3 ]
[−1, 2]ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

    
   x

≤ ReLU(x)
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DeepPoly[Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x20 ↦ {
[x10 + x11, x10 + x11]
[0, 8

3 ]

x21 ↦ {
[x10 − x11, x10 − x11]
[− 7

3 , 7
3 ]

x21 ↦
[0, 0.5 ⋅ x21 + 7

6 ]

[0, 7
3 ]

ReLU

ba
x

ReLU(x)

ReLU(x) ≤
b (x − a)

b − a

0 ≤ ReLU(x)
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DeepPoly[Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12 ]

not precise enough!
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x10 ↦ {x00 + x01
[−1, 2] x10 ↦ {x10

[0, 2]

x11 ↦ {x11
[0, 2]x11 ↦ {x00 − x01

[−1, 2]
ReLU

ReLU
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x20 ↦ {x10 + x11
[0, 4]

x21 ↦ {x21
[0, 2]x21 ↦ {x10 − x11

[−2, 2]
ReLU
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x30 ↦ {x10 + x11 + x21 + 1
[1, 7]

x31 ↦ {x21 − 1.25
[−1 . 25, 0 . 75]
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x30 ↦ {x10 + x11 + x21 + 1
[1, 7]

x31 ↦ {x21 − 1.25
[−1 . 25, 0 . 75]
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DeepPoly[Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12 ]

not precise enough!
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x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {x00
[0, 1]

x01 ↦ {x01
[0, 1]

x30 ↦ {3 ⋅ x00 + 3 ⋅ x01 + 2
[2, 8]

x40 ↦ {1.5 ⋅ x00 + 1.5 ⋅ x01 − 2 ⋅ x31 + 1
[−1, 4]

x41 ↦ {x31
[0, 1]

x31 ↦ {x00 + x01 − 1
[−1, 1]

x31 ↦ {x31
[0, 1]

ReLU

not precise enough!

Interval Abstraction
with Symbolic Constant Propagation [Li19]
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DeepPoly [Singh19]

x00

x01

x10

1

0.5

0.5

1

4

x11

2

-1

1

3

3

x20 x30

x40

x41

0

x21

1

-1.5

-14

0.5

-1

x31

1

0.5

1

0

-2

0

-80

0.5

0.75

x00 ↦ {[x00, x00]
[0, 1]

x01 ↦ {[x01, x01]
[0, 1]

x41 ↦ {[x31, x31]
[0, 1]

x40 ↦ {[0.5 ⋅ x30 − 2 ⋅ x31 + 1, 0.5 ⋅ x30 − 2 ⋅ x31 + 1]
[2, 5]
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DeepPoly[Singh19] 

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1 Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]
[−1, 1]

x00 ↦ {[x00, x00]
[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]
[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]
[−1 . 25, 13

12 ]

not precise enough!
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Interval Abstraction
with Symbolic Constant Propagation [Li19]

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦ {x01
[−1, 1]

x00 ↦ {x00
[0, 1]

x30 ↦ {x10 + x11 + x21 + 1
[1, 7]

x31 ↦ {x21 − 1.25
[−1 . 25, 0 . 75]
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Product Domain [Mazzucato21]

DeepPoly with Symbolic Constant Propagation

[max(l, l), min(u, u)] [max(l, l), min(u, u)]

DeepPolySymbolic

[l, u]

[l, u]



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 105

Product Domain [Mazzucato21]

DeepPoly with Symbolic Constant Propagation

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]
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Product Domain [Mazzucato21]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x10 ↦
x00 + x01
[x00 + x01, x00 + x01]
[−1, 2]

x10 ↦
x10 → [0, 2]
[x10, 2

3 ⋅ x10 + 2
3 ] → [−1, 2]

[0, 2]
ReLU

x11 ↦
x00 − x01
[x00 − x01, x00 − x01]
[−1, 2]

x11 ↦
x11 → [0, 2]
[x11, 2

3 ⋅ x11 + 2
3 ] → [−1, 2]

[0, 2]
ReLU
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Product Domain [Mazzucato21]

x21 ↦

x21 → [0, 2]
[0, 0.5 ⋅ x21 + 0.5] → [0, 5

3 ]

[0, 5
3 ]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

Strong Turn−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x21 ↦
x10 − x11 → [−2, 2]
[x10 − x11, x10 − x11] → [− 7

3 , 7
3 ]

[−2, 2] ReLU

x20 ↦

x10 + x11 → [0, 4]
[x10 + x11, x10 + x11] → [0, 8

3 ]

[0, 8
3 ]
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Product Domain [Mazzucato21]

x00

x01

x10

1

-1

1

1

0

x11

1

-1
1

1

0

x20

x30

x31

0

x21

1

1

1
0

1

-1.25

0

Clear of Conflict

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

x01 ↦
x01
[x01, x01]
[−1, 1]

x00 ↦
x00
[x00, x00]
[0, 1]

x30 ↦
x10 + x11 + x21 + 1 → [1, 20

3 ]
[x20 + x21 + 1, x20 + x21 + 1] → [1, 4 . 5]
[1, 4 . 5]

x31 ↦

x21 − 1.25 → [−1 . 25, 5
12 ]

[x21 − 1.25, x21 − 1.25] → [−1 . 25, 5
12 ]

[−1 . 25, 5
12 ]
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Other Complete Methods
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Star Sets
Exact Static Analysis Method

use union of  efficient representations of bounded convex polyhedra

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩
: center 

: basis vectors in  
: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations  neural network layers 
• inexpensive intersections with half-spaces  ReLU activations

→
→



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 110

Star Sets
Exact Static Analysis Method

use union of  efficient representations of bounded convex polyhedra

H.-D. Tran et al. - Star-Based Reachability Analysis of Deep Neural Networks (FM 2018)

Θ def= ⟨c, V, P⟩
: center 

: basis vectors in  
: predicate

c ∈ ℛn

V = {v1, …, vm} ℛn

P : ℛm → { ⊥ , ⊤ }

[[Θ]] = {x ∣ x = c +
m

∑
i=1

αivi such that P(α1, …, αm) = ⊤ }

• fast and cheap affine mapping operations  neural network layers 
• inexpensive intersections with half-spaces  ReLU activations

→
→

Follow-up Work
 
H.-D. Tran et al. - 
Verification of Deep 
Convolutional Neural 
Networks Using 
ImageStars (CAV 2020)
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ReluVal
Asymptotically Complete Method

use symbolic propagation + iterative input refinement

S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)

     safe 
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DeepPoly + Input Refinement

112

x00

x01

x10

1

-1

1

1

0

x11

1

-1

1

1

0

x20

x30

x31

0

x21

1

1

1

0

1

-1.25

0

x00 ↦ {[x00, x00]
[−1, 1]

x01 ↦ {[x01, x01]
[−1, 1]

x30 ↦ {
…
[1, 5 . 5]

x31 ↦ {
…
[−1 . 25, 0 . 75]

x00 ↦ {[x00, x00]
[0, 1]

x31 ↦ {
…
[−1 . 25, 13

12 ]

Caterina Urban

Formal Methods for Machine Learning Pipelines

VTSA 2024
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DeepPoly[Singh19] 

x00

x01

x10
1

-1

1

1

0

x11

1

-1
1

10

x20

x30

x31

0

x21
1

1

1
0

1

-1.25
0

−1 ≤ θ ≤ 1

0 ≤ ρ ≤ 1

Clear of Conflict

Strong Turn

x01 ↦ {[x01, x01]

[−1, 1]

x00 ↦ {[x00, x00]

[0, 1]

x30 ↦ {[x20 + x21 + 1, x20 + x21 + 1]

[1, 5 . 5]

x31 ↦
[x21 − 1.25, x21 − 1.25]

[−1 . 25, 13
12]

not precise enough!
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Neurify
Asymptotically Complete Method

use symbolic propagation + convex ReLU approximation +  iterative input/ReLU refinement

S. Wang et al. - Formal Security Analysis of Neural Networks Using Symbolic Intervals (USENIX Security 2018)

xi,j ↦ {[∑k c0,k ⋅ x0,k + c, ∑k d0,k ⋅ x0,k + d] c0,k, c, d0,k, d ∈ ℛ
[a, b] a, b ∈ ℛ

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[Ei,j, Ei,j]
[a, b]

xi,j ↦ {[0, 0]
[0, 0]

ReLU

ReLU

ReLU

0 ≤ a

a < 0 ∧ 0 < b

b ≤ 0

ba x

ReLU(x)

b
b − a

x ≤ ReLU(x)

ReLU(x) ≤
b
b − a

(x − a)
xi,j ↦ {[ b

b − a Ei,j, b
b − a (Ei,j − a)]

[a, b]
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Further Complete Methods

• W. Ruan, X. Huang, and M. Kwiatkowska. Reachability Analysis of Deep 
Neural Networks with Provable Guarantees. In IJCAI, 2018. 
a global optimization-based approach for verifying Lipschitz 
continuous neural networks 


• G. Singh, T. Gehr, M. Püschel, and M. Vechev. Boosting Robustness 
Certification of Neural Networks. In ICLR, 2019. 
an approach combining abstract interpretation and (mixed integer) 
linear programming



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 115

Other Incomplete Methods
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Interval Neural Networks
Abstraction-Based Method

merge neurons layer-wise  

based on partitioning strategy + 

replace weights with intervals

P. Prabhakar and Z. R. Afza - Abstraction based Output Range Analysis for Neural Networks (NeurIPS 2019)

[w
01 , w

01 ]

[ w21, w21]
[ w11, w11]

lj ≤ x0,j ≤ uj xN > 0

Related Work
 
Y. Y. Elboher et al. - An 
Abstraction-Based 
Framework for Neural 
Network Verification (CAV 
2020)
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Further Incomplete Methods

• W. Xiang, H.-D. Tran, and T. T. Johnson. Output Reachable Set Estimation 
and Verification for Multi-Layer Neural Networks. 2018. 
an approach combining simulation and linear programming 


• K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli. A Dual 
Approach to Scalable Verification of Deep Networks. In UAI, 2018. 
an approach based on duality for verifying neural networks
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Further Incomplete Methods

• E. Wong and Z. Kolter. Provable Defenses Against Adversarial Examples 
via the Convex Outer Adversarial Polytope. In ICML, 2018. 
A. Raghunathan, J. Steinhardt, and P. Liang. Certified Defenses against 
Adversarial Examples. In ICML, 2018. 
T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. 
Boning, and I. Dhillon. Towards Fast Computation of Certified Robustness 
for ReLU Networks. In ICML, 2018.  
H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Efficient 
Neural Network Robustness Certification with General Activation Functions. 
In NeurIPS, 2018. 
approaches for finding a lower bound on robustness to adversarial 
perturbations
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Further Incomplete Methods
• A. Boopathy, T.-W. Weng, P.-Y. Chen, S. Liu, and L. Daniel. CNN-Cert: An 

Efficient Framework for Certifying Robustness of Convolutional Neural 
Networks. In AAAI, 2019.  
approach focusing on convolutional neural networks


• C.-Y. Ko, Z. Lyu, T.-W. Weng, L. Daniel, N. Wong, and D. Lin. POPQORN: 
Quantifying Robustness of Recurrent Neural Networks. In ICML, 2019. 
H. Zhang, M. Shinn, A. Gupta, A. Gurfinkel, N. Le, and N. Narodytska. 
Verification of Recurrent Neural Networks for Cognitive Tasks via 
Reachability Analysis. In ECAI, 2020.  
approaches focusing on recurrent neural networks


• D. Gopinath, H. Converse, C. S. Pasareanu, and A. Taly. Property 
Inference for Deep Neural Networks. In ASE, 2019. 
an approach for inferring safety properties of neural networks
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suffer from false positives


Disadvantages 

able to scale to large models


sound often also with respect to  
floating-point arithmetic


less limited to certain  
model architectures


Advantages

Advantages 

sound and complete


Disadvantages 

soundness not typically guaranteed  
with respect to floating-point arithmetic  

do not scale to large models 

often limited to certain  
model architectures

120

Complete Methods

Incomplete Methods
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Stop Max Speed 100

+ =Stability

Safety

Fairness

Goal G3 in [Kurd03]

Goal G4 in [Kurd03]
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Fairness Verification

122

software

properties

audience

abstract interpretation
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ML Impacts Our Society
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AI used for first time in job interviews in UK to
find best applicants

 

An applicant being interviewed on their phone

By  Charles Hymas 

27 SEPTEMBER 2019 • 10:00 PM

rtificial intelligence (AI) and facial expression technology is being used

for the first time in job interviews in the UK to identify the best

candidates.

Unilever, the consumer goods giant, is among companies using AI

technology to analyse the language, tone and facial expressions of candidates

when they are asked a set of identical job questions which they film on their

mobile phone or laptop.

share
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In 2019, predictive algorithms will start to make banking fair for all

This year we will see a technology-led democratisation of access to capital for small businesses give new opportunities to every

community
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Part of  The Real-World AI Issue

ikhail Arroyo had made it out of the coma, but he was still frail
when his mother, Carmen, tried to move him in with her. The
months had been taxing: Mikhail was severely injured in a

devastating fall in 2015. He had spent time in the hospital, and by 2016
was in a nursing home where his mother visited him daily, waiting until

M

AUTOMATED BACKGROUND CHECKS ARE
DECIDING WHO’S FIT FOR A HOME
But advocates say algorithms can’t capture the
complexity of criminal records
By Colin Lecher @colinlecher  Feb 1, 2019, 8:00am EST
Illustration by Alex Castro
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Can AI Be a Fair Judge in Court?Estonia Thinks So
Estonia plans to use an artificial intelligence program to decide some

small-claims cases, part of a push to make government services
smarter.

BUSINESS
CULTURE GEAR
IDEAS SCIENCE
SECURITY

MORE SIGN IN SUBSCRIBE

Subscribe to the Series
Machine Bias: Investigating the algorithms

ON A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-
sister from school when she spotted an unlocked kid’s blue Hu!y bicycle and a silver
Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them
down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances —
which belonged to a 6-year-old boy — a woman came running after them saying, “That’s
my kid’s stu!.” Borden and her friend immediately dropped the bike and scooter and
walked away.

But it was too late — a neighbor who witnessed the heist had already called the police.
Borden and her friend were arrested and charged with burglary and petty theft for the
items, which were valued at a total of $80.

Compare their crime with a similar one:
The previous summer, 41-year-old Vernon

Machine Bias
There’s software used across the country to predict future criminals. And it’s biased

against blacks.

by Julia Angwin, Je! Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

ProPublica DonateShare on Facebook Share on Twitter Comment
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Amazon scraps secret AI recruiting tool that showed bias against women - Reuters
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Amazon scraps secret AI recruiting tool that

showed bias against women

Jeffrey Dastin

8  M I N  R E A D

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’

resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like

shoppers rate products on Amazon, some of the people said.

“Everyone wanted this holy grail,” one of the people said. “They literally wanted it to be

an engine where I’m going to give you 100 resumes, it will spit out the top five, and

we’ll hire those.”
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Dependency Fairness [Galhotra17]

'
()

***

**
)

**
(

**
)

**
(

Prediction is Independent of Sensitive Input Values
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Dependency Fairness
ℱi

def= {[[M]] ∣ UNUSEDi([[M]])}
 is the set of all neural networks M (or, rather, their semantics )  

that do not use the value of the sensitive input node  for classification
ℱi [[M]]

x0,i

UNUSEDi(T ) def= 




∀t, t′ ∈ T : t0(x0,i) ≠ t′ 0(x0,i) ∧
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
⇒ tω = t′ ω

Intuitively: inputs differing only on the value 
of the sensitive input node  should lead 
to the same classification outcome

x0,i
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Dependency Fairness
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Dependency Fairness
ℱi

def= {[[M]] ∣ UNUSEDi([[M]])}
 is the set of all neural networks M (or, rather, their semantics )  

that do not use the value of the sensitive input node  for classification
ℱi [[M]]

x0,i

UNUSEDi(T ) def= 




∀t, t′ ∈ T : t0(x0,i) ≠ t′ 0(x0,i) ∧
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
⇒ tω = t′ ω

Intuitively: inputs differing only on the value 
of the sensitive input node  should lead 
to the same classification outcome

x0,i

M ⊧ ℱi ⇔ {[[M]]} ⊆ ℱi

Theorem
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Subset-Closed Property (*)
Dependency Fairness

129

(*) ML Models are Deterministic 

()
ℱ

**
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*
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Dependency Fairness
ℱi

def= {[[M]] ∣ UNUSEDi([[M]])}
 is the set of all neural networks M (or, rather, their semantics )  

that do not use the value of the sensitive input node  for classification
ℱi [[M]]

x0,i

UNUSEDi(T ) def= 




∀t, t′ ∈ T : t0(x0,i) ≠ t′ 0(x0,i) ∧
(∀0 ≤ j ≤ |L0 | : j ≠ i ⇒ t0(x0,j) = t′ 0(x0,j))
⇒ tω = t′ ω

Intuitively: inputs differing only on the value 
of the sensitive input node  should lead 
to the same classification outcome

x0,i

M ⊧ ℱi ⇔ {[[M]]} ⊆ ℱi

Theorem

M ⊧ ℱi ⇐ [[M]] ⊆ [[M]]♮ ∈ ℱi

Corollary
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α𝕀

{[[M]]}

{[M]}𝕀
∙

[[M]]∙

{[M]}𝕀
↝

[[M]]↝

{[M]}𝕀 α∙

α∙

α↝

α↝

α𝕀

α𝕀

outcome semantics
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Outcome Semantics +partitioning a set of traces 
that satisfies dependency 
fairness with respect to the 
program outcome yields sets 
of traces that also satisfy 
dependency fairness

'
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***

()
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**
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*
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*
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Outcome Semantics

[[M]]∙

+partitioning a set of traces 
that satisfies dependency 
fairness with respect to the 
program outcome yields sets 
of traces that also satisfy 
dependency fairness
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Dependency Semantics +to reason about dependency 
fairness we do not need to 
consider all intermediate 
computations between the 
initial and final states of a trace 
(if any)

'
()

***

*
)

*
(

**
)
**
(

**
)
**
(

*
)

*
(

()
ℱ
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Dependency Semantics +to reason about dependency 
fairness we do not need to 
consider all intermediate 
computations between the 
initial and final states of a trace 
(if any)

[[M]]↝
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Dependency Semantics

'
()

***

**
)
**
(

*
)

*
(

*
)

*
(

**
)
**
(

**
)
*
)
*
(
**
(

** ****

+partitioning with respect to 
the outcome classification 
induces a partition of the 
space of values of the input 
nodes used for classification

M ⊧ ℱi ⇔ ∀A, B ∈ [[M]]↝ : (Aω ≠ Bω ⇒ A0 |≠i ∩ B0 |≠i = ∅)
Lemma

()
ℱ
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024 139

…

…

1. proceed backwards 
from all possible 
classification outcomes

2. forget the values of the 
sensitive input nodes

3. check for intersection: 
empty        fair 
otherwise       alarm 

→
→&

Naïve Backward Analysis
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Naïve Backward Analysis
x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’

x00

x01

x10 x20

x30

x31

-0.31

-0.64

-1.25

0.9
9

-0.63

x11

0.40

0.69

0.00

0.64

1.2
1

x21

0.40

0.26

0.45

1.42

0.3
3

-0.45

-0.391.88

'()

***

x30 ≥ x31 x31 ≥ x30

1.16 * x20 + 0.07 * x21 ≥ 0.901.16 * x20 + 0.07 * x21 ≤ 0.90

… …

… …

too many disjunctions!
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α𝕀

{[[M]]}

{[M]}𝕀
∙

[[M]]∙

{[M]}𝕀
↝

[[M]]↝
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outcome semantics
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Parallel Semantics
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{[M]}𝕀
↝

Parallel Semantics +partitioning a set of traces 
that satisfies dependency 
fairness with respect to the 
non-sensitive inputs yields 
sets of traces that also satisfy 
dependency fairness
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Dependency Semantics
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+partitioning with respect to 
the outcome classification 
induces a partition of the 
space of values of the input 
nodes used for classification

M ⊧ ℱi ⇔ ∀A, B ∈ [[M]]↝ : (Aω ≠ Bω ⇒ A0 |≠i ∩ B0 |≠i = ∅)
Lemma

()
ℱ

M ⊧ ℱi ⇔ ∀I ∈ 𝕀 : ∀A, B ∈ {[M]}𝕀
↝ : (AI

ω ≠ BI
ω ⇒ AI

0 |≠i ∩ BI
0 |≠i = ∅)

Lemma
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Forward and Backward Analysis

…

…

…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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Forward and Backward Analysis

…

…

3. proceed backwards for 
each activation pattern

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns
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Abstract Interpretation Recipe

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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…

…

1. partition the space of values of the non-sensitive input nodes

2. proceed forwards from all 
partitions to find: 
• already       fair partitions
• activation patterns

U

L

Iterative Forward Analysis
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x00 = input() 
x01 = input() 
 
x10 = -0.31 * x00 + 0.99 * x01 + (-0.63) 
x11 = -1.25 * x00 + (-0.64) * x01 + 1.88   

x10 = 0 if x10 < 0 else x10 
x11 = 0 if x11 < 0 else x11 
 
x20 = 0.40 * x10 + 1.21 * x11 + 0.00 
x21 = 0.64 * x10 + 0.69 * x11 + (-0.39) 
  
x20 = 0 if x20 < 0 else x20 
x21 = 0 if x21 < 0 else x21 
 
x30 = 0.26 * x20 + 0.33 * x21 + 0.45 
X31 = 1.42 * x20 + 0.40 * x21 + (-0.45) 
 
return ‘      ’ if x31 < 30 else ‘      ’
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Libra caterinaurban / Libra
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 2 branches  0 tags

README.md

Libra

Nowadays, machine-learned software plays an increasingly important role in critical
decision-making in our social, economic, and civic lives.

About

No description or website
provided.

# abstract-interpretation

# static-analysis

# machine-learning

# neural-networks  # fairness

 Readme

 MPL-2.0 License

Releases

No releases published

Packages

No packages published 

Languages

Python 98.7%

Shell 1.3%

 master Go to file  Code 

caterinaurban README 9f830db on Aug 8  53 commits

src RQ5 and RQ6 reproducibility 4 months ago

.gitignore RQ1 reproducibility 4 months ago

LICENSE Initial prototype 2 years ago

README.md RQ5 and RQ6 reproducibility 4 months ago

README.pdf README 4 months ago

icon.png icon 4 months ago

libra.png icon 4 months ago

requirements.txt some documentation 4 months ago

setup.py some documentation 4 months ago
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Scalability-vs-Precision Tradeoff
Japanese Credit Screening Dataset
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1:20 Anon.

Table 5. Comparison of Different Analysis Configurations (Japanese Credit Screening) — 12 CPUs

L U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 15.28% 37 0 0 8s 58.33% 79 8 20 1m 26s 69.79% 115 10 39 3m 18s
6 17.01% 39 6 6 51s 69.10% 129 22 61 5m 41s 80.56% 104 23 51 7m 53s
8 51.39% 90 28 85 12m 2s 82.64% 88 31 67 12m 35s 91.32% 84 27 56 19m 33s0.5
10 79.86% 89 34 89 34m 15s 93.06% 98 40 83 42m 32s 96.88% 83 29 58 43m 39s
4 59.09% 1115 20 415 54m 32s 95.94% 884 39 484 54m 31s 98.26% 540 65 293 14m 29s
6 83.77% 1404 79 944 37m 19s 98.68% 634 66 376 23m 31s 99.70% 322 79 205 13m 25s
8 96.07% 869 140 761 1h 7m 29s 99.72% 310 67 247 1h 3m 33s 99.98% 247 69 177 22m 52s0.25
10 99.54% 409 93 403 1h 35m 20s 99.98% 195 52 176 1h 2m 13s 100.00% 111 47 87 34m 56s
4 97.13% 12449 200 9519 3h 33m 48s 99.99% 1101 60 685 47m 46s 99.99% 768 81 415 19m 1s
6 99.83% 5919 276 4460 3h 23m 100.00% 988 77 606 26m 47s 100.00% 489 80 298 16m 54s
8 99.98% 1926 203 1568 2h 14m 25s 100.00% 404 73 309 46m 31s 100.00% 175 57 129 20m 11s0.125
10 100.00% 428 95 427 1h 39m 31s 100.00% 151 53 141 57m 32s 100.00% 80 39 62 28m 33s
4 100.00% 19299 295 15446 6h 13m 24s 100.00% 1397 60 885 40m 5s 100.00% 766 87 425 16m 41s
6 100.00% 4843 280 3679 2h 24m 7s 100.00% 763 66 446 35m 24s 100.00% 401 81 242 32m 29s
8 100.00% 1919 208 1567 2h 9m 59s 100.00% 404 73 309 45m 48s 100.00% 193 68 144 24m 16s0
10 100.00% 486 102 475 1h 41m 3s 100.00% 217 55 192 1h 2m 11s 100.00% 121 50 91 30m 53s

had no activation patterns to explore; this implies that the entire covered input space (i.e., the
percentage shown in the input column) was already certified to be fair by the forward analysis.
Overall, we observe that whenever the analyzed input space is small enough (i.e., queries D − F ),

the size of the neural network has little influence on the input space coverage and slightly impacts
the analysis running time, independently of the domain used for the forward pre-analysis. Instead,
for larger analyzed input spaces (i.e., queries A − C) performance degrades quickly for larger
neural networks. These results thus support our claim. Again, as expected, we observe that the
symbolic domain generally is the better choice for the forward pre-analysis, in particular for
queries exercising a larger input space or larger neural networks.

RQ5: Scalability-vs-Precision Tradeoff. To evaluate the effect of the analysis budget (bounds
L and U), we analyzed a model using different budget configurations. For this experiment, we used
the Japanese Credit Screening8 dataset, which we made fair with respect to gender. Our 2-class
model (17 inputs and 4 hidden layers with 5 nodes each) had a classification accuracy of 86%. Note
that accuracy does not increase by adding more layers or nodes per layer, in fact, it may significantly
decrease — we tried up to 100 hidden layers with 100 nodes each.

Table 5 shows the results of the analysis for different budget configurations and choices for the
domain used for the forward pre-analysis. The best configuration in terms of input-space coverage
and analysis running time is highlighted. The symbol next to each domain name introduces the
marker used in the scatter plot of Figure 3a, which visualizes the coverage and running time.
Figure 3b zooms on 90.00% ≤ input and 1000s ≤ time ≤ 1000s .
Overall, we observe that the more precise symbolic and deeppoly domains boost input coverage,

most noticeably for configurations with a larger L. This additional precision does not always result
in longer running times. In fact, a more precise pre-analysis often reduces the overall running
time. This is because the pre-analysis is able to prove that more partitions are already fair without
requiring them to go through the backward analysis (cf. columns |F|).
Independently of the chosen domain for the forward pre-analysis, as expected, a larger U or a

smaller L increase precision. Increasing U or L typically reduces the number of completed partitions
(cf. columns |C|). Consequently, partitions tend to be more complex, requiring both forward and
backward analyses. Since the backward analysis tends to dominate the running time, more partitions
8https://archive.ics.uci.edu/ml/datasets/Japanese+Credit+Screening

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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17 inputs
4 HL * 5 N
2 classes  
86% accuracy

Scalability-vs-Precision Tradeoff
Japanese Credit Screening Dataset
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German Credit Dataset (L = 0)
Seeded Bias
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Seeded Bias
German Credit Dataset (L = 0)

17 inputs
4 HL * 5 N
2 classes  
71% accuracy

17 inputs
4 HL * 5 N
2 classes  
65% accuracy
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Table 9. Analysis of Neural Networks Trained on Fair and {Age, Credit > 1000}-Biased Data (German Credit
Data) — Full Table (deeppoly Domain)

credit
deeppoly

fair data biased data
U bias |C| |F| time U bias |C| |F| time
8 0.33% 170 21 25 3m 40s 8 0.79% 260 42 53 5m 42s
6 0.17% 211 10 10 4m 5s 4 0.31% 218 9 20 1m 6s
2 0.09% 176 4 5 14s 12 0.82% 271 53 61 18m 18s
7 0.15% 212 9 9 1m 31s 4 0.42% 242 21 28 1m 36s
3 0.23% 217 8 15 32s 10 0.95% 260 42 67 3m 2s
12 0.30% 213 17 23 5m 45s 2 0.41% 226 20 26 1m 56s
6 0.20% 193 11 11 52s 3 0.48% 228 19 34 39s

≤ 1000

5 0.16% 193 9 10 10s 1 0.09% 206 5 5 51s
min 0.09% 10s 0.09% 39s

median 0.19% 1m 12s 0.45% 1m 46s
max 0.33% 5m 45s 0.95% 18m 18s

10 12.08% 321 85 150 10m 30s 11 27.59% 498 234 333 1h 16m 41s
11 7.43% 329 75 125 22m 33s 7 30.77% 394 70 228 6m 34s
2 2.21% 217 15 16 39s 7 33.17% 435 185 327 6h 51m 50s
10 4.29% 239 24 33 4m 4s 6 16.45% 448 162 260 18m 25s
4 9.73% 268 29 87 4m 0s 13 30.17% 418 141 332 43m 12s
14 14.96% 403 116 231 1h 9m 45s 5 17.24% 460 91 217 12m 53s
7 5.83% 313 92 115 4m 17s 8 19.23% 363 79 189 7m 24s

> 1000

9 4.61% 264 50 74 5m 38s 2 4.52% 331 45 95 4m 44s
min 2.21% 39s 4.52% 4m 44s

median 6.63% 4m 58s 23.41% 15m 39s
max 14.96% 1h 9m 45s 31.17% 6h 51m 50s

F.2 RQ2: Answering Bias Queries
Table 10, 11 and 12 show the analysis results for all eight models trained on the compas dataset
from ProPublica. All columns are shown as before and, again, we highlighted across all tables the
choice of the abstract domain that entailed the shortest analysis time.

F.3 RQ6: Leveraging Multiple CPUs.
Table 13 shows the results of the experiment with the Japanese Credit Screening dataset on 24 vCPU.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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ProPublica COMPAS Dataset (L = 0)
Bias Queries

154
34

Bias Queries
ProPublica COMPAS Dataset (L = 0)
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19 inputs
4 HL * 5 N
3 classes
55% | 56% accuracy
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Perfectly Parallel Causal-Fairness Certification of Neural Networks 1:33

Table 12. Queries on Neural Networks Trained on Fair and Race-Biased Data (ProPublica’s compas Data) —
Full Table (deeppoly Domain)

qery
deeppoly

fair data biased data
U bias |C| |F| time U bias |C| |F| time
10 0.23% 71 18 20 1h 11m 43s 10 0.83% 43 15 33 2h 5m 5s
10 0.75% 33 14 16 10m 33s 10 6.48% 63 25 34 8m 46s
10 0.22% 34 17 22 52m 29s 10 1.15% 33 10 14 11m 58s
10 0.24% 118 28 29 42m 2s 10 0.42% 31 13 30 10m 51s
10 0.31% 117 49 54 1h 0m 2s 10 0.12% 37 11 16 18m 18s
10 0.33% 59 18 21 53m 29s 10 2.27% 33 16 24 1h 4m 35s
10 1.19% 39 17 23 9m 39s 10 3.41% 133 92 102 33m 43s

age < 25
race bias?

10 2.12% 33 17 31 5m 18s 10 0.18% 33 12 17 14m 58s
min 0.22% 5m 18s 0.12% 8m 46s

median 0.32% 47m 16s 0.99% 16m 38s
max 2.12% 1h 11m 43s 6.48% 2h 5m 5s

10 3.86% 242 96 180 2h 30m 23s 10 5.22% 204 65 180 3h 25m 21s
10 8.84% 100 45 77 19m 47s 10 12.38% 387 152 318 40m 49s
10 8.14% 204 47 143 28m 12s 10 7.10% 181 63 142 20m 51s
10 2.70% 563 168 232 1h 49m 9s 10 6.90% 96 23 95 1h 21m 37s
10 4.65% 545 280 415 1h 33m 36s 10 6.14% 157 62 110 27m 43s
10 5.77% 217 68 154 1h 35m 25s 10 8.10% 345 61 284 47m 9s
10 7.76% 252 62 226 23m 10s 10 6.78% 251 141 223 50m 13s

male
age bias?

10 8.70% 267 90 266 53m 26s 10 12.88% 257 124 228 47m 46s
min 2.70% 19m 47s 5.22% 20m 51s

median 6.77% 1h 13m 31s 7.00% 47m 28s
max 8.84% 2h 20m 23s 12.88% 3h 25m 21s

11 2.18% 106 21 53 2h 32m 44s 11 2.92% 86 26 69 2h 26m 20s
7 3.66% 105 38 55 18m 26s 11 6.95% 108 33 71 15m 29s
11 2.73% 100 32 57 39m 5s 14 4.43% 69 12 51 1h 47m 5s
17 2.19% 101 28 57 16h 19m 14s 7 3.40% 83 21 82 20m 1s
19 3.17% 86 30 53 52h 10m 2s 13 3.09% 96 24 58 1h 8m 4s
11 2.45% 94 26 52 2h 18m 42s 14 5.79% 99 45 87 1h 51m 2s
15 3.94% 87 29 52 2h 39m 18s 17 5.10% 110 73 94 17h 48m 22s

caucasian
priors bias?

15 5.36% 90 35 89 3h 41m 16s 14 3.99% 97 38 65 1h 21m 8s
min 2.18% 18m 26s 2.92% 15m 29s

median 2.95% 2h 36m 1s 4.21% 1h 34m 7s
max 5.36% 52h 10m 2s 6.95% 17h 48m 22s

Table 13. Comparison of Different Analysis Configurations (Japanese Credit Screening) — 24 vCPUs

L U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 15.28% 36 0 0 7s 58.33% 120 7 34 3m 32s 69.79% 75 10 27 2m 43s
6 17.01% 39 6 7 49s 69.10% 80 21 40 4m 19s 80.56% 138 26 65 12m 27s
8 51.39% 92 30 86 12m 27s 82.64% 96 32 76 14m 13s 91.32% 89 36 61 13m 33s0.5
10 79.86% 89 34 89 29m 41s 93.06% 91 37 83 47m 1s 96.88% 73 33 52 30m
4 59.09% 1320 21 433 57m 33s 95.94% 656 42 340 32m 38s 98.26% 488 65 272 14m 11s
6 83.77% 1600 80 1070 1h 6m 58s 98.68% 516 61 287 18m 6s 99.70% 286 77 182 13m 14s
8 96.07% 1148 141 969 2h 41m 1s 99.72% 260 58 207 28m 57s 99.98% 241 70 175 29m 27s0.25
10 99.54% 409 93 403 1h 38m 38s 99.98% 213 50 189 1h 16m 11s 100.00% 88 42 68 20m 25s
4 97.13% 12449 203 9519 3h 59m 27s 99.99% 1101 59 685 1h 2m 58s 99.99% 892 86 493 18m 4s
6 99.83% 4198 266 3234 2h 31m 54s 100.00% 759 73 461 51m 28s 100.00% 563 108 344 40m 35s
8 99.98% 1741 217 1488 2h 16m 27s 100.00% 308 67 242 33m 14s 100.00% 230 67 167 22m 36s0.125
10 100.00% 582 97 564 2h 16m 13s 100.00% 180 56 154 1h 5m 59s 100.00% 80 39 62 30m 18s
4 100.00% 16018 288 12964 5h 3m 18s 100.00% 1883 63 1196 1h 52m 25s 100.00% 804 90 442 19m 47s
6 100.00% 4675 279 3503 3h 2m 30s 100.00% 632 71 371 38m 3s 100.00% 302 75 189 19m 51s
8 100.00% 1609 217 1382 2h 7m 9s 100.00% 326 67 252 1h 12s 100.00% 194 68 148 26m 9s0
10 100.00% 463 99 460 2h 12m 12s 100.00% 217 55 192 1h 13m 55s 100.00% 130 48 98 50m 10s

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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Scalability wrt Model Size
Adult Census Dataset (L = 0.5)
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Scalability wrt Neural Network Size
Adult Census Dataset (L = 0.5)
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Perfectly Parallel Causal-Fairness Certification of Neural Networks 1:17

Table 3. Comparison of Different Model Structures (Adult Census Data)

|M| U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 88.26% 1482 77 1136 33m 55s 95.14% 1132 65 686 19m 5s 93.99% 1894 77 992 29m 55s
6 99.51% 769 51 723 1h 10m 25s 99.93% 578 47 447 39m 8s 99.83% 1620 54 1042 1h 24m 24s
8 100.00% 152 19 143 3h 47m 23s 100.00% 174 18 146 1h 51m 2s 100.00% 1170 26 824 8h 2m 27s

10

10 100.00% 1 1 1 55m 58s 100.00% 1 1 1 56m 8s 100.00% 1 1 1 56m 43s
4 49.83% 719 9 329 13m 43s 72.29% 1177 11 559 24m 9s 60.52% 1498 14 423 10m 32s
6 72.74% 1197 15 929 2h 6m 49s 98.54% 333 7 195 20m 46s 66.46% 1653 17 594 15m 44s
8 98.68% 342 9 284 1h 46m 43s 98.78% 323 9 190 1h 27m 18s 70.87% 1764 18 724 2h 19m 11s

12

10 99.06% 313 7 260 1h 21m 47s 99.06% 307 5 182 1h 13m 55s 80.76% 1639 18 1007 3h 22m 11s
4 38.92% 1044 18 39 2m 6s 51.01% 933 31 92 15m 28s 49.62% 1081 34 79 3m 2s
6 46.22% 1123 62 255 20m 51s 61.60% 916 67 405 44m 40s 59.20% 1335 90 356 22m 13s
8 64.24% 1111 96 792 2h 24m 51s 74.27% 1125 78 780 3h 26m 20s 69.69% 1574 127 652 5h 6m 7s

20

10 85.90% 1390 71 1339 >13h 89.27% 1435 60 1157 >13h 76.25% 1711 148 839 4h 36m 23s
4 0.35% 10 0 0 1m 39s 34.62% 768 1 1 6m 56s 26.39% 648 2 3 10m 11s
6 0.35% 10 0 0 1m 38s 34.76% 817 4 5 43m 53s 26.74% 592 8 10 1h 23m 11s
8 0.42% 12 1 2 14m 37s 35.56% 840 21 28 2h 48m 15s 27.74% 686 32 42 2h 43m 2s

40

10 0.80% 23 10 13 1h 48m 43s 37.19% 880 50 75 11h 32m 21s 30.56% 699 83 121 >13h
4 1.74% 50 0 0 1m 38s 41.98% 891 14 49 10m 14s 36.60% 805 6 8 2m 47s
6 2.50% 72 3 22 4m 35s 45.00% 822 32 143 45m 42s 38.06% 847 25 50 5m 7s
8 9.83% 282 25 234 25m 30s 47.78% 651 46 229 1h 14m 5s 42.53% 975 74 180 25m 1s

45

10 18.68% 522 33 488 1h 51m 24s 49.62% 714 51 294 3h 23m 20s 48.68% 1087 110 373 1h 58m 34s

models trained on biased data. This bias is intended and present in the original data: as one would
expect, recidivism risk differs for different numbers of priors. Overall, these results demonstrate the
effectiveness of our analysis in answering specific bias queries.

For each line in Table 2, we highlighted the choice of abstract domain that entailed the shortest
analysis time. We observe that deeppoly seems generally the better choice. The difference in
performance becomes more striking as the analyzed input space becomes smaller, i.e., for QC . This
is because deeppoly is specifically designed for proving local robustness of neural networks. Thus,
our input partitioning, in addition to allowing for parallelism, is also enabling analyses designed
for local properties to prove global properties, like causal fairness.

The analysis results for all models are shown in the appendix (see Tables 10, 11, and 12).

RQ3: Effect of Model Structure on Scalability. To evaluate the effect of the model structure
on the scalability of our analysis, we trained models on the Adult Census dataset6 by varying
the number of layers and nodes per layer. The dataset assigns a yearly income (> or ≤ USD 50K)
based on personal attributes such as gender, race, and occupation. We trained all models (with 23
inputs) on a fair dataset with respect to gender and ensured that each model reached a minimum
classification accuracy of 78%. Accuracy does not increase by adding more layers or nodes per layer,
in fact, it may significantly decrease — we tried up to 100 hidden layers with 100 nodes each.
Table 3 shows the results. The first column (|M|) shows the total number of hidden nodes and

introduces the marker symbols used in the scatter plot of Figure 2 (to identify the domain used for
the forward pre-analysis: left, center, and right symbols respectively refer to the boxes, symbolic,
and deeppoly domains). The models have the following number of hidden layers and nodes per
layer (from top to bottom): 2 and 5; 4 and 3; 4 and 5; 4 and 10; 9 and 5.

Column U shows the chosen upper bound for the analysis. For each model, we tried four different
choices of U. Column input shows the input-space coverage, i.e., the percentage of the input space
that was completed by the analysis. Column |C| shows the total number of analyzed (i.e., completed)
input space partitions. Column |F| shows the total number of abstract activation patterns (left) and
feasible input partitions (right) that the backward analysis had to explore. The difference between
|C| and the number of partitions shown in |F| are the input partitions that the pre-analysis found
6https://archive.ics.uci.edu/ml/datasets/adult
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Table 4. Comparison of Different Input Space Sizes and Model Structures (Adult Census Data)

|M| qery boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

F 100.000% 100.000% 100.000%

0.009% 0.009%
9 2 3 3m 3s

0.009%
5 1 2 3m 5s

0.009%
3 1 1 2m 33s

E 99.996% 100.000% 100.000%

0.104% 0.104%
83 9 39 3m 13s

0.104%
26 3 9 3m 8s

0.104%
22 3 9 2m 38s

D 99.978% 100.000% 100.000%

1.042% 1.042%
457 13 176 5m

1.042%
292 9 63 4m 50s

1.042%
287 6 65 5m 14s

C 99.696% 100.000% 100.000%

8.333% 8.308%
3173 20 1211 36m 12s

8.333%
2668 13 417 17m 40s

8.333%
2887 10 519 29m 52s

B 97.318% 99.991% 99.978%

50% 48.659%
15415 61 5646 1h 39m 36s

49.996%
12617 34 2112 1h 1m 19s

49.989%
13973 24 2405 1h 14m 19s

A 94.032% 99.935% 99.896%

20

100% 94.032%
18642 70 8700 2h 30m 46s

99.935%
15445 40 3481 1h 29m

99.896%
17784 39 4076 1h 47m 7s

F 99.931% 99.961% 99.957%

0.009% 0.009%
11 0 0 3m 5s

0.009%
17 0 0 3m 2s

0.009%
10 0 0 2m 36s

E 99.583% 99.783% 99.753%

0.104% 0.104%
61 0 0 3m 6s

0.104%
89 0 0 3m 10s

0.104%
74 0 0 2m 44s

D 97.917% 99.258% 98.984%

1.042% 1.020%
151 0 0 2m 56s

1.034%
297 0 0 3m 41s

1.031%
477 0 0 2m 58s

C 83.503% 95.482% 93.225%

8.333% 6.958%
506 2 3 2h 1m

7.956%
885 25 34 >13h

7.768%
1145 23 33 12h 57m 37s

B 25.634% 76.563% 63.906%

50% 12.817%
5516 7 11 1h 28m 6s

38.281%
4917 123 182 >13h

31.953%
7139 117 152 >13h

A 0.052% 61.385% 43.698%

80

100% 0.052%
12 0 0 25m 51s

61.385%
5156 73 102 10h 25m 2s

43.698%
4757 68 88 >13h

F 99.931% 99.944% 99.931%

0.009% 0.009%
6 0 0 3m 15s

0.009%
9 0 0 3m 35s

0.009%
6 0 0 3m 30s

E 99.583% 99.627% 99.583%

0.104% 0.104%
121 0 0 3m 39s

0.104%
120 0 0 6m 34s

0.104%
31 0 0 4m 22s

D 97.917% 98.247% 97.917%

1.042% 1.020%
151 0 0 6m 18s

1.024%
597 0 0 21m 9s

1.020%
301 0 0 9m 35s

C 83.333% 88.294% 83.342%

8.333% 6.944%
120 0 0 30m 37s

7.358%
755 0 0 1h 36m 35s

6.945%
483 0 0 52m 29s

B 25.000% 46.063% 25.074%

50% 12.500%
5744 0 0 2h 24m 36s

23.032%
4676 0 0 7h 25m 57s

12.537%
5762 4 4 >13h

A 0.000% 24.258% 0.017%

320

100% 0.000%
0 0 0 2h 54m 25s

24.258%
2436 0 0 9h 41m 36s

0.017%
4 0 0 5h 3m 33s

F 99.931% 99.948% 99.931%

0.009% 0.009%
11 0 0 7m 35s

0.009%
10 0 0 24m 42s

0.009%
6 0 0 7m 6s

E 99.583% 99.674% 99.583%

0.104% 0.104%
31 0 0 15m 49s

0.104%
71 0 0 51m 52s

0.104%
31 0 0 15m 14s

D 97.917% 98.668% 97.917%

1.042% 1.020%
151 0 0 1h 49s

1.028%
557 0 0 3h 31m 45s

1.020%
301 0 0 1h 3m 33s

C 83.333% 83.333%

8.333% 6.944%
481 0 0 7h 11m 39s − − − − >13h

6.944%
481 0 0 7h 12m 57s

B
50%

− − − − >13h − − − − >13h − − − − >13h

A

1280

100%
− − − − >13h − − − − >13h − − − − >13h

B: A ∧ age8 ≤ 53.5 queried input space: 50.00%
C: B ∧ race = white queried input space: 8.333% (3 race choices)
D: C ∧work class = private queried input space: 1.043% (4 work class choices)
E: D ∧marital status = single queried input space: 0.104% (5 marital status choices)
F : E ∧ occupation = blue-collar queried input space: 0.009% (6 occupation choices)

For the analysis budget, we used L = 0.25, U = 0.1 ∗ |M|, and a time limit of 13h. Column input
shows, for each domain used for the forward pre-analysis, the coverage of the queried input space
(i.e., the percentage of the input space that satisfies the query and was completed by the analysis)
and the corresponding input-space coverage (i.e., the same percentage but this time scaled to the
entire input space). Columns U, |C|, |F|, and time are as before. Where a timeout is indicated (i.e.,
time > 13h) and the values for the input, |C|, and |F| columns are missing, it means that the
timeout occurred during the pre-analysis; otherwise, it happened during the backward analysis.
For each model and query, we highlighted the configuration (i.e., the abstract domain used for the
8This corresponds to aдe ≤ 0.5 with min-max scaling between 0 and 1.
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F : E ∧ occupation = blue-collar queried input space: 0.009% (6 occupation choices)

For the analysis budget, we used L = 0.25, U = 0.1 ∗ |M|, and a time limit of 13h. Column input
shows, for each domain used for the forward pre-analysis, the coverage of the queried input space
(i.e., the percentage of the input space that satisfies the query and was completed by the analysis)
and the corresponding input-space coverage (i.e., the same percentage but this time scaled to the
entire input space). Columns U, |C|, |F|, and time are as before. Where a timeout is indicated (i.e.,
time > 13h) and the values for the input, |C|, and |F| columns are missing, it means that the
timeout occurred during the pre-analysis; otherwise, it happened during the backward analysis.
For each model and query, we highlighted the configuration (i.e., the abstract domain used for the
8This corresponds to aдe ≤ 0.5 with min-max scaling between 0 and 1.
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Table 3. Comparison of Different Model Structures (Adult Census Data)

|M| U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 88.26% 1482 77 1136 33m 55s 95.14% 1132 65 686 19m 5s 93.99% 1894 77 992 29m 55s
6 99.51% 769 51 723 1h 10m 25s 99.93% 578 47 447 39m 8s 99.83% 1620 54 1042 1h 24m 24s
8 100.00% 152 19 143 3h 47m 23s 100.00% 174 18 146 1h 51m 2s 100.00% 1170 26 824 8h 2m 27s

10

10 100.00% 1 1 1 55m 58s 100.00% 1 1 1 56m 8s 100.00% 1 1 1 56m 43s
4 49.83% 719 9 329 13m 43s 72.29% 1177 11 559 24m 9s 60.52% 1498 14 423 10m 32s
6 72.74% 1197 15 929 2h 6m 49s 98.54% 333 7 195 20m 46s 66.46% 1653 17 594 15m 44s
8 98.68% 342 9 284 1h 46m 43s 98.78% 323 9 190 1h 27m 18s 70.87% 1764 18 724 2h 19m 11s

12

10 99.06% 313 7 260 1h 21m 47s 99.06% 307 5 182 1h 13m 55s 80.76% 1639 18 1007 3h 22m 11s
4 38.92% 1044 18 39 2m 6s 51.01% 933 31 92 15m 28s 49.62% 1081 34 79 3m 2s
6 46.22% 1123 62 255 20m 51s 61.60% 916 67 405 44m 40s 59.20% 1335 90 356 22m 13s
8 64.24% 1111 96 792 2h 24m 51s 74.27% 1125 78 780 3h 26m 20s 69.69% 1574 127 652 5h 6m 7s

20

10 85.90% 1390 71 1339 >13h 89.27% 1435 60 1157 >13h 76.25% 1711 148 839 4h 36m 23s
4 0.35% 10 0 0 1m 39s 34.62% 768 1 1 6m 56s 26.39% 648 2 3 10m 11s
6 0.35% 10 0 0 1m 38s 34.76% 817 4 5 43m 53s 26.74% 592 8 10 1h 23m 11s
8 0.42% 12 1 2 14m 37s 35.56% 840 21 28 2h 48m 15s 27.74% 686 32 42 2h 43m 2s

40

10 0.80% 23 10 13 1h 48m 43s 37.19% 880 50 75 11h 32m 21s 30.56% 699 83 121 >13h
4 1.74% 50 0 0 1m 38s 41.98% 891 14 49 10m 14s 36.60% 805 6 8 2m 47s
6 2.50% 72 3 22 4m 35s 45.00% 822 32 143 45m 42s 38.06% 847 25 50 5m 7s
8 9.83% 282 25 234 25m 30s 47.78% 651 46 229 1h 14m 5s 42.53% 975 74 180 25m 1s

45

10 18.68% 522 33 488 1h 51m 24s 49.62% 714 51 294 3h 23m 20s 48.68% 1087 110 373 1h 58m 34s

models trained on biased data. This bias is intended and present in the original data: as one would
expect, recidivism risk differs for different numbers of priors. Overall, these results demonstrate the
effectiveness of our analysis in answering specific bias queries.

For each line in Table 2, we highlighted the choice of abstract domain that entailed the shortest
analysis time. We observe that deeppoly seems generally the better choice. The difference in
performance becomes more striking as the analyzed input space becomes smaller, i.e., for QC . This
is because deeppoly is specifically designed for proving local robustness of neural networks. Thus,
our input partitioning, in addition to allowing for parallelism, is also enabling analyses designed
for local properties to prove global properties, like causal fairness.

The analysis results for all models are shown in the appendix (see Tables 10, 11, and 12).

RQ3: Effect of Model Structure on Scalability. To evaluate the effect of the model structure
on the scalability of our analysis, we trained models on the Adult Census dataset6 by varying
the number of layers and nodes per layer. The dataset assigns a yearly income (> or ≤ USD 50K)
based on personal attributes such as gender, race, and occupation. We trained all models (with 23
inputs) on a fair dataset with respect to gender and ensured that each model reached a minimum
classification accuracy of 78%. Accuracy does not increase by adding more layers or nodes per layer,
in fact, it may significantly decrease — we tried up to 100 hidden layers with 100 nodes each.
Table 3 shows the results. The first column (|M|) shows the total number of hidden nodes and

introduces the marker symbols used in the scatter plot of Figure 2 (to identify the domain used for
the forward pre-analysis: left, center, and right symbols respectively refer to the boxes, symbolic,
and deeppoly domains). The models have the following number of hidden layers and nodes per
layer (from top to bottom): 2 and 5; 4 and 3; 4 and 5; 4 and 10; 9 and 5.

Column U shows the chosen upper bound for the analysis. For each model, we tried four different
choices of U. Column input shows the input-space coverage, i.e., the percentage of the input space
that was completed by the analysis. Column |C| shows the total number of analyzed (i.e., completed)
input space partitions. Column |F| shows the total number of abstract activation patterns (left) and
feasible input partitions (right) that the backward analysis had to explore. The difference between
|C| and the number of partitions shown in |F| are the input partitions that the pre-analysis found
6https://archive.ics.uci.edu/ml/datasets/adult
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expect, recidivism risk differs for different numbers of priors. Overall, these results demonstrate the
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For each line in Table 2, we highlighted the choice of abstract domain that entailed the shortest
analysis time. We observe that deeppoly seems generally the better choice. The difference in
performance becomes more striking as the analyzed input space becomes smaller, i.e., for QC . This
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L U Intervals Symbolic DeepPoly Neurify Product

0.5
3 37,9 % 48,8 % 48,9 % 46,5 % 59,2 %
5 41,0 % 56,1 % 56,3 % 53,1 % 68,2 %

0.25
3 70,6 % 83,6 % 81,8 % 81,4 % 87,0 %
5 83,1 % 91,7 % 91,6 % 92,3 % 95,5 %

L U Intervals Symbolic DeepPoly Neurify Product

0.5
3 47s 60s 96s 37s 119s

5 246s 736s 557s 362s 835s

0.25
3 498s 554s 396s 420s 534s

5 3369s 2674s 2840s 2920s 3716s

+ 10,3%

+ 11,9%

+ 3,4%

+ 3,2%

+ 23-59s

+ 99-278s

- 20s / + 36-138s

+ 796-1042s 
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Adult Census Dataset (L = 0.5)
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Table 3. Comparison of Different Model Structures (Adult Census Data)

|M| U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 88.26% 1482 77 1136 33m 55s 95.14% 1132 65 686 19m 5s 93.99% 1894 77 992 29m 55s
6 99.51% 769 51 723 1h 10m 25s 99.93% 578 47 447 39m 8s 99.83% 1620 54 1042 1h 24m 24s
8 100.00% 152 19 143 3h 47m 23s 100.00% 174 18 146 1h 51m 2s 100.00% 1170 26 824 8h 2m 27s

10

10 100.00% 1 1 1 55m 58s 100.00% 1 1 1 56m 8s 100.00% 1 1 1 56m 43s
4 49.83% 719 9 329 13m 43s 72.29% 1177 11 559 24m 9s 60.52% 1498 14 423 10m 32s
6 72.74% 1197 15 929 2h 6m 49s 98.54% 333 7 195 20m 46s 66.46% 1653 17 594 15m 44s
8 98.68% 342 9 284 1h 46m 43s 98.78% 323 9 190 1h 27m 18s 70.87% 1764 18 724 2h 19m 11s

12

10 99.06% 313 7 260 1h 21m 47s 99.06% 307 5 182 1h 13m 55s 80.76% 1639 18 1007 3h 22m 11s
4 38.92% 1044 18 39 2m 6s 51.01% 933 31 92 15m 28s 49.62% 1081 34 79 3m 2s
6 46.22% 1123 62 255 20m 51s 61.60% 916 67 405 44m 40s 59.20% 1335 90 356 22m 13s
8 64.24% 1111 96 792 2h 24m 51s 74.27% 1125 78 780 3h 26m 20s 69.69% 1574 127 652 5h 6m 7s

20

10 85.90% 1390 71 1339 >13h 89.27% 1435 60 1157 >13h 76.25% 1711 148 839 4h 36m 23s
4 0.35% 10 0 0 1m 39s 34.62% 768 1 1 6m 56s 26.39% 648 2 3 10m 11s
6 0.35% 10 0 0 1m 38s 34.76% 817 4 5 43m 53s 26.74% 592 8 10 1h 23m 11s
8 0.42% 12 1 2 14m 37s 35.56% 840 21 28 2h 48m 15s 27.74% 686 32 42 2h 43m 2s

40

10 0.80% 23 10 13 1h 48m 43s 37.19% 880 50 75 11h 32m 21s 30.56% 699 83 121 >13h
4 1.74% 50 0 0 1m 38s 41.98% 891 14 49 10m 14s 36.60% 805 6 8 2m 47s
6 2.50% 72 3 22 4m 35s 45.00% 822 32 143 45m 42s 38.06% 847 25 50 5m 7s
8 9.83% 282 25 234 25m 30s 47.78% 651 46 229 1h 14m 5s 42.53% 975 74 180 25m 1s

45

10 18.68% 522 33 488 1h 51m 24s 49.62% 714 51 294 3h 23m 20s 48.68% 1087 110 373 1h 58m 34s

models trained on biased data. This bias is intended and present in the original data: as one would
expect, recidivism risk differs for different numbers of priors. Overall, these results demonstrate the
effectiveness of our analysis in answering specific bias queries.

For each line in Table 2, we highlighted the choice of abstract domain that entailed the shortest
analysis time. We observe that deeppoly seems generally the better choice. The difference in
performance becomes more striking as the analyzed input space becomes smaller, i.e., for QC . This
is because deeppoly is specifically designed for proving local robustness of neural networks. Thus,
our input partitioning, in addition to allowing for parallelism, is also enabling analyses designed
for local properties to prove global properties, like causal fairness.

The analysis results for all models are shown in the appendix (see Tables 10, 11, and 12).

RQ3: Effect of Model Structure on Scalability. To evaluate the effect of the model structure
on the scalability of our analysis, we trained models on the Adult Census dataset6 by varying
the number of layers and nodes per layer. The dataset assigns a yearly income (> or ≤ USD 50K)
based on personal attributes such as gender, race, and occupation. We trained all models (with 23
inputs) on a fair dataset with respect to gender and ensured that each model reached a minimum
classification accuracy of 78%. Accuracy does not increase by adding more layers or nodes per layer,
in fact, it may significantly decrease — we tried up to 100 hidden layers with 100 nodes each.
Table 3 shows the results. The first column (|M|) shows the total number of hidden nodes and

introduces the marker symbols used in the scatter plot of Figure 2 (to identify the domain used for
the forward pre-analysis: left, center, and right symbols respectively refer to the boxes, symbolic,
and deeppoly domains). The models have the following number of hidden layers and nodes per
layer (from top to bottom): 2 and 5; 4 and 3; 4 and 5; 4 and 10; 9 and 5.

Column U shows the chosen upper bound for the analysis. For each model, we tried four different
choices of U. Column input shows the input-space coverage, i.e., the percentage of the input space
that was completed by the analysis. Column |C| shows the total number of analyzed (i.e., completed)
input space partitions. Column |F| shows the total number of abstract activation patterns (left) and
feasible input partitions (right) that the backward analysis had to explore. The difference between
|C| and the number of partitions shown in |F| are the input partitions that the pre-analysis found
6https://archive.ics.uci.edu/ml/datasets/adult
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Table 3. Comparison of Different Model Structures (Adult Census Data)

|M| U boxes symbolic deeppoly
input |C| |F| time input |C| |F| time input |C| |F| time

4 88.26% 1482 77 1136 33m 55s 95.14% 1132 65 686 19m 5s 93.99% 1894 77 992 29m 55s
6 99.51% 769 51 723 1h 10m 25s 99.93% 578 47 447 39m 8s 99.83% 1620 54 1042 1h 24m 24s
8 100.00% 152 19 143 3h 47m 23s 100.00% 174 18 146 1h 51m 2s 100.00% 1170 26 824 8h 2m 27s

10

10 100.00% 1 1 1 55m 58s 100.00% 1 1 1 56m 8s 100.00% 1 1 1 56m 43s
4 49.83% 719 9 329 13m 43s 72.29% 1177 11 559 24m 9s 60.52% 1498 14 423 10m 32s
6 72.74% 1197 15 929 2h 6m 49s 98.54% 333 7 195 20m 46s 66.46% 1653 17 594 15m 44s
8 98.68% 342 9 284 1h 46m 43s 98.78% 323 9 190 1h 27m 18s 70.87% 1764 18 724 2h 19m 11s

12

10 99.06% 313 7 260 1h 21m 47s 99.06% 307 5 182 1h 13m 55s 80.76% 1639 18 1007 3h 22m 11s
4 38.92% 1044 18 39 2m 6s 51.01% 933 31 92 15m 28s 49.62% 1081 34 79 3m 2s
6 46.22% 1123 62 255 20m 51s 61.60% 916 67 405 44m 40s 59.20% 1335 90 356 22m 13s
8 64.24% 1111 96 792 2h 24m 51s 74.27% 1125 78 780 3h 26m 20s 69.69% 1574 127 652 5h 6m 7s

20

10 85.90% 1390 71 1339 >13h 89.27% 1435 60 1157 >13h 76.25% 1711 148 839 4h 36m 23s
4 0.35% 10 0 0 1m 39s 34.62% 768 1 1 6m 56s 26.39% 648 2 3 10m 11s
6 0.35% 10 0 0 1m 38s 34.76% 817 4 5 43m 53s 26.74% 592 8 10 1h 23m 11s
8 0.42% 12 1 2 14m 37s 35.56% 840 21 28 2h 48m 15s 27.74% 686 32 42 2h 43m 2s

40

10 0.80% 23 10 13 1h 48m 43s 37.19% 880 50 75 11h 32m 21s 30.56% 699 83 121 >13h
4 1.74% 50 0 0 1m 38s 41.98% 891 14 49 10m 14s 36.60% 805 6 8 2m 47s
6 2.50% 72 3 22 4m 35s 45.00% 822 32 143 45m 42s 38.06% 847 25 50 5m 7s
8 9.83% 282 25 234 25m 30s 47.78% 651 46 229 1h 14m 5s 42.53% 975 74 180 25m 1s

45

10 18.68% 522 33 488 1h 51m 24s 49.62% 714 51 294 3h 23m 20s 48.68% 1087 110 373 1h 58m 34s

models trained on biased data. This bias is intended and present in the original data: as one would
expect, recidivism risk differs for different numbers of priors. Overall, these results demonstrate the
effectiveness of our analysis in answering specific bias queries.

For each line in Table 2, we highlighted the choice of abstract domain that entailed the shortest
analysis time. We observe that deeppoly seems generally the better choice. The difference in
performance becomes more striking as the analyzed input space becomes smaller, i.e., for QC . This
is because deeppoly is specifically designed for proving local robustness of neural networks. Thus,
our input partitioning, in addition to allowing for parallelism, is also enabling analyses designed
for local properties to prove global properties, like causal fairness.

The analysis results for all models are shown in the appendix (see Tables 10, 11, and 12).

RQ3: Effect of Model Structure on Scalability. To evaluate the effect of the model structure
on the scalability of our analysis, we trained models on the Adult Census dataset6 by varying
the number of layers and nodes per layer. The dataset assigns a yearly income (> or ≤ USD 50K)
based on personal attributes such as gender, race, and occupation. We trained all models (with 23
inputs) on a fair dataset with respect to gender and ensured that each model reached a minimum
classification accuracy of 78%. Accuracy does not increase by adding more layers or nodes per layer,
in fact, it may significantly decrease — we tried up to 100 hidden layers with 100 nodes each.
Table 3 shows the results. The first column (|M|) shows the total number of hidden nodes and

introduces the marker symbols used in the scatter plot of Figure 2 (to identify the domain used for
the forward pre-analysis: left, center, and right symbols respectively refer to the boxes, symbolic,
and deeppoly domains). The models have the following number of hidden layers and nodes per
layer (from top to bottom): 2 and 5; 4 and 3; 4 and 5; 4 and 10; 9 and 5.

Column U shows the chosen upper bound for the analysis. For each model, we tried four different
choices of U. Column input shows the input-space coverage, i.e., the percentage of the input space
that was completed by the analysis. Column |C| shows the total number of analyzed (i.e., completed)
input space partitions. Column |F| shows the total number of abstract activation patterns (left) and
feasible input partitions (right) that the backward analysis had to explore. The difference between
|C| and the number of partitions shown in |F| are the input partitions that the pre-analysis found
6https://archive.ics.uci.edu/ml/datasets/adult

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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L U Intervals Symbolic DeepPoly Neurify Product

0.5
3 37,9 % 48,8 % 48,9 % 46,5 % 59,2 %
5 41,0 % 56,1 % 56,3 % 53,1 % 68,2 %

0.25
3 70,6 % 83,6 % 81,8 % 81,4 % 87,0 %
5 83,1 % 91,7 % 91,6 % 92,3 % 95,5 %

L U Intervals Symbolic DeepPoly Neurify Product

0.5
3 47s 60s 96s 37s 119s

5 246s 736s 557s 362s 835s

0.25
3 498s 554s 396s 420s 534s

5 3369s 2674s 2840s 2920s 3716s

36s 42s 95s 32s 118s
248s 550s 227s 237s 496s
349s 355s 320s 320s 432s

1603s 1268s 1328s 1554s 1318s 1.9x - 2.8x FASTER
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Other ML Models
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Support Vector Machines (SVMs)
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 x1

x2

 x1

x2

separation curves
support vectors

Linear SVM Non-Linear SVM
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Example
Support Vector Machines (SVMs)
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 x1

x2v1 = (−0.5,1)

v2 = (0.5, − 1)

CSVM(x) = sgn (SVM(x)) = sgn (−1 * 0.5(v1 ⋅ x) + 1 * 0.5(v2 ⋅ x))
= sgn (0.5x1 − x2)

weights

↦ − 1
↦ 1
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Kernel Functions
Non-Linear SVMs
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Formal Methods for ML
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SVM Explainability



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024

Explainability
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software

purpose

audience

abstract interpretation
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Static Analysis Methods
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Contribution of Input Features to Prediction
Feature Importance Measures

168

Local Global Model- Performa
nce

Effect
Specific Agnosti

c
-Based

Permutation Feature Importance (PFI)
Partial Dependence (PD) Plots

Individual Conditional Expectation (ICE) 
PlotsAccumulated Local Effects (ALE) Plots

Local Interpretable Model-Agnostic 
Explanations (LIME)SHapley Additive exPlanations (SHAP)

Individual Conditional Importance (ICI) 
CurvesPartial Importance (PI) Curves

Shapley Feature Importance (SFIMP)
Input Gradients

Abstract Feature Importance (AFI) X X X X

Local Global Model- Performa
nce

Effect
Specific Agnosti

c
-Based

Permutation Feature Importance (PFI) X X X
Partial Dependence (PD) Plots X X X

Individual Conditional Expectation (ICE) 
Plots

X X X
Accumulated Local Effects (ALE) Plots X X X

Local Interpretable Model-Agnostic 
Explanations (LIME)

X X X
SHapley Additive exPlanations (SHAP) X X X
Individual Conditional Importance (ICI) 

Curves
X X X

Partial Importance (PI) Curves X X X
Shapley Feature Importance (SFIMP) X X X

Input Gradients X X X X
Abstract Feature Importance (AFI) X X X X

Local Global
Model- Performan

ce
Effect

Specific Agnostic -Based
Permutation Feature Importance (PFI) X X X

Partial Dependence (PD) Plots X X X
Individual Conditional Expectation (ICE) 

Plots
X X X

Accumulated Local Effects (ALE) Plots X X X
Local Interpretable Model-Agnostic 

Explanations (LIME)
X X X

SHapley Additive exPlanations (SHAP) X X X
Individual Conditional Importance (ICI) 

Curves
X X X

Partial Importance (PI) Curves X X X
Shapley Feature Importance (SFIMP) X X X

Input Gradients X X X X
Abstract Feature Importance (AFI) X X X X
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   Permutation Feature Importance (PFI)

   Local Interpretable Model-Agnostic  
   Explanations (LIME)

  SHapley Additive exPlanations (SHAP)

  Abstract Feature Importance (AFI)

• requires defining a meaningful optimal neighborhood: 
sometimes unstable and easily manipulable explanations


• assumes that the decision boundary is linear at the local level, 
but there is no theoretically guarantee that this is the case

• yields a formally correct by construction approximation

• does not depend from a dataset nor the accuracy of the model

• extremely fast to compute, whatever the number of features

• supports both linear and non-linear kernel functions

• result may greatly vary depending on the dataset 
• resource intensive when the number of feature is large

• misleading result when features are correlated 
• quality of the result heavily depends on the model accuracy

• Shapley values estimations depend on the dataset 
• assumes that features are independent 
• has a very high computational cost, even for small models

“Make Sense” but Give No Guarantees

Abstract Feature Importance [Pal2024]

Why Another Feature Importance Measure?
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Reduced Affine Form (RAF) Abstraction
Abstract Interpretation of SVMs [R19]

170

ℝn { , }
SVM(x) ℝ sgn(SVM(x))

CSVM(x)

SVM♯(x♯)

C♯
SVM(x♯)

{ , }(RAFn)n RAFn

 x1

x2

RAFn
def= {a0 +

n

∑
i=1

aiϵi + arϵr ∣ a0, a1, . . . an ∈ ℝ, ar ∈ ℝ≥0} ∪ { ⊤RAF }

RAFn
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Example
Abstract Interpretation of SVMs
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ℝn { , }
SVM(x) = − 0.5(v1 ⋅ x) + 0.5(v2 ⋅ x) ℝ

(RAFn)n RAFn
SVM♯(x♯)

 x1

x2
v1 = (−0.5,1)

v2 = (0.5, − 1)

 x1

x2

(−0.5ϵ1, 0.75 − 0.25ϵ2)
SVM♯((−0.5ϵ1, 0.75 − 0.25ϵ2))
= −0.5(−0.5(−0.5ϵ1)+1(0.75 − 0.25ϵ2))+0.5(0.5(−0.5ϵ1)−1(0.75 − 0.25ϵ2))

−0.75 − 0.25ϵ1 + 0.25ϵ2

= −0.5(0.75 + 0.25ϵ1 − 0.25ϵ2))+0.5(−0.75 − 0.25ϵ1 + 0.25ϵ2))
= − 0.75 − 0.25ϵ1 + 0.25ϵ2

{ , }

sgn (0.5x1−1x2)
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Abstract Feature Importance [Pal2024]

ℝn { , }
SVM(x) ℝ sgn(SVM(x))

CSVM(x)

SVM♯(x♯)

C♯
SVM(x♯)

{ , }(RAFn)n RAFn

 x1

x2

RAFn
def= {a0 +

n

∑
i=1

aiϵi + arϵr ∣ a0, a1, . . . an ∈ ℝ, ar ∈ ℝ≥0} ∪ { ⊤RAF }

RAFn
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Example
Abstract Feature Importance [Pal2024]
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ℝn { , }
SVM(x) = − 0.5(v1 ⋅ x) + 0.5(v2 ⋅ x) ℝ

sgn (0.5x1−1x2)

{ , }(RAFn)n RAFn
SVM♯(x♯)

 x1

x2
v1 = (−0.5,1)

v2 = (0.5, − 1)

 x1

x2

(ϵ1, ϵ2) 0.5ϵ1−1ϵ2
SVM♯((ϵ1, ϵ2))
= −0.5(−0.5ϵ1+1ϵ2)+0.5(0.5ϵ1−1ϵ2)
= 0.25ϵ1 − 0.5ϵ2 + 0.25ϵ1 − 0.5ϵ2
= 0.5ϵ1 − ϵ2
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German Dataset
AFI vs PFI

174
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Table 3: Comparison of AFI and PFI on German.
Grade for each feature

Linear
Baseline (13.55s) 5 5 5 6 6 7 7 7 7 8 Distance
AFI (0.01s) 5 5 5 6 6 7 8 7 7 8 1.0
PFI (4.07s) 5 5 6 7 7 9 6 6 7 7 3.16

RBF
Baseline (17.98s) 5 5 5 6 6 7 7 7 8 8 Distance
AFI (0.02s) 5 6 5 6 6 8 7 7 8 7 1.73
PFI (6.23s) 6 7 5 6 7 8 7 6 7 5 4.24

Polynomial
Baseline (15.83s) 5 5 5 6 7 7 7 7 7 8 Distance
AFI (0.01s) 7 6 7 7 5 7 6 6 5 8 4.47
PFI (4.15s) 6 7 9 7 6 7 5 6 6 6 5.74

Table 4: Distances of AFI and PFI from several baselines for different SVMs.
Baseline N = 2k N = 10k N = 2k N = 10k N = 2k N = 5k N = 10k N = 2k N = 5k N = 10k

ϵ = 0.2 ϵ = 0.2 ϵ = 0.4 ϵ = 0.4 ϵ = 0.6 ϵ = 0.6 ϵ = 0.6 ϵ = 0.8 ϵ = 0.8 ϵ = 0.8

Adult
Linear

AFI (0.27s) 0.0 0.0 1.0 0.0 1.0 1.41 1.0 1.0 1.41 1.0
PFI (10009s) 2.45 2.45 2.24 2.45 2.24 1.41 2.24 2.24 1.41 2.24

Adult
RBF

AFI (0.48s) 1.0 1.41 1.41 1.41 1.73 1.73 1.41 1.41 1.41 1.41
PFI (25221s) 1.73 2.45 2.45 2.0 2.65 2.65 2.45 2.45 2.45 2.45

Adult
Polynomial

AFI (0.44s) 1.0 1.0 0.0 1.41 0.0 0.0 0.0 0.0 0.0 0.0
PFI (9985s) 1.0 1.0 1.41 1.0 1.41 1.41 1.41 1.41 1.41 1.41

Compas
Linear

AFI (0.22s) 1.41 1.41 1.73 1.73 1.41 1.73 1.41 1.41 1.41 1.73
PFI (1953s) 1.73 1.73 2.0 2.0 2.24 2.0 2.24 2.24 2.24 2.83

Compas
RBF

AFI (0.27s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83
PFI (6827s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83

Compas
Polynomial

AFI (0.22s) 4.24 4.24 4.12 4.12 4.24 4.24 4.24 4.24 4.24 4.24
PFI (2069s) 2.45 2.45 3.0 3.0 3.74 3.74 3.74 3.74 3.74 3.74

German
Linear

AFI (0.01s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.41 1.73 1.41
PFI (4.07s) 3.16 3.46 3.16 3.16 3.16 3.16 3.16 3.6 3.74 3.0

German
RBF

AFI (0.02s) 1.73 1.0 1.73 1.73 2.0 1.41 1.73 1.73 2.0 2.24
PFI (6.23s) 4.0 3.46 4.24 4.24 4.36 3.61 4.24 4.24 4.36 4.47

German
Polynomial

AFI (0.01s) 4.90 4.12 4.47 3.87 3.87 4.24 3.46 3.46 3.46 3.46
PFI (4.15s) 5.74 5.10 5.74 4.69 4.69 5.0 4.58 4.58 4.58 4.58

gap between these bounds is zero for linear SVMs and narrow for RBF kernels trained on
the Adult and Compas datasets: in these cases, our RAF+OH abstraction turns out to be
(very) precise and the counterexample search heuristics is strong. On the other hand, the
gap is much wider in the remaining cases, notably for SVMs with polynomial kernels,
mostly due to a lower precision of the abstraction. Using partitioning (i.e., step (S4) of
Definition 3.12) up to 3.125% of the original perturbation size, we get similar upper
bounds, thus hinting the presence of a few additional counterexamples. Only partitioning
up to 0.1% of the original input size, we could find substantially more counterexamples.

Global Feature Importance. We compare our abstract feature importance AFI, used as a
global feature importance measure, with the popular global measure PFI, as implemented
in the Python sklearn.inspection package with n_repeat = 10. For the sake of comparison
with an outside baseline, we uniformly sampled N points in the input space of the SVMs
and determined how often a NOISE perturbation for a single numerical input feature
changed the SVM classification: the more often the classification changed, the more
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AFI vs PFI
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Table 3: Comparison of AFI and PFI on German.
Grade for each feature

Linear
Baseline (13.55s) 5 5 5 6 6 7 7 7 7 8 Distance
AFI (0.01s) 5 5 5 6 6 7 8 7 7 8 1.0
PFI (4.07s) 5 5 6 7 7 9 6 6 7 7 3.16

RBF
Baseline (17.98s) 5 5 5 6 6 7 7 7 8 8 Distance
AFI (0.02s) 5 6 5 6 6 8 7 7 8 7 1.73
PFI (6.23s) 6 7 5 6 7 8 7 6 7 5 4.24

Polynomial
Baseline (15.83s) 5 5 5 6 7 7 7 7 7 8 Distance
AFI (0.01s) 7 6 7 7 5 7 6 6 5 8 4.47
PFI (4.15s) 6 7 9 7 6 7 5 6 6 6 5.74

Table 4: Distances of AFI and PFI from several baselines for different SVMs.
Baseline N = 2k N = 10k N = 2k N = 10k N = 2k N = 5k N = 10k N = 2k N = 5k N = 10k

ϵ = 0.2 ϵ = 0.2 ϵ = 0.4 ϵ = 0.4 ϵ = 0.6 ϵ = 0.6 ϵ = 0.6 ϵ = 0.8 ϵ = 0.8 ϵ = 0.8

Adult
Linear

AFI (0.27s) 0.0 0.0 1.0 0.0 1.0 1.41 1.0 1.0 1.41 1.0
PFI (10009s) 2.45 2.45 2.24 2.45 2.24 1.41 2.24 2.24 1.41 2.24

Adult
RBF

AFI (0.48s) 1.0 1.41 1.41 1.41 1.73 1.73 1.41 1.41 1.41 1.41
PFI (25221s) 1.73 2.45 2.45 2.0 2.65 2.65 2.45 2.45 2.45 2.45

Adult
Polynomial

AFI (0.44s) 1.0 1.0 0.0 1.41 0.0 0.0 0.0 0.0 0.0 0.0
PFI (9985s) 1.0 1.0 1.41 1.0 1.41 1.41 1.41 1.41 1.41 1.41

Compas
Linear

AFI (0.22s) 1.41 1.41 1.73 1.73 1.41 1.73 1.41 1.41 1.41 1.73
PFI (1953s) 1.73 1.73 2.0 2.0 2.24 2.0 2.24 2.24 2.24 2.83

Compas
RBF

AFI (0.27s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83
PFI (6827s) 2.0 2.0 2.65 2.65 2.83 2.83 2.83 2.83 2.83 2.83

Compas
Polynomial

AFI (0.22s) 4.24 4.24 4.12 4.12 4.24 4.24 4.24 4.24 4.24 4.24
PFI (2069s) 2.45 2.45 3.0 3.0 3.74 3.74 3.74 3.74 3.74 3.74

German
Linear

AFI (0.01s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.41 1.73 1.41
PFI (4.07s) 3.16 3.46 3.16 3.16 3.16 3.16 3.16 3.6 3.74 3.0

German
RBF

AFI (0.02s) 1.73 1.0 1.73 1.73 2.0 1.41 1.73 1.73 2.0 2.24
PFI (6.23s) 4.0 3.46 4.24 4.24 4.36 3.61 4.24 4.24 4.36 4.47

German
Polynomial

AFI (0.01s) 4.90 4.12 4.47 3.87 3.87 4.24 3.46 3.46 3.46 3.46
PFI (4.15s) 5.74 5.10 5.74 4.69 4.69 5.0 4.58 4.58 4.58 4.58

gap between these bounds is zero for linear SVMs and narrow for RBF kernels trained on
the Adult and Compas datasets: in these cases, our RAF+OH abstraction turns out to be
(very) precise and the counterexample search heuristics is strong. On the other hand, the
gap is much wider in the remaining cases, notably for SVMs with polynomial kernels,
mostly due to a lower precision of the abstraction. Using partitioning (i.e., step (S4) of
Definition 3.12) up to 3.125% of the original perturbation size, we get similar upper
bounds, thus hinting the presence of a few additional counterexamples. Only partitioning
up to 0.1% of the original input size, we could find substantially more counterexamples.

Global Feature Importance. We compare our abstract feature importance AFI, used as a
global feature importance measure, with the popular global measure PFI, as implemented
in the Python sklearn.inspection package with n_repeat = 10. For the sake of comparison
with an outside baseline, we uniformly sampled N points in the input space of the SVMs
and determined how often a NOISE perturbation for a single numerical input feature
changed the SVM classification: the more often the classification changed, the more
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Table 5: Local Comparison of AFI and LIME.
Distance between Adult Compas German
LIME and ... Lin. RBF Poly Lin. RBF Poly Lin. RBF Poly
AFI (ϵ = 0.1) 2.42 2.04 2.98 1.67 1.06 3.05 2.62 2.03 5.31
AFI (ϵ = 0.2) 1.68 1.32 2.67 1.63 0.17 2.73 2.21 2.00 5.41
AFI (ϵ = 0.3) 1.39 0.51 2.58 1.57 0.14 2.62 1.92 2.05 5.45
AFI (Global) 1.37 0.01 1.01 1.57 0.13 3.16 1.90 1.89 5.53

Table 6: Time Comparison (in sec) of AFI, PFI, LIME.

Dataset Linear Polynomial RBF
AFI PFI LIME AFI PFI LIME AFI PFI LIME

Adult 0.27 1·104 3.78 0.45 1·104 6.21 0.48 2·104 9.82
Compas 0.22 2·103 2.72 0.22 2·103 2.89 0.27 6·103 8.97
German 0.01 4.07 0.198 0.01 4.15 0.355 0.02 6.23 0.223

important is the input feature. As a representative example, we show in Table 3, a
comparison for the SVMs trained on the German dataset. In lines ‘Baseline’, ‘AFI’ and
‘PFI’, we show the feature grades, as defined in Section 3.1, of the 10 non-categorical
(7 numerical plus 3 binary) input features of German based on the importance scores
measured by, respectively, baseline, AFI and PFI. The baseline has been computed by
considering N = 10000 samples and a NOISE perturbation with magnitude ϵ = 0.4.
We also indicate in parenthesis the time needed (in seconds) to compute these scores,
where for our AFI measure, we used the RAF+OH abstraction. In column ‘Distance’ we
show the Euclidean distance between the feature grades computed by AFI and PFI w.r.t.
the baseline. We can observe that AFI better correlates with model variance to feature
perturbations than PFI. In fact, the correlation is almost perfect for the linear SVM. For
nonlinear SVMs, the abstraction RAF+OH loses more precision, so that the correlation
decreases, nevertheless the distance to the baseline is still smaller than for PFI. Note that
AFI is computed in a negligible fraction of time w.r.t. PFI.
Table 4 compares the Euclidean distance between the feature grades computed by AFI
and PFI w.r.t. different choices of the number of samples N and magnitudes ϵ used for
computing the baseline of SVMs trained on the Adult, Compas, and German datasets.
For each AFI-baseline and PFI-baseline pair, the smaller distance is made bold and the
larger has a faded shade. The data indicates AFI is closer to the baseline than PFI in
most cases, except for the polynomial SVM trained on Compas: for this case, the likely
reason is the low precision of our polynomial SVM abstraction, as also hinted by the
low verified individual fairness scores in the entries for Compas/Polynomial/RAF+OH
in Table 2.

Local Feature Importance. In Table 5, we present a comparative analysis between
our measure AFI, used as a local feature importance measure, and the extensively used
local feature importance measure LIME as implemented in the Python lime.lime_tabular
package [39], for SVMs trained on the three different datasets. The local neighborhood
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• A. Kantchelian, J. D. Tygar, and A. Joseph. Evasion and Hardening of Tree Ensemble 
Classifiers. In ICML 2016.  
H. Chen, H. Zhang, S. Si, Y. Li, D. Boning, and C.-J. Hsieh. Robustness Verification of 
Tree-based Models. In NeurIPS 2019. 
approaches for finding the nearest adversarial example
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Decision Tree Ensembles
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Decision-Tree Ensemble Model and Detection of its Violating-Input-Value 
Ranges. 2020.  
approach for safety verification


• G. Einziger, M. Goldstein, Y. Sa’ar, and I. Segall. Verifying Robustness of 
Gradient Boosted Models. In AAAI 2019.  
SMT-based approach for local robustness


• J. Törnblom and S. Nadjm-Tehrani. Formal Verification of Input-Output 
Mappings of Tree Ensembles. 2020.  
F. Ranzato and M. Zanella. Abstract Interpretation of Decision Tree 
Ensemble Classifiers. In AAAI 2020.  
S. Calzavara, P. Ferrara, and C. Lucchese. Certifying Decision Trees 
Against Evasion Attacks by Program Analysis. In ESORICS 2020.  
abstract interpretation-based approaches for local robustness
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model parameters

loss function (e.g, cross-entropy)Robust Loss
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generate adversarial inputs  
and use them as training data

Adversarial Training
Minimizing a Lower Bound on the  
Worst-Case Loss for Each Input

Certified Training
Minimizing an Upper Bound on the  
Worst-Case Loss for Each Input

use upper bound as regularizer  
to encourage robustness

Robust Loss
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Certified Training
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approach targeting decision trees
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E. Wong and Z. Kolter. Provable Defenses Against Adversarial Examples 
via the Convex Outer Adversarial Polytope. In ICML, 2018. 
A. Raghunathan, J. Steinhardt, and P. Liang. Certified Defenses against 
Adversarial Examples. In ICML, 2018.  
approaches targeting neural networks
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• F. Ranzato and M. Zanella. Genetic Adversarial Training of Decision Trees. 
In GECCO 2021.  
abstract interpretation-based approach targeting decision trees
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Figure 9: Standard (Std.) and robust cross-entropy loss, computed with BOX (Box) bounds for an adversarially
(left) and IBP (right) trained network over subselection ratio λ. Note the logarithmic y-scale and different axes.

Table 7: Comparison of the standard (Acc.), adversarial (Adv. Acc), and certified (Cert. Acc.) accuracy for
different certified training methods on the full CIFAR-10 test set. We use MN-BAB (Ferrari et al., 2022) to
compute all certified and adversarial accuracies.

ϵ∞ Training Method Source Acc. [%] Adv. Acc. [%] Cert. Acc. [%]

2/255

COLT Balunovic & Vechev (2020) 78.42 66.17 61.02
CROWN-IBP Zhang et al. (2020)† 71.27 59.58 58.19
IBP Shi et al. (2021) - - -
SABR this work 79.52 65.76 62.57

8/255

COLT Balunovic & Vechev (2020) 51.69 31.81 27.60
CROWN-IBP Zhang et al. (2020)† 45.41 33.33 33.18
IBP Shi et al. (2021) 48.94 35.43 35.30
SABR this work 52.00 35.70 35.25

- No network published.
† Published network does not match reported performance.

D ADDITIONAL EXPERIMENTAL RESULTS
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Figure 10: Comparison of the robust cross-entropy
losses computed with BOX (Box) centered around un-
perturbed and adversarial examples for an IBP and
SABR trained network over subselection ratio λ.

Loss Analysis In Fig. 9, we show the error
growth of an adversarially trained (left) and IBP
trained model over increasing subselection ra-
tios λ. We observe that errors grow only slightly
super-linear rather than exponential for the ad-
versarially trained network. We trace this back
to the large portion of crossing ReLUs (Table 4),
especially in later layers, leading to the layer-
wise growth being only linear. For the IBP
trained model, in contrast, we observe exponen-
tial growth across a wide range of propagation
region sizes, as the heavy regularization leads to
a small portion of active and unstable ReLUs.
In Fig. 10, we compare errors for BOX centred
around the unperturbed sample (BOX Std) and
around a high loss point computed with an adversarial attack (BOX Adex). We observe that while
the loss is larger around the adversarial centres, especially for small propagation regions, this effect
is small compared to the difference between training or certification methods.

D.1 EFFECT OF VERIFICATION METHOD ON OTHER CERTIFIED DEFENSES

In this section we compare different certified defenses when evaluated using the same, precise veri-
fier MN-BAB (Ferrari et al., 2022). While COLT (Balunovic & Vechev, 2020) and IBP-R (Palma
et al., 2022) trained networks were verified using similarly expensive and precise verification meth-
ods as MN-BAB (MILP (Tjeng et al., 2019) and β-CROWN (Wang et al., 2021), respectively),
the IBP and CROWN-IBP trained networks were originally verified using much less precise BOX
propagation. We compare standard (Acc.), empirical adversarial (Adv. Acc.), and certified (Cert.

18
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(a) MNIST (b) CIFAR-10 (c) Restricted ImageNet

Figure 2: Visualization of the loss gradient with respect to input pixels. Recall that these gradients
highlight the input features which affect the loss most strongly, and thus are important for the classi-
fier’s prediction. We observe that the gradients are significantly more interpretable for adversarially
trained networks – they align well with perceptually relevant features. In contrast, for standard
networks they appear very noisy. We observe that gradients of ℓ∞-trained models tend to be sparser
than those of ℓ2-trained models. (For MNIST, blue and red pixels denote positive and negative
gradient regions respectively. For CIFAR-10 and ImageNet, we clip gradients to within ±3σ and
rescale them to lie in the [0, 1] range.) Additional visualizations are in Figure 10 of Appendix G.

samples from the distribution. This constitutes an interesting manifestation of the generally observed
phenomenon of transferability (Szegedy et al., 2013) and might hint at its origin.

Empirical examination In Section 2.1, we showed that the trade-off between standard accuracy
and robustness might be inevitable. To examine how representative our theoretical model is of
real-world datasets, we also experimentally investigate this issue on MNIST (LeCun et al., 1998)
as it is amenable to linear classifiers. Interestingly, we observe a qualitatively similar behavior. For
instance, in Figure 5(b) in Appendix E, we see that the standard classifier assigns weight to even
weakly-correlated features. (Note that in settings with finite training data, such brittle features could
arise even from noise – see Appendix E.) The robust classifier on the other hand does not assign any
weight beyond a certain threshold. Further, we find that it is possible to obtain a robust classifier
by directly training a standard model using only features that are relatively well-correlated with the
label (without adversarial training). As expected, as more features are incorporated into the training,
the standard accuracy is improved at the cost of robustness (see Appendix E Figure 5(c)).

3 UNEXPECTED BENEFITS OF ADVERSARIAL ROBUSTNESS

In Section 2, we established that robust and standard models might depend on very different sets of
features. We demonstrated how this can lead to a decrease in standard accuracy for robust models. In
this section, we will argue that the features learned by robust models can also be beneficial.

At a high level, robustness to adversarial perturbations can be viewed as an invariance property of
a model. A model that achieves small loss for all perturbations in the set ∆, will necessarily have
learned features that are invariant to such perturbations. Thus, robust training can be viewed as a
method to embed certain invariances in a model. Since we also expect humans to be invariant to these
perturbations (e.g. small ℓp-bounded changes of the pixels), robust models will be more aligned with
human vision than standard models. In this section, we present evidence supporting the view.

Loss gradients in the input space align well with human perception As a starting point, we
want to investigate which features of the input most strongly affect the prediction of the classifier
both for standard and robust models. To this end, we visualize the gradients of the loss with respect
to individual features (pixels) of the input in Figure 2. We observe that gradients for adversarially

6

Adversarial Training

Fig. 1. Input Image Fig. 2. Integrated Gradients Fig. 3. DeepLift Fig. 4. RISE

Fig. 5. Explanations of a standard model on CIFAR-10

Fig. 6. Input Image Fig. 7. Integrated Gradients Fig. 8. DeepLift Fig. 9. RISE

Fig. 10. Explanations of a provably robust model on CIFAR-10
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generate adversarial inputs  
and use them as training data

Adversarial Training
Minimizing a Lower Bound on the  
Worst-Case Loss for Each Input

Certified Training
Minimizing an Upper Bound on the  
Worst-Case Loss for Each Input

use upper bound as regularizer  
to encourage robustness

Robust Loss
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min
θ

E
(x,y)∈D

[
max

x′∈C(x)
L(f(θ,x′),y)

]

Adversarial Training
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[Madry et al. 2018]
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Lower bound → adversarial training
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Verified Training
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min
θ

E
(x,y)∈D

[
max

x′∈C(x)
L(f(θ,x′),y)

]

≤Hybrid Training

Expressivity via Convex Combinations
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Hybrid Training [Ranzato21]

188

Accuracy % Balanced
Accuracy %

Individual Fairness fair𝑇 %
cat noise noise-cat conditional-attributeDataset

RF FATT RF FATT RF FATT RF FATT RF FATT RF FATT
Adult 82.76 80.84 70.29 61.86 91.71 100.00 85.44 95.21 77.50 95.21 84.75 94.12
Compas 66.57 64.11 66.24 63.83 48.01 100.00 35.51 85.98 30.87 85.98 - -
Crime 80.95 79.45 80.98 79.43 86.22 100.00 31.83 75.19 32.08 75.19 - -
German 76.50 72.00 63.62 52.54 91.50 100.00 92.00 99.50 90.00 99.50 91.50 99.50
Health 85.29 77.87 83.27 73.59 7.84 99.99 47.66 97.04 2.91 97.03 - -
Average 78.41 74.85 72.88 66.25 65.06 100.00 58.49 90.58 46.67 90.58 88.13 96.81

Table 1: RF and FATT Comparison
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Figure 4: Distribution of Accuracy (left) and Fairness (right)

Model Size Average Verification Time per Sample (ms)
cat noise noise-cat conditional-attributeDataset

RF FATT RF FATT RF FATT RF FATT RF FATT
Adult 1427 43 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02
Compas 147219 75 0.36 0.07 0.47 0.07 0.61 0.07 - -
Crime 14148 11 0.12 0.07 2025.13 0.07 2028.47 0.07 - -
German 5743 2 0.06 0.03 0.06 0.02 0.07 0.03 0.06 0.02
Health 2558676 84 1.40 0.06 0.91 0.05 3.10 0.06 - -

Table 2: Model Sizes and Verification Times

FATT Natural CART CART with HintsDataset Accuracy % Fairness % Size Accuracy % Fairness % Size Accuracy % Fairness % Size
Adult 80.84 95.21 43 85.32 77.56 270 84.77 87.46 47
Compas 64.11 85.98 75 65.91 22.25 56 65.91 22.25 56
Crime 79.45 75.19 11 77.69 24.31 48 77.44 60.65 8
German 72.00 99.50 2 75.50 57.50 115 73.50 86.00 4
Health 77.87 97.03 84 83.85 79.98 2371 82.25 93.64 100
Average 74.85 90.58 43 77.65 52.32 572 76.77 70.00 43

Table 3: Decision Trees Comparison
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Hybrid Training

• Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin Vechev. 
Certified training: Small Boxes Are All You Need. In ICLR, 2023. 
one of the first instances of hybrid training 

• Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M. 
Pawan Kumar, Robert Stanforth, Alessio Lomuscio. Expressive Losses 
for Verified Robustness via Convex Combinations. In ICLR, 2024. 
characterization of expressive losses for hybrid training
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Data Scientist: The Sexiest Job of
the 21st Century
Andrew McAfee and Erik Brynjolfsson

Andrew J Buboltz, silk screen on a page from a high school yearbook, 8.5" x 12", 2011  Tamar Cohen

When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the
business networking site, the place still felt like a start-up. The company
had just under 8 million accounts, and the number was growing quickly as
existing members invited their friends and colleagues to join. But users
weren’t seeking out connections with the people who were already on the
site at the rate executives had expected. Something was apparently
missing in the social experience. As one LinkedIn manager put it, “It was
like arriving at a conference reception and realizing you don’t know
anyone. So you just stand in the corner sipping your drink—and you
probably leave early.”

Goldman, a PhD in physics from Stanford, was intrigued by the linking he
did see going on and by the richness of the user profiles. It all made for
messy data and unwieldy analysis, but as he began exploring people’s
connections, he started to see possibilities. He began forming theories,
testing hunches, and finding patterns that allowed him to predict whose
networks a given profile would land in. He could imagine that new features

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

Data Scientists
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Jupyter Notebooks

P. Subotić et al. - A Static Analysis Framework for Data Science Notebooks (ICSE 2022)

   UNUSED DATA
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Jupyter Notebooks

P. Subotić et al. - A Static Analysis Framework for Data Science Notebooks (ICSE 2022)

   DATA LEAK
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Jupyter Notebooks

P. Subotić et al. - A Static Analysis Framework for Data Science Notebooks (ICSE 2022)

   STALE DATA
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Anomalously Unused Data
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The Reinhart-Rogoff Paper

573

American Economic Review: Papers & Proceedings 100 (May 2010): 573–578
http://www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

In this paper, we exploit a new multi-country 
historical dataset on public (government) debt to 
search for a systemic relationship between high 
public debt levels, growth and inflation.1 Our 
main result is that whereas the link between 
growth and debt seems relatively weak at “nor-
mal” debt levels, median growth rates for coun-
tries with public debt over roughly 90 percent 
of GDP are about one percent lower than other-
wise; average (mean) growth rates are several 
percent lower. Surprisingly, the relationship 
between public debt and growth is remarkably 
similar across emerging markets and advanced 
economies. This is not the case for inflation. We 
find no systematic relationship between high 
debt levels and inflation for advanced econo-
mies as a group (albeit with individual country 
exceptions including the United States). By con-
trast, in emerging market countries, high public 
debt levels coincide with higher inflation.

Our topic would seem to be a timely one. 
Public debt has been soaring in the wake of the 
recent global financial maelstrom, especially in 
the epicenter countries. This should not be sur-
prising, given the experience of earlier severe 
financial crises.2 Outsized deficits and epic bank 
bailouts may be useful in fighting a downturn, 
but what is the long-run macroeconomic impact, 

1 In this paper “public debt” refers to gross central 
government debt.   “Domestic public debt” is government 
debt issued under domestic legal jurisdiction. Public debt 
does not include debts carrying a government guarantee. 
Total gross external debt includes the external debts of all 
branches of government as well as private debt that is issued 
by domestic private entities under a foreign jurisdiction.

2 Reinhart and Rogoff (2009a, b) demonstrate that the 
aftermath of a deep financial crisis typically involves a 
protracted period of macroeconomic adjustment, particu-
larly in employment and housing prices. On average, public 
debt rose by more than 80 percent within three years after 
a crisis.

Growth in a Time of Debt

By Carmen M. Reinhart and Kenneth S. Rogoff*

especially against the backdrop of graying pop-
ulations and rising social insurance costs? Are 
sharply elevated public debts ultimately a man-
ageable policy challenge?

Our approach here is decidedly empirical, 
taking advantage of a broad new historical 
dataset on public debt (in particular, central 
government debt) first presented in Carmen M. 
Reinhart and Kenneth S. Rogoff (2008, 2009b). 
Prior to this dataset, it was exceedingly difficult 
to get more than two or three decades of pub-
lic debt data even for many rich countries, and 
virtually impossible for most emerging markets. 
Our results incorporate data on 44 countries 
spanning about 200 years. Taken together, the 
data incorporate over 3,700 annual observations 
covering a wide range of political systems, insti-
tutions, exchange rate and monetary arrange-
ments, and historic circumstances.

We also employ more recent data on external 
debt, including debt owed both by governments 
and by private entities. For emerging markets, 
we find that there exists a significantly more 
severe threshold for total gross external debt (public and private)—which is almost exclu-
sively denominated in a foreign currency—than 
for total public debt (the domestically issued 
component of which is largely denominated 
in home currency). When gross external debt 
reaches 60 percent of GDP, annual growth 
declines by about two percent; for levels of 
external debt in excess of 90 percent of GDP, 
growth rates are roughly cut in half. We are not 
in a position to calculate separate total exter-
nal debt thresholds (as opposed to public debt 
thresholds) for advanced countries. The avail-
able time-series is too recent, beginning only in 
2000. We do note, however, that external debt 
levels in advanced countries now average nearly 
200 percent of GDP, with external debt levels 
being particularly high across Europe.

The focus of this paper is on the longer term 
macroeconomic implications of much higher 
public and external debt. The final section, how-
ever, summarizes the historical experience of 
the United States in dealing with private sector 

* Reinhart: Department of Economics, 4115 Tydings 
Hall, University of Maryland, College Park, MD 20742 (e-mail: creinhar@umd.edu); Rogoff: Economics Depart-
ment, 216 Littauer Center, Harvard University, Cambridge 
MA 02138–3001 (e-mail: krogoff@harvard.edu). The 
authors would like to thank Olivier Jeanne and Vincent R. 
Reinhart for helpful comments.
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from the analysis
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England Covid-19 Cases Error
  

Excel spreadsheet error
blamed for UK’s 16,000 missing
coronavirus cases
The case went missing a!er the spreadsheet hit its filesize limit
By James Vincent  Oct 5, 2020, 9:41am EDT

SCIENCE US & WORLD TECH

6

Covid-19:
Only half

of 16 000
patients m

issed from
England’s
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ve been c

ontacted

Elisabeth
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nearly 16

000 cases
of covid-1

9 were no
t
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d to Engla

nd’s NHS
Test and T

race servi
ce

and were
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m official fig
ures beca

use of an

error in th
e process

for updati
ng the dat
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d social ca
re secreta

ry, Matt
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Data Usage Static Analysis [CU18]

mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs
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Data (Non-)Usage
𝒩J

def= {[[P]] ∣ UNUSEDJ([[P]])}
 is the set of all programs P (or, rather, their semantics )  

that do not use the value of the input variables in 
𝒩J [[P]]

J

UNUSEDJ([[P]]) def= 







∀t ∈ [[P]], V ∈ ℛ|J| : t0(J) ≠ V ⇒ ∃t′ ∈ [[P]] :
(∀i : i ∉ J ⇒ t0(i) = t′ 0(i))∧ t′ 0(J) = V
∧ tω = t′ ω

Intuitively: any possible program  
outcome is possible from any value 

of the input variable i

P ⊧ 𝒩J ⇔ {[[P]]} ⊆ 𝒩J

Theorem

P ⊧ 𝒩J ⇐ [[P]] ⊆ [[P]]♮ ∈ 𝒩J

Corollary
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Not a Subset-Closed Property
Data (Non-) Usage
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mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs

Caterina UrbanFormal Methods for Machine Learning PipelinesEJCP 2024 115

Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α𝕀

{[[M]]}

{[M]}𝕀
∙

[[M]]∙

{[M]}𝕀
↝

[[M]]↝

{[M]}𝕀 α∙

α∙

α↝

α↝

α𝕀

α𝕀

outcome semantics

Data Usage Static Analysis [CU18]
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mathematical models  
of the program behavior

algorithmic approaches  
to decide program properties

practical tools  
targeting specific programs

Data Usage Static Analysis [CU18]
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Over-Approximation of the Used Input Data
Data (Non-)Usage Abstractions

205

P ⊧ 𝒩J♮⊆J ⇐ [[P]] ⊆ [[P]]♮
A ⊆ 𝒩J♮⊆J

 Under-Approximation of the Unused Input Data⇒
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Example

206

english = bool(input())  
math = bool(input())  
science = bool(input())  
bonus = bool(input())  
 
passing = True 
if not english:  
       english = False                                 
if not math:  
       passing = False or bonus  
if not math:                                                  
       passing = False or bonus              
 
print(passing) 

ERROR: english SHOULD BE passing

ERROR: math SHOULD BE science

INPUT VARIABLES

OUTPUT VARIABLES

the input variables english and science are unused
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2 Caterina Urban and Peter Müller

Λ
trace

semantics
(Section 2)

Λ•
outcome
semantics
(Section 5)

Λ!
dependency
semantics
(Section 6)

ΛF

non-interference
analysis

(Section 8)

ΛX

strongly live
variable analysis

(Section 9)

ΛQ

data usage
analysis

(Section 10)

−−−→←−−−
α•

γ•
−−−−→←−−−−

α!

γ!

γF

γX

γQ

Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many different contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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Secure Information Flow

!P"F

L ⇢ x

L ⇢ y

L ⇢ z

H ⇢ w

H ⇢ t

possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
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Rennes, FR

first.las
t@cent

ralesup
elec.fr

Abstract

We show how static analysis for secure information flow can be ex-

pressed and proved correct entirely within the framework of abstract

interpretation. The key idea is to define a Galois connection that

directly approximates the hyperproperty of interest. To enable use

of such Galois connections, we introduce a fixpoint characterisation

of hypercollecting semantics, i.e. a “set of sets” transformer. This

makes it possible to systematically derive static analyses for hyper-

properties entirely within the calculational framework of abstract

interpretation. We evaluate this technique by deriving example static

analyses. For qualitative information flow, we derive a dependence

analysis similar to the logic of Amtoft and Banerjee (SAS’04) and

the type system of Hunt and Sands (POPL’06). For quantitative infor-

mation flow, we derive a novel cardinality analysis that bounds the

leakage conveyed by a program instead of simply deciding whether

it exists. This encompasses problems that are hypersafety but not

k-safety. We put the framework to use and introduce variations

that achieve precision rivalling the most recent and precise static

analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-

gramming Languages]; F.3.1 [Logics and meanings of programs]:

Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,

hyperproperties

1. Introduction

Most static analyses tell something about all executions of a program.

This is needed, for example, to validate compiler optimizations.

Functional correctness is also formulated in terms of a predicate on

observable behaviours, i.e. more or less abstract execution traces: A

program is correct if all its traces satisfy the predicate. By contrast

with such trace properties, extensional definitions of dependences

involve more than one trace. To express that the final value of a

variable x may depend only on the initial value of a variable y, the

requirement—known as noninterference in the security literature

(Sabelfeld and Myers 2003)—is that any two traces with the same

initial value for y result in the same final value for x. Sophisticated

information flow policies allow dependences subject to quantitative

bounds—and their formalisations involve more than two traces,

sometimes unboundedly many.

For secure information flow formulated as decision problems, the

theory of hyperproperties classifies the simplest form of noninterfer-

ence as 2-safety and some quantitative flow properties as hypersafety

properties (Clarkson and Schneider 2010). A number of approaches

have been explored for analysis of dependences, including type sys-

tems, program logics, and dependence graphs. Several works have

used abstract interpretation in some way. One approach to 2-safety is

by forming a product program that encodes execution pairs (Barthe

et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby

reducing the problem to ordinary safety which can be checked by

abstract interpretation (Kovács et al. 2013) or other means. Alter-

natively, a 2-safety property can be checked by dedicated analyses

which may rely in part on ordinary abstract interpretations for trace

properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and

guide the design of static analyses. It is well known that effective

application of the theory requires choosing an appropriate notion

of observable behaviour for the property of interest (Cousot 2002;

Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one

has a program semantics and “all executions” can be formalized in

terms of collecting semantics, which can be used to define a trace

property of interest, and thus to specify an abstract interpretation

(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based

on Galois connections between semantic domains on which collec-

ting semantics is defined. Clarkson and Schneider (2010) formalize

the notion of hyperproperty in a very general way, as a set of sets

of traces. Remarkably, prior works using abstract interpretation for

secure information flow do not directly address the set-of-sets di-

mension and instead involve various ad hoc formulations. This paper

presents a new approach of deriving information flow static analyses

within the calculational framework of abstract interpretation.
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Abstract

We show how static analysis for secure information flow can be ex-

pressed and proved correct entirely within the framework of abstract

interpretation. The key idea is to define a Galois connection that

directly approximates the hyperproperty of interest. To enable use

of such Galois connections, we introduce a fixpoint characterisation

of hypercollecting semantics, i.e. a “set of sets” transformer. This

makes it possible to systematically derive static analyses for hyper-

properties entirely within the calculational framework of abstract

interpretation. We evaluate this technique by deriving example static

analyses. For qualitative information flow, we derive a dependence

analysis similar to the logic of Amtoft and Banerjee (SAS’04) and

the type system of Hunt and Sands (POPL’06). For quantitative infor-

mation flow, we derive a novel cardinality analysis that bounds the

leakage conveyed by a program instead of simply deciding whether

it exists. This encompasses problems that are hypersafety but not

k-safety. We put the framework to use and introduce variations

that achieve precision rivalling the most recent and precise static

analyses for information flow.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification–Assertion checkers; D.3 [Pro-

gramming Languages]; F.3.1 [Logics and meanings of programs]:

Semantics of Programming Language

Keywords static analysis, abstract interpretation, information flow,

hyperproperties

1. Introduction

Most static analyses tell something about all executions of a program.

This is needed, for example, to validate compiler optimizations.

Functional correctness is also formulated in terms of a predicate on

observable behaviours, i.e. more or less abstract execution traces: A

program is correct if all its traces satisfy the predicate. By contrast

with such trace properties, extensional definitions of dependences

involve more than one trace. To express that the final value of a

variable x may depend only on the initial value of a variable y, the

requirement—known as noninterference in the security literature

(Sabelfeld and Myers 2003)—is that any two traces with the same

initial value for y result in the same final value for x. Sophisticated

information flow policies allow dependences subject to quantitative

bounds—and their formalisations involve more than two traces,

sometimes unboundedly many.

For secure information flow formulated as decision problems, the

theory of hyperproperties classifies the simplest form of noninterfer-

ence as 2-safety and some quantitative flow properties as hypersafety

properties (Clarkson and Schneider 2010). A number of approaches

have been explored for analysis of dependences, including type sys-

tems, program logics, and dependence graphs. Several works have

used abstract interpretation in some way. One approach to 2-safety is

by forming a product program that encodes execution pairs (Barthe

et al. 2004; Terauchi and Aiken 2005; Darvas et al. 2005), thereby

reducing the problem to ordinary safety which can be checked by

abstract interpretation (Kovács et al. 2013) or other means. Alter-

natively, a 2-safety property can be checked by dedicated analyses

which may rely in part on ordinary abstract interpretations for trace

properties (Amtoft et al. 2006).

The theory of abstract interpretation serves to specify and

guide the design of static analyses. It is well known that effective

application of the theory requires choosing an appropriate notion

of observable behaviour for the property of interest (Cousot 2002;

Bertrane et al. 2012, 2015). Once a notion of “trace” is chosen, one

has a program semantics and “all executions” can be formalized in

terms of collecting semantics, which can be used to define a trace

property of interest, and thus to specify an abstract interpretation

(Cousot and Cousot 1977, 1979; Cousot 1999).

The foundation of abstract interpretation is quite general, based

on Galois connections between semantic domains on which collec-

ting semantics is defined. Clarkson and Schneider (2010) formalize

the notion of hyperproperty in a very general way, as a set of sets

of traces. Remarkably, prior works using abstract interpretation for

secure information flow do not directly address the set-of-sets di-

mension and instead involve various ad hoc formulations. This paper

presents a new approach of deriving information flow static analyses

within the calculational framework of abstract interpretation.
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passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus            

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing             

L ⇢ passing, H ⇢ english, math, science, bonus

H ⇢ english, math, science, bonus, passing                                          

L ⇢ passing, H ⇢ english, math, science, bonus

possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
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possibilistic non-interference coincides with input data (non-)usage  
when the set J of unused input variables contains all input variables: 
• input variables are high-security variables
• output variables are low-security variables
and the program is terminating

 
passing = True 
while not english:  
      english = False                                

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

L ⇢ passing, H ⇢ english, math, science, bonus

P ⊧ 𝒩+
J ⇐ [[P]] ⊆ [[P]]♮

F ⊆ 𝒩+
J

Theorem
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γF

γX

γQ

Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many different contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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a variable is strongly live if 
• it is used in an assignment to another strongly live variable
• it is used in a statement other than an assignment

!P"X

x

y

z

w

t

passing = True 
if not english:  
      english = False                                 
if not math:  
      passing = False or bonus  
if not math:                                                  
      passing = False or bonus 
            

{ bonus, math, english }     

{ passing }             
{ bonus }            

{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                
{ bonus, math }                                                

{ bonus, math, english }        

P ⊧ 𝒩J ⇐ [[P]] ⊆ [[P]]♮
X ⊆ 𝒩J

Theorem
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Fig. 1. Overview of the program semantics presented in the paper. The dependency
semantics, derived by abstraction of the trace semantics, is sound and complete for
data usage. Further sound but not complete abstractions are shown on the right.

hold that this paper led to unjustified adoption of austerity policies for coun-
tries with various levels of public debt [30]. Programming errors in data analysis
code for medical applications are even more critical [27]. It is thus paramount
to achieve a high level of confidence in the correctness of data science code.

The likelihood that a programming error causes some input data to remain
unused is particularly high for data science applications, where data goes through
long pipelines of modules that acquire, filter, merge, and manipulate it. In this
paper, we propose an abstract interpretation [14] framework to automatically
detect unused input data. We characterize when a program uses (some of) its
input data using the notion of dependency between the input data and the out-
come of the program. Our notion of dependency accounts for non-determinism
and non-termination. Thus, it encompasses notions of dependency that arise in
many different contexts, such as secure information flow and program slicing [1],
as well as provenance or lineage analysis [9], to name a few.

Following the theory of abstract interpretation [12], we systematically derive
a new program semantics that precisely captures exactly the information needed
to reason about input data usage, abstracting away from irrelevant details about
the program behavior. Figure 1 gives an overview of our approach. The seman-
tics is first expressed in a constructive fixpoint form over sets of sets of traces, by
partitioning the operational trace semantics of a program based on its outcome
(cf. outcome semantics in Figure 1), and a further abstraction ignores interme-
diate state computations (cf. dependency semantics in Figure 1). Starting the
development of the semantics from the operational trace semantics enables a
uniform mathematical reasoning about programs semantics and program prop-
erties (Section 3). In particular, since input data usage is not a trace property

collecting
{Λ}

semantics
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x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

Caterina UrbanStatic Analysis for Data ScienceLesson 14 41

Syntactic (Non-)Usage

!P"U

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

MAD

Mad
[[P]]Q



Caterina UrbanFormal Methods for Machine Learning PipelinesVTSA 2024

Syntactic (Non-)Usage

228

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used

Caterina UrbanStatic Analysis for Data ScienceLesson 14 41

Syntactic (Non-)Usage

!P"U

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

  
passing = True 
  
if not english:  
        
      english = False                                 
        
  
if not math:  
        
      passing = False or bonus  
        
  
if not math:                                                  
        
      passing = False or bonus 
        
           

bonus ⇢ U, passing ⇢ O | passing ⇢ U

passing ⇢ S | passing ⇢ U
passing ⇢ U

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math ⇢ S, bonus ⇢ U, passing ⇢ O | …

math, bonus, passing ⇢ U
math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ S | math, bonus, passing ⇢ U

math, bonus, passing ⇢ U

math, bonus ⇢ U, passing ⇢ O

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used [[P]]Q
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Syntactic (Non-)Usage

229

x ⇢ U

y ⇢ S | y ⇢ U

z ⇢ N

w ⇢ O | w ⇢ U

t ⇢ N

N

S O

U

• U: used in the current scope (or an inner scope) 
• S: used in an outer scope 
• O: used in an outer scope and overridden in the current scope 
• N: not used [[P]]Q

 
passing = True 
while not english:  
      english = False                                

passing ⇢ O

passing ⇢ U

passing ⇢ U

P ⊧ 𝒩+
J ⇐ [[P]] ⊆ [[P]]♮

Q ⊆ 𝒩+
J

Theorem
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Hierarchy of Semantics

collecting semantics

dependency semantics

parallel semantics
α𝕀

{[[M]]}

{[M]}𝕀
∙

[[M]]∙

{[M]}𝕀
↝

[[M]]↝

{[M]}𝕀 α∙

α∙

α↝

α↝

α𝕀

α𝕀

outcome semantics

syntactic non-usagestrongly-live variable analysis

secure information flow
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Abstract

Every
year there are more than 3.6 mil-

lion referral
s made to c

hild protect
ion agen-

cies across the US. The
practic

e of scree
n-

ing calls is left to each jurisdic
tion to fol-

low local pr
actices

and policies
, poten

tially

leading
to large variatio

n in the way in

which referral
s are tr

eated across t
he coun

-

try. Whilst increas
ing access

to linked ad-

ministrat
ive data is avail

able, it
is difficult

for welf
are workers

to make system
atic use

of histo
rical in

formation about a
ll the chil-

dren and adults
on a single referral

call.

Risk predict
ion models that use routine

ly

collecte
d administrat

ive data can help call

workers
to better

identify
cases that are

likely to result i
n adverse

outcom
es. How-

ever, th
e use of pred

ictive analyti
cs in the

area of child
welfare

is content
ious. There

is a possibi
lity that some communities—

such as those in poverty
or from particu

-

lar racial a
nd ethnic

groups—
will be

dis-

advanta
ged by the reliance

on governm
ent

administrat
ive data.

On the other hand,

these analyti
cs tools can augment or re-

place human judgments, w
hich themselves

are biased
and imperfect

. In this pa
per we

describ
e our work on develop

ing, validat-

ing, fai
rness a

uditing
, and deployi

ng a risk

predict
ion model in

Alleghen
y County

, PA,

USA. We discuss
the results

of our
analy-

sis to-d
ate, and

also highligh
t key problem

s

and data bias iss
ues tha

t presen
t challe

nges

for model ev
aluatio

n and deploym
ent.

1. Introd
uction

Every year th
ere are

more tha
n 3.6 million refer-

rals made to child protect
ion agencie

s across
the

US. It
is estimated that 37% of US children

are

investig
ated for child abuse and neglect

by age

18 years (K
im et al., 2

017). T
hese sta

tistics i
ndi-

cate tha
t far fro

m being a rare occ
urrence

, many

more chil
dren are bein

g pulled into the chil
d wel-

fare age
ncies th

an previou
sly thought

. Curre
ntly,

screenin
g these referral

calls is left to each ju-

risdictio
n to follow local pr

actices
and policies

.

These p
ractices

usually
involve

casewor
kers gat

h-

ering de
tails ab

out the
adults a

nd children
associ-

ated with the alle
ged victim. Often, th

e decisi
on

on whethe
r to investig

ate or n
ot is made wit

hout

ever vis
iting the family or spea

king with them.

Whilst electron
ic case managem

ent systems

and linked
administrat

ive data are increasi
ngly

availabl
e, it is difficult for child welfare

workers

to make systematic use of histo
rical in

formation

about a
ll the ch

ildren and adults o
n a single

refer-
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Data Leakage Analysis [Subotic24]

mathematical models  
of the program behavior

algorithmic approaches  
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targeting specific programs

An Abstract Interpretation-Based
Data Leakage Static Analysis

Filip Drobnjaković1, Pavle Subotić1, and Caterina Urban2

1 Microsoft, Serbia
2 Inria & ENS | PSL, France

Abstract. Data leakage is a well-known problem in machine learning
which occurs when the training and testing datasets are not indepen-
dent. This phenomenon leads to overly optimistic accuracy estimates at
training time, followed by a significant drop in performance when mod-
els are deployed in the real world. This can be dangerous, notably when
models are used for risk prediction in high-stakes applications.
In this paper, we propose an abstract interpretation-based static analysis
to prove the absence of data leakage. We implemented it in the NBLyzer
framework and we demonstrate its performance and precision on 2111
Jupyter notebooks from the Kaggle competition platform.

1 Introduction

As artificial intelligence (AI) continues its unprecedented impact on society, en-
suring machine learning (ML) models are accurate is crucial. To this end, ML
models need to be correctly trained and tested. This iterative task is typically
performed within data science notebook environments [19,9]. A notable bug
that can be introduced during this process is known as a data leakage [18].
Data leakages have been identified as a pervasive problem by the data science
community [10,11,17]. In a number of recent cases data leakages crippled the
performance of real-world risk prediction systems with dangerous consequences
in high-stakes applications such as child welfare [1] and healthcare [24].

Data leakages arise when dependent data is used to train and test a model.
This can come in the form of overlapping data sets or, more insidiously, by
library transformations that create indirect data dependencies.

Example 1 (Motivating Example). Consider the following excerpt of a data sci-
ence notebook (based on 569.ipynb from our benchmarks, and written in the
small language that we introduce in Section 3.3):

1 data = read("data.csv")
2 X_norm = normalize(X)
3 X_train = X_norm.select [[⌊0.025 ∗RX norm⌋+ 1, . . . , RX norm]][]
4 X_test = X_norm.select [[0, . . ., ⌊0.025 ∗RX norm⌋]][]
5 train(X_train)
6 test(X_test)
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2nd Challenge: Indirect Reasoning
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import pandas as pd 
df = pd.read_csv(“HousePrices.csv”)

ex = df[df.SalePrice >= 1000000]

Sa
le

Pr
ic

e

ex = df

ex[‘Profit’] = ex[‘SalePrice’] - ex[‘BuyPrice’]

Sa
le

Pr
ic

e
Pr

ofi
t

Bu
yP

ric
e

 
dL = pd.read_csv(“L.csv”) 
dP = dL.pivot(index=c, columns=y, values=l) 
dR = pd.read_csv(“R.csv”) 
dG = dP.loc[:, 0:35].groupby(dR[r])

⋮

 c
 

 y
   l 

dR[r]  dG 

dP  dR

∈
∩ r 
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Automatic Inference of Necessary Preconditions

Patrick Cousot1, Radhia Cousot2, Manuel Fähndrich3, and Francesco Logozzo3

1 NYU, ENS, CNRS, INRIA
pcousot@cims.nyu.edu
2 CNRS, ENS, INRIA

rcousot@ens.fr
3 Microsoft Research

{maf,logozzo}@microsoft.com

Abstract. We consider the problem of automatic precondition infer-
ence. We argue that the common notion of sufficient precondition in-
ference (i.e., under which precondition is the program correct?) imposes
too large a burden on callers, and hence it is unfit for automatic program
analysis. Therefore, we define the problem of necessary precondition in-
ference (i.e., under which precondition, if violated, will the program al-
ways be incorrect?). We designed and implemented several new abstract
interpretation-based analyses to infer atomic, disjunctive, universally and
existentially quantified necessary preconditions.

We experimentally validated the analyses on large scale industrial
code. For unannotated code, the inference algorithms find necessary pre-
conditions for almost 64% of methods which contained warnings. In 27%
of these cases the inferred preconditions were also sufficient, meaning all
warnings within the method body disappeared. For annotated code, the
inference algorithms find necessary preconditions for over 68% of meth-
ods with warnings. In almost 50% of these cases the preconditions were
also sufficient. Overall, the precision improvement obtained by precon-
dition inference (counted as the additional number of methods with no
warnings) ranged between 9% and 21%.

1 Introduction

Design by Contract [28] is a programming methodology which systematically re-
quires the programmer to provide the preconditions, postconditions and object
invariants (collectively called contracts) at design time. Contracts allow auto-
matic generation of documentation, amplify the testing process, and naturally
enable assume/guarantee reasoning for divide and conquer static program anal-
ysis and verification. In the real world, relatively few methods have contracts
that are sufficient to prove the method correct. Typically, the precondition of
a method is weaker than necessary, resulting in unproven assertions within the
method, but making it easier to prove the precondition at call-sites. Inference
has been advocated as the holy grail to solve this problem.

In this paper we focus on the problem of computing necessary preconditions
which are inevitable checks from within the method that are hoisted to the

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 128–148, 2013.
c⃝ Springer-Verlag Berlin Heidelberg 2013
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INTERACTIVE STATIC ANALYSIS

MULTI-LANGUAGE SUPPORT

STATIC AND DYNAMIC ANALYSIS COMBINATIONS
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CFG with Analysis Result for example

df -> {_: W}

1

df -> {_: W}

import pandas as pd
df -> {_: W}

df: pd.DataFrame = read_csv(pandas, "...")
df -> {"id": N, "t": U, _: N}

drop(df, ["id"])
df -> {"t": U, _: N}

head(df["t"])
df -> {_: N}

2

df -> {_: N}

3
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CFG with Analysis Result for example

df -> {_: W}
sub -> {_: W}

1

df -> {_: W}
sub -> {_: W}

import pandas as pd
df -> {_: W}
sub -> {_: W}

df: pd.DataFrame = read_csv(pandas, "...")
df -> {"A": U, "B": N, "C": U, _: N}

sub -> {_: W}

sub: pd.DataFrame = df[["A", "B", "C"]]
df -> {_: N}

sub -> {"B": W, _: U}

sub["B"]: pd.DataFrame = 1
df -> {_: N}
sub -> {_: U}

head(sub)
df -> {_: N}
sub -> {_: N}

2

df -> {_: N}
sub -> {_: N}

3
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